xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_expand_shape.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30//
31// Do the same run, but now with direct IR generation and VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
33
34#SparseVector = #sparse_tensor.encoding<{
35  map = (d0) -> (d0 : compressed)
36}>
37
38#SparseMatrix = #sparse_tensor.encoding<{
39  map = (d0, d1) -> (d0 : compressed, d1 : compressed)
40}>
41
42#Sparse3dTensor = #sparse_tensor.encoding<{
43  map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed)
44}>
45
46#Sparse4dTensor = #sparse_tensor.encoding<{
47  map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : compressed, d2 : compressed, d3 : compressed)
48}>
49
50//
51// Test with various forms of the two most elementary reshape
52// operations: expand
53//
54module {
55
56  func.func @expand_dense(%arg0: tensor<12xf64>) -> tensor<3x4xf64> {
57    %0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64> into tensor<3x4xf64>
58    return %0 : tensor<3x4xf64>
59  }
60
61  func.func @expand_from_sparse(%arg0: tensor<12xf64, #SparseVector>) -> tensor<3x4xf64> {
62    %0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64, #SparseVector> into tensor<3x4xf64>
63    return %0 : tensor<3x4xf64>
64  }
65
66  func.func @expand_to_sparse(%arg0: tensor<12xf64>) -> tensor<3x4xf64, #SparseMatrix> {
67    %0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64> into tensor<3x4xf64, #SparseMatrix>
68    return %0 : tensor<3x4xf64, #SparseMatrix>
69  }
70
71  func.func @expand_sparse2sparse(%arg0: tensor<12xf64, #SparseVector>) -> tensor<3x4xf64, #SparseMatrix> {
72    %0 = tensor.expand_shape %arg0 [[0, 1]] output_shape [3, 4] : tensor<12xf64, #SparseVector> into tensor<3x4xf64, #SparseMatrix>
73    return %0 : tensor<3x4xf64, #SparseMatrix>
74  }
75
76  func.func @expand_dense_3x2x2(%arg0: tensor<3x4xf64>) -> tensor<3x2x2xf64> {
77    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64> into tensor<3x2x2xf64>
78    return %0 : tensor<3x2x2xf64>
79  }
80
81  func.func @expand_from_sparse_3x2x2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64> {
82    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64, #SparseMatrix> into tensor<3x2x2xf64>
83    return %0 : tensor<3x2x2xf64>
84  }
85
86  func.func @expand_to_sparse_3x2x2(%arg0: tensor<3x4xf64>) -> tensor<3x2x2xf64, #Sparse3dTensor> {
87    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64> into tensor<3x2x2xf64, #Sparse3dTensor>
88    return %0 : tensor<3x2x2xf64, #Sparse3dTensor>
89  }
90
91  func.func @expand_sparse2sparse_3x2x2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64, #Sparse3dTensor> {
92    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [3, 2, 2] : tensor<3x4xf64, #SparseMatrix> into tensor<3x2x2xf64, #Sparse3dTensor>
93    return %0 : tensor<3x2x2xf64, #Sparse3dTensor>
94  }
95
96  func.func @expand_dense_dyn(%arg0: tensor<?x?xf64>) -> tensor<?x2x?xf64> {
97    %c0 = arith.constant 0 : index
98    %c1 = arith.constant 1 : index
99    %c2 = arith.constant 2 : index
100    %d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64>
101    %d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64>
102    %d2 = arith.divui %d1, %c2 : index
103    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2]  : tensor<?x?xf64> into tensor<?x2x?xf64>
104    return %0 : tensor<?x2x?xf64>
105  }
106
107  func.func @expand_from_sparse_dyn(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64> {
108    %c0 = arith.constant 0 : index
109    %c1 = arith.constant 1 : index
110    %c2 = arith.constant 2 : index
111    %d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64, #SparseMatrix>
112    %d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64, #SparseMatrix>
113    %d2 = arith.divui %d1, %c2 : index
114    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2]  : tensor<?x?xf64, #SparseMatrix> into tensor<?x2x?xf64>
115    return %0 : tensor<?x2x?xf64>
116  }
117
118  func.func @expand_to_sparse_dyn(%arg0: tensor<?x?xf64>) -> tensor<?x2x?xf64, #Sparse3dTensor> {
119    %c0 = arith.constant 0 : index
120    %c1 = arith.constant 1 : index
121    %c2 = arith.constant 2 : index
122    %d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64>
123    %d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64>
124    %d2 = arith.divui %d1, %c2 : index
125    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2]  : tensor<?x?xf64> into tensor<?x2x?xf64, #Sparse3dTensor>
126    return %0 : tensor<?x2x?xf64, #Sparse3dTensor>
127  }
128
129  func.func @expand_sparse2sparse_dyn(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64, #Sparse3dTensor> {
130    %c0 = arith.constant 0 : index
131    %c1 = arith.constant 1 : index
132    %c2 = arith.constant 2 : index
133    %d0 = tensor.dim %arg0, %c0 : tensor<?x?xf64, #SparseMatrix>
134    %d1 = tensor.dim %arg0, %c1 : tensor<?x?xf64, #SparseMatrix>
135    %d2 = arith.divui %d1, %c2 : index
136    %0 = tensor.expand_shape %arg0 [[0], [1, 2]] output_shape [%d0, 2, %d2]  : tensor<?x?xf64, #SparseMatrix> into tensor<?x2x?xf64, #Sparse3dTensor>
137    return %0 : tensor<?x2x?xf64, #Sparse3dTensor>
138  }
139
140  //
141  // Main driver.
142  //
143  func.func @main() {
144    %c0 = arith.constant 0 : index
145    %df = arith.constant -1.0 : f64
146
147    // Setup test vectors and matrices..
148    %v = arith.constant dense <[ 1.0, 0.0, 3.0, 0.0,  5.0, 0.0,
149                                 7.0, 0.0, 9.0, 0.0, 11.0, 0.0]> : tensor<12xf64>
150    %m = arith.constant dense <[ [ 1.1,  1.2,  1.3,  1.4 ],
151                                 [ 2.1,  2.2,  2.3,  2.4 ],
152                                 [ 3.1,  3.2,  3.3,  3.4 ]]> : tensor<3x4xf64>
153
154    %sv = sparse_tensor.convert %v : tensor<12xf64> to tensor<12xf64, #SparseVector>
155    %sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix>
156
157    %dm = tensor.cast %m : tensor<3x4xf64> to tensor<?x?xf64>
158    %sdm = sparse_tensor.convert %dm : tensor<?x?xf64> to tensor<?x?xf64, #SparseMatrix>
159
160    // Call the kernels.
161    %expand0 = call @expand_dense(%v) : (tensor<12xf64>) -> tensor<3x4xf64>
162    %expand1 = call @expand_from_sparse(%sv) : (tensor<12xf64, #SparseVector>) -> tensor<3x4xf64>
163    %expand2 = call @expand_to_sparse(%v) : (tensor<12xf64>) -> tensor<3x4xf64, #SparseMatrix>
164    %expand3 = call @expand_sparse2sparse(%sv) : (tensor<12xf64, #SparseVector>) -> tensor<3x4xf64, #SparseMatrix>
165    %expand4 = call @expand_dense_3x2x2(%m) : (tensor<3x4xf64>) -> tensor<3x2x2xf64>
166    %expand5 = call @expand_from_sparse_3x2x2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64>
167    %expand6 = call @expand_to_sparse_3x2x2(%m) : (tensor<3x4xf64>) -> tensor<3x2x2xf64, #Sparse3dTensor>
168    %expand7 = call @expand_sparse2sparse_3x2x2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64, #Sparse3dTensor>
169    %expand8 = call @expand_dense_dyn(%dm) : (tensor<?x?xf64>) -> tensor<?x2x?xf64>
170    %expand9 = call @expand_from_sparse_dyn(%sdm) : (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64>
171    %expand10 = call @expand_to_sparse_dyn(%dm) : (tensor<?x?xf64>) -> tensor<?x2x?xf64, #Sparse3dTensor>
172    %expand11 = call @expand_sparse2sparse_dyn(%sdm) : (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64, #Sparse3dTensor>
173
174    //
175    // Verify results of expand with dense output.
176    //
177    // CHECK:      ( ( 1, 0, 3, 0 ), ( 5, 0, 7, 0 ), ( 9, 0, 11, 0 ) )
178    // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 5, 0, 7, 0 ), ( 9, 0, 11, 0 ) )
179    // CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
180    // CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
181    // CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
182    // CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
183    //
184    %m0 = vector.transfer_read %expand0[%c0, %c0], %df: tensor<3x4xf64>, vector<3x4xf64>
185    vector.print %m0 : vector<3x4xf64>
186    %m1 = vector.transfer_read %expand1[%c0, %c0], %df: tensor<3x4xf64>, vector<3x4xf64>
187    vector.print %m1 : vector<3x4xf64>
188    %m4 = vector.transfer_read %expand4[%c0, %c0, %c0], %df: tensor<3x2x2xf64>, vector<3x2x2xf64>
189    vector.print %m4 : vector<3x2x2xf64>
190    %m5 = vector.transfer_read %expand5[%c0, %c0, %c0], %df: tensor<3x2x2xf64>, vector<3x2x2xf64>
191    vector.print %m5 : vector<3x2x2xf64>
192    %m8 = vector.transfer_read %expand8[%c0, %c0, %c0], %df: tensor<?x2x?xf64>, vector<3x2x2xf64>
193    vector.print %m8 : vector<3x2x2xf64>
194    %m9 = vector.transfer_read %expand9[%c0, %c0, %c0], %df: tensor<?x2x?xf64>, vector<3x2x2xf64>
195    vector.print %m9 : vector<3x2x2xf64>
196
197    //
198    // Verify results of expand with sparse output.
199    //
200    // CHECK:      ---- Sparse Tensor ----
201    // CHECK-NEXT: nse = 6
202    // CHECK-NEXT: dim = ( 3, 4 )
203    // CHECK-NEXT: lvl = ( 3, 4 )
204    // CHECK-NEXT: pos[0] : ( 0, 3 )
205    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
206    // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
207    // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 )
208    // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 11 )
209    // CHECK-NEXT: ----
210    //
211    // CHECK:      ---- Sparse Tensor ----
212    // CHECK-NEXT: nse = 6
213    // CHECK-NEXT: dim = ( 3, 4 )
214    // CHECK-NEXT: lvl = ( 3, 4 )
215    // CHECK-NEXT: pos[0] : ( 0, 3 )
216    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
217    // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
218    // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 )
219    // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 11 )
220    // CHECK-NEXT: ----
221    //
222    // CHECK:      ---- Sparse Tensor ----
223    // CHECK-NEXT: nse = 12
224    // CHECK-NEXT: dim = ( 3, 2, 2 )
225    // CHECK-NEXT: lvl = ( 3, 2, 2 )
226    // CHECK-NEXT: pos[0] : ( 0, 3 )
227    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
228    // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
229    // CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
230    // CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
231    // CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
232    // CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
233    // CHECK-NEXT: ----
234    //
235    // CHECK:      ---- Sparse Tensor ----
236    // CHECK-NEXT: nse = 12
237    // CHECK-NEXT: dim = ( 3, 2, 2 )
238    // CHECK-NEXT: lvl = ( 3, 2, 2 )
239    // CHECK-NEXT: pos[0] : ( 0, 3 )
240    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
241    // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
242    // CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
243    // CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
244    // CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
245    // CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
246    // CHECK-NEXT: ----
247    //
248    // CHECK:      ---- Sparse Tensor ----
249    // CHECK-NEXT: nse = 12
250    // CHECK-NEXT: dim = ( 3, 2, 2 )
251    // CHECK-NEXT: lvl = ( 3, 2, 2 )
252    // CHECK-NEXT: pos[0] : ( 0, 3 )
253    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
254    // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
255    // CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
256    // CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
257    // CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
258    // CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
259    // CHECK-NEXT: ----
260    //
261    // CHECK:      ---- Sparse Tensor ----
262    // CHECK-NEXT: nse = 12
263    // CHECK-NEXT: dim = ( 3, 2, 2 )
264    // CHECK-NEXT: lvl = ( 3, 2, 2 )
265    // CHECK-NEXT: pos[0] : ( 0, 3 )
266    // CHECK-NEXT: crd[0] : ( 0, 1, 2 )
267    // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 )
268    // CHECK-NEXT: crd[1] : ( 0, 1, 0, 1, 0, 1 )
269    // CHECK-NEXT: pos[2] : ( 0, 2, 4, 6, 8, 10, 12 )
270    // CHECK-NEXT: crd[2] : ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 )
271    // CHECK-NEXT: values : ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
272    // CHECK-NEXT: ----
273    //
274    sparse_tensor.print %expand2 : tensor<3x4xf64, #SparseMatrix>
275    sparse_tensor.print %expand3 : tensor<3x4xf64, #SparseMatrix>
276    sparse_tensor.print %expand6 : tensor<3x2x2xf64, #Sparse3dTensor>
277    sparse_tensor.print %expand7 : tensor<3x2x2xf64, #Sparse3dTensor>
278    sparse_tensor.print %expand10 : tensor<?x2x?xf64, #Sparse3dTensor>
279    sparse_tensor.print %expand11 : tensor<?x2x?xf64, #Sparse3dTensor>
280
281
282    // Release sparse resources.
283    bufferization.dealloc_tensor %sv : tensor<12xf64, #SparseVector>
284    bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix>
285    bufferization.dealloc_tensor %sdm : tensor<?x?xf64, #SparseMatrix>
286    bufferization.dealloc_tensor %expand2 : tensor<3x4xf64, #SparseMatrix>
287    bufferization.dealloc_tensor %expand3 : tensor<3x4xf64, #SparseMatrix>
288    bufferization.dealloc_tensor %expand6 : tensor<3x2x2xf64, #Sparse3dTensor>
289    bufferization.dealloc_tensor %expand7 : tensor<3x2x2xf64, #Sparse3dTensor>
290    bufferization.dealloc_tensor %expand10 : tensor<?x2x?xf64, #Sparse3dTensor>
291    bufferization.dealloc_tensor %expand11 : tensor<?x2x?xf64, #Sparse3dTensor>
292
293    // Release dense resources.
294    bufferization.dealloc_tensor %expand1 : tensor<3x4xf64>
295    bufferization.dealloc_tensor %expand5 : tensor<3x2x2xf64>
296    bufferization.dealloc_tensor %expand9 : tensor<?x2x?xf64>
297
298    return
299  }
300}
301