xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_ds.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/ds.mtx"
22// RUN: %{compile} | env %{env} %{run} | FileCheck %s
23//
24// Do the same run, but now with direct IR generation.
25// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
26// RUN: %{compile} | env %{env} %{run} | FileCheck %s
27//
28// Do the same run, but now with direct IR generation and vectorization.
29// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
30// RUN: %{compile} | env %{env} %{run} | FileCheck %s
31
32!Filename = !llvm.ptr
33
34#CSR = #sparse_tensor.encoding<{
35  map = (i, j) -> ( i : dense, j : compressed)
36}>
37
38#CSR_hi = #sparse_tensor.encoding<{
39  map = (i, j) -> ( i : dense, j : loose_compressed)
40}>
41
42#NV_24 = #sparse_tensor.encoding<{
43  map = ( i, j ) -> ( i            : dense,
44                      j floordiv 4 : dense,
45                      j mod 4      : structured[2, 4]),
46  crdWidth = 8
47}>
48
49#NV_58 = #sparse_tensor.encoding<{
50  map = ( i, j ) -> ( i            : dense,
51                      j floordiv 8 : dense,
52                      j mod 8      : structured[5, 8]),
53  crdWidth = 8
54}>
55
56module {
57
58  func.func private @getTensorFilename(index) -> (!Filename)
59
60  //
61  // Input matrix:
62  //
63  //  [[0.0,  0.0,  1.0,  2.0,  0.0,  3.0,  0.0,  4.0],
64  //   [0.0,  5.0,  6.0,  0.0,  7.0,  0.0,  0.0,  8.0],
65  //   [9.0,  0.0, 10.0,  0.0, 11.0, 12.0,  0.0,  0.0]]
66  //
67  func.func @main() {
68    %c0 = arith.constant 0 : index
69    %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
70
71    %A1 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #CSR>
72    %A2 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #CSR_hi>
73    %A3 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #NV_24>
74    %A4 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #NV_58>
75
76    //
77    // CSR:
78    //
79    // CHECK:      ---- Sparse Tensor ----
80    // CHECK-NEXT: nse = 12
81    // CHECK-NEXT: dim = ( 3, 8 )
82    // CHECK-NEXT: lvl = ( 3, 8 )
83    // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 )
84    // CHECK-NEXT: crd[1] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5 )
85    // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 )
86    // CHECK-NEXT: ----
87    //
88    sparse_tensor.print %A1 : tensor<?x?xf64, #CSR>
89
90    //
91    // CSR_hi:
92    //
93    // CHECK-NEXT: ---- Sparse Tensor ----
94    // CHECK-NEXT: nse = 12
95    // CHECK-NEXT: dim = ( 3, 8 )
96    // CHECK-NEXT: lvl = ( 3, 8 )
97    // CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 8, 12, {{.*}} )
98    // CHECK-NEXT: crd[1] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5 )
99    // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 )
100    // CHECK-NEXT: ----
101    //
102    sparse_tensor.print %A2 : tensor<?x?xf64, #CSR_hi>
103
104    //
105    // NV_24:
106    //
107    // CHECK-NEXT: ---- Sparse Tensor ----
108    // CHECK-NEXT: nse = 12
109    // CHECK-NEXT: dim = ( 3, 8 )
110    // CHECK-NEXT: lvl = ( 3, 2, 4 )
111    // CHECK-NEXT: crd[2] : ( 2, 3, 1, 3, 1, 2, 0, 3, 0, 2, 0, 1 )
112    // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 )
113    // CHECK-NEXT: ----
114    // CHECK-NEXT: ---- Sparse Tensor ----
115    //
116    sparse_tensor.print %A3 : tensor<?x?xf64, #NV_24>
117
118    //
119    // NV_58:
120    //
121    // CHECK-NEXT: nse = 12
122    // CHECK-NEXT: dim = ( 3, 8 )
123    // CHECK-NEXT: lvl = ( 3, 1, 8 )
124    // CHECK-NEXT: crd[2] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5 )
125    // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 )
126    // CHECK-NEXT: ----
127    //
128    sparse_tensor.print %A4 : tensor<?x?xf64, #NV_58>
129
130    // Release the resources.
131    bufferization.dealloc_tensor %A1: tensor<?x?xf64, #CSR>
132    bufferization.dealloc_tensor %A2: tensor<?x?xf64, #CSR_hi>
133    bufferization.dealloc_tensor %A3: tensor<?x?xf64, #NV_24>
134    bufferization.dealloc_tensor %A4: tensor<?x?xf64, #NV_58>
135
136    return
137  }
138}
139