xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_index.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30//
31// Do the same run, but now with direct IR generation and VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
33
34
35#SparseVector = #sparse_tensor.encoding<{
36  map = (d0) -> (d0 : compressed)
37}>
38
39#SparseMatrix = #sparse_tensor.encoding<{
40  map = (d0, d1) -> (d0 : compressed, d1 : compressed)
41}>
42
43#trait_1d = {
44  indexing_maps = [
45    affine_map<(i) -> (i)>,  // a
46    affine_map<(i) -> (i)>   // x (out)
47  ],
48  iterator_types = ["parallel"],
49  doc = "X(i) = a(i) op i"
50}
51
52#trait_2d = {
53  indexing_maps = [
54    affine_map<(i,j) -> (i,j)>,  // A
55    affine_map<(i,j) -> (i,j)>   // X (out)
56  ],
57  iterator_types = ["parallel", "parallel"],
58  doc = "X(i,j) = A(i,j) op i op j"
59}
60
61//
62// Test with indices. Note that a lot of results are actually
63// dense, but this is done to stress test all the operations.
64//
65module {
66
67  //
68  // Kernel that uses index in the index notation (conjunction).
69  //
70  func.func @sparse_index_1d_conj(%arga: tensor<8xi64, #SparseVector>)
71                                 -> tensor<8xi64, #SparseVector> {
72    %init = tensor.empty() : tensor<8xi64, #SparseVector>
73    %r = linalg.generic #trait_1d
74        ins(%arga: tensor<8xi64, #SparseVector>)
75       outs(%init: tensor<8xi64, #SparseVector>) {
76        ^bb(%a: i64, %x: i64):
77          %i = linalg.index 0 : index
78          %ii = arith.index_cast %i : index to i64
79          %m1 = arith.muli %a, %ii : i64
80          linalg.yield %m1 : i64
81    } -> tensor<8xi64, #SparseVector>
82    return %r : tensor<8xi64, #SparseVector>
83  }
84
85  //
86  // Kernel that uses index in the index notation (disjunction).
87  //
88  func.func @sparse_index_1d_disj(%arga: tensor<8xi64, #SparseVector>)
89                                 -> tensor<8xi64, #SparseVector> {
90    %init = tensor.empty() : tensor<8xi64, #SparseVector>
91    %r = linalg.generic #trait_1d
92        ins(%arga: tensor<8xi64, #SparseVector>)
93       outs(%init: tensor<8xi64, #SparseVector>) {
94        ^bb(%a: i64, %x: i64):
95          %i = linalg.index 0 : index
96          %ii = arith.index_cast %i : index to i64
97          %m1 = arith.addi %a, %ii : i64
98          linalg.yield %m1 : i64
99    } -> tensor<8xi64, #SparseVector>
100    return %r : tensor<8xi64, #SparseVector>
101  }
102
103  //
104  // Kernel that uses indices in the index notation (conjunction).
105  //
106  func.func @sparse_index_2d_conj(%arga: tensor<3x4xi64, #SparseMatrix>)
107                                 -> tensor<3x4xi64, #SparseMatrix> {
108    %init = tensor.empty() : tensor<3x4xi64, #SparseMatrix>
109    %r = linalg.generic #trait_2d
110        ins(%arga: tensor<3x4xi64, #SparseMatrix>)
111       outs(%init: tensor<3x4xi64, #SparseMatrix>) {
112        ^bb(%a: i64, %x: i64):
113          %i = linalg.index 0 : index
114          %j = linalg.index 1 : index
115          %ii = arith.index_cast %i : index to i64
116          %jj = arith.index_cast %j : index to i64
117          %m1 = arith.muli %ii, %a : i64
118          %m2 = arith.muli %jj, %m1 : i64
119          linalg.yield %m2 : i64
120    } -> tensor<3x4xi64, #SparseMatrix>
121    return %r : tensor<3x4xi64, #SparseMatrix>
122  }
123
124  //
125  // Kernel that uses indices in the index notation (disjunction).
126  //
127  func.func @sparse_index_2d_disj(%arga: tensor<3x4xi64, #SparseMatrix>)
128                                 -> tensor<3x4xi64, #SparseMatrix> {
129    %init = tensor.empty() : tensor<3x4xi64, #SparseMatrix>
130    %r = linalg.generic #trait_2d
131        ins(%arga: tensor<3x4xi64, #SparseMatrix>)
132       outs(%init: tensor<3x4xi64, #SparseMatrix>) {
133        ^bb(%a: i64, %x: i64):
134          %i = linalg.index 0 : index
135          %j = linalg.index 1 : index
136          %ii = arith.index_cast %i : index to i64
137          %jj = arith.index_cast %j : index to i64
138          %m1 = arith.addi %ii, %a : i64
139          %m2 = arith.addi %jj, %m1 : i64
140          linalg.yield %m2 : i64
141    } -> tensor<3x4xi64, #SparseMatrix>
142    return %r : tensor<3x4xi64, #SparseMatrix>
143  }
144
145  func.func @add_outer_2d(%arg0: tensor<2x3xf32, #SparseMatrix>)
146                         -> tensor<2x3xf32, #SparseMatrix> {
147    %0 = tensor.empty() : tensor<2x3xf32, #SparseMatrix>
148    %1 = linalg.generic #trait_2d
149      ins(%arg0 : tensor<2x3xf32, #SparseMatrix>)
150      outs(%0 : tensor<2x3xf32, #SparseMatrix>) {
151    ^bb0(%arg1: f32, %arg2: f32):
152      %2 = linalg.index 0 : index
153      %3 = arith.index_cast %2 : index to i64
154      %4 = arith.uitofp %3 : i64 to f32
155      %5 = arith.addf %arg1, %4 : f32
156      linalg.yield %5 : f32
157    } -> tensor<2x3xf32, #SparseMatrix>
158    return %1 : tensor<2x3xf32, #SparseMatrix>
159  }
160
161  //
162  // Main driver.
163  //
164  func.func @main() {
165    %c0 = arith.constant 0 : index
166    %du = arith.constant -1 : i64
167    %df = arith.constant -1.0 : f32
168
169    // Setup input sparse vector.
170    %v1 = arith.constant sparse<[[2], [4]], [ 10, 20]> : tensor<8xi64>
171    %sv = sparse_tensor.convert %v1 : tensor<8xi64> to tensor<8xi64, #SparseVector>
172
173    // Setup input "sparse" vector.
174    %v2 = arith.constant dense<[ 1,  2,  4,  8,  16,  32,  64,  128 ]> : tensor<8xi64>
175    %dv = sparse_tensor.convert %v2 : tensor<8xi64> to tensor<8xi64, #SparseVector>
176
177    // Setup input sparse matrix.
178    %m1 = arith.constant sparse<[[1,1], [2,3]], [10, 20]> : tensor<3x4xi64>
179    %sm = sparse_tensor.convert %m1 : tensor<3x4xi64> to tensor<3x4xi64, #SparseMatrix>
180
181    // Setup input "sparse" matrix.
182    %m2 = arith.constant dense <[ [ 1,  1,  1,  1 ],
183                                  [ 1,  2,  1,  1 ],
184                                  [ 1,  1,  3,  4 ] ]> : tensor<3x4xi64>
185    %dm = sparse_tensor.convert %m2 : tensor<3x4xi64> to tensor<3x4xi64, #SparseMatrix>
186
187    // Setup input sparse f32 matrix.
188    %mf32 = arith.constant sparse<[[0,1], [1,2]], [10.0, 41.0]> : tensor<2x3xf32>
189    %sf32 = sparse_tensor.convert %mf32 : tensor<2x3xf32> to tensor<2x3xf32, #SparseMatrix>
190
191    // Call the kernels.
192    %0 = call @sparse_index_1d_conj(%sv) : (tensor<8xi64, #SparseVector>)
193      -> tensor<8xi64, #SparseVector>
194    %1 = call @sparse_index_1d_disj(%sv) : (tensor<8xi64, #SparseVector>)
195      -> tensor<8xi64, #SparseVector>
196    %2 = call @sparse_index_1d_conj(%dv) : (tensor<8xi64, #SparseVector>)
197      -> tensor<8xi64, #SparseVector>
198    %3 = call @sparse_index_1d_disj(%dv) : (tensor<8xi64, #SparseVector>)
199      -> tensor<8xi64, #SparseVector>
200    %4 = call @sparse_index_2d_conj(%sm) : (tensor<3x4xi64, #SparseMatrix>)
201      -> tensor<3x4xi64, #SparseMatrix>
202    %5 = call @sparse_index_2d_disj(%sm) : (tensor<3x4xi64, #SparseMatrix>)
203      -> tensor<3x4xi64, #SparseMatrix>
204    %6 = call @sparse_index_2d_conj(%dm) : (tensor<3x4xi64, #SparseMatrix>)
205      -> tensor<3x4xi64, #SparseMatrix>
206    %7 = call @sparse_index_2d_disj(%dm) : (tensor<3x4xi64, #SparseMatrix>)
207      -> tensor<3x4xi64, #SparseMatrix>
208
209    //
210    // Verify result.
211    //
212    // CHECK:      ---- Sparse Tensor ----
213    // CHECK-NEXT: nse = 2
214    // CHECK-NEXT: dim = ( 8 )
215    // CHECK-NEXT: lvl = ( 8 )
216    // CHECK-NEXT: pos[0] : ( 0, 2 )
217    // CHECK-NEXT: crd[0] : ( 2, 4 )
218    // CHECK-NEXT: values : ( 20, 80 )
219    // CHECK-NEXT: ----
220    //
221    // CHECK:      ---- Sparse Tensor ----
222    // CHECK-NEXT: nse = 8
223    // CHECK-NEXT: dim = ( 8 )
224    // CHECK-NEXT: lvl = ( 8 )
225    // CHECK-NEXT: pos[0] : ( 0, 8 )
226    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7 )
227    // CHECK-NEXT: values : ( 0, 1, 12, 3, 24, 5, 6, 7 )
228    // CHECK-NEXT: ----
229    //
230    // CHECK:      ---- Sparse Tensor ----
231    // CHECK-NEXT: nse = 8
232    // CHECK-NEXT: dim = ( 8 )
233    // CHECK-NEXT: lvl = ( 8 )
234    // CHECK-NEXT: pos[0] : ( 0, 8 )
235    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7 )
236    // CHECK-NEXT: values : ( 0, 2, 8, 24, 64, 160, 384, 896 )
237    // CHECK-NEXT: ----
238    //
239    // CHECK:      ---- Sparse Tensor ----
240    // CHECK-NEXT: nse = 8
241    // CHECK-NEXT: dim = ( 8 )
242    // CHECK-NEXT: lvl = ( 8 )
243    // CHECK-NEXT: pos[0] : ( 0, 8 )
244    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7 )
245    // CHECK-NEXT: values : ( 1, 3, 6, 11, 20, 37, 70, 135 )
246    // CHECK-NEXT: ----
247    //
248    // CHECK:      ---- Sparse Tensor ----
249    // CHECK-NEXT: nse = 2
250    // CHECK-NEXT: dim = ( 3, 4 )
251    // CHECK-NEXT: lvl = ( 3, 4 )
252    // CHECK-NEXT: pos[0] : ( 0, 2 )
253    // CHECK-NEXT: crd[0] : ( 1, 2 )
254    // CHECK-NEXT: pos[1] : ( 0, 1, 2 )
255    // CHECK-NEXT: crd[1] : ( 1, 3 )
256    // CHECK-NEXT: values : ( 10, 120 )
257    // CHECK-NEXT: ----
258    //
259    // CHECK:      ---- Sparse Tensor ----
260    // CHECK-NEXT: nse = 12
261    // CHECK-NEXT: dim = ( 3, 4 )
262    // CHECK-NEXT: lvl = ( 3, 4 )
263    // CHECK-NEXT: pos[0] : ( 0, 3 )
264    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
265    // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
266    // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
267    // CHECK-NEXT: values : ( 0, 1, 2, 3, 1, 12, 3, 4, 2, 3, 4, 25 )
268    // CHECK-NEXT: ----
269    //
270    // CHECK:      ---- Sparse Tensor ----
271    // CHECK-NEXT: nse = 12
272    // CHECK-NEXT: dim = ( 3, 4 )
273    // CHECK-NEXT: lvl = ( 3, 4 )
274    // CHECK-NEXT: pos[0] : ( 0, 3 )
275    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
276    // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
277    // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
278    // CHECK-NEXT: values : ( 0, 0, 0, 0, 0, 2, 2, 3, 0, 2, 12, 24 )
279    // CHECK-NEXT: ----
280    //
281    // CHECK:      ---- Sparse Tensor ----
282    // CHECK-NEXT: nse = 12
283    // CHECK-NEXT: dim = ( 3, 4 )
284    // CHECK-NEXT: lvl = ( 3, 4 )
285    // CHECK-NEXT: pos[0] : ( 0, 3 )
286    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
287    // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
288    // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 )
289    // CHECK-NEXT: values : ( 1, 2, 3, 4, 2, 4, 4, 5, 3, 4, 7, 9 )
290    // CHECK-NEXT: ----
291    //
292    sparse_tensor.print %0 : tensor<8xi64, #SparseVector>
293    sparse_tensor.print %1 : tensor<8xi64, #SparseVector>
294    sparse_tensor.print %2 : tensor<8xi64, #SparseVector>
295    sparse_tensor.print %3 : tensor<8xi64, #SparseVector>
296    sparse_tensor.print %4 : tensor<3x4xi64, #SparseMatrix>
297    sparse_tensor.print %5 : tensor<3x4xi64, #SparseMatrix>
298    sparse_tensor.print %6 : tensor<3x4xi64, #SparseMatrix>
299    sparse_tensor.print %7 : tensor<3x4xi64, #SparseMatrix>
300
301    //
302    // Call the f32 kernel, verify the result.
303    //
304    // CHECK:      ---- Sparse Tensor ----
305    // CHECK-NEXT: nse = 6
306    // CHECK-NEXT: dim = ( 2, 3 )
307    // CHECK-NEXT: lvl = ( 2, 3 )
308    // CHECK-NEXT: pos[0] : ( 0, 2 )
309    // CHECK-NEXT: crd[0] : ( 0, 1 )
310    // CHECK-NEXT: pos[1] : ( 0, 3, 6 )
311    // CHECK-NEXT: crd[1] : ( 0, 1, 2, 0, 1, 2 )
312    // CHECK-NEXT: values : ( 0, 10, 0, 1, 1, 42 )
313    // CHECK-NEXT: ----
314    //
315    %100 = call @add_outer_2d(%sf32) : (tensor<2x3xf32, #SparseMatrix>)
316      -> tensor<2x3xf32, #SparseMatrix>
317    sparse_tensor.print %100 : tensor<2x3xf32, #SparseMatrix>
318
319    // Release resources.
320    bufferization.dealloc_tensor %sv : tensor<8xi64, #SparseVector>
321    bufferization.dealloc_tensor %dv : tensor<8xi64, #SparseVector>
322    bufferization.dealloc_tensor %0 : tensor<8xi64, #SparseVector>
323    bufferization.dealloc_tensor %1 : tensor<8xi64, #SparseVector>
324    bufferization.dealloc_tensor %2 : tensor<8xi64, #SparseVector>
325    bufferization.dealloc_tensor %3 : tensor<8xi64, #SparseVector>
326    bufferization.dealloc_tensor %sm : tensor<3x4xi64, #SparseMatrix>
327    bufferization.dealloc_tensor %dm : tensor<3x4xi64, #SparseMatrix>
328    bufferization.dealloc_tensor %4 : tensor<3x4xi64, #SparseMatrix>
329    bufferization.dealloc_tensor %5 : tensor<3x4xi64, #SparseMatrix>
330    bufferization.dealloc_tensor %6 : tensor<3x4xi64, #SparseMatrix>
331    bufferization.dealloc_tensor %7 : tensor<3x4xi64, #SparseMatrix>
332    bufferization.dealloc_tensor %sf32 : tensor<2x3xf32, #SparseMatrix>
333    bufferization.dealloc_tensor %100 : tensor<2x3xf32, #SparseMatrix>
334
335    return
336  }
337}
338