xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_coo_test.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30//
31// Do the same run, but now with direct IR generation and VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
33
34#SortedCOO = #sparse_tensor.encoding<{
35  map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
36}>
37
38#SortedCOOSoA = #sparse_tensor.encoding<{
39  map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton(soa))
40}>
41
42#CSR = #sparse_tensor.encoding<{
43  map = (d0, d1) -> (d0 : dense, d1 : compressed)
44}>
45
46#trait = {
47  indexing_maps = [
48    affine_map<(i,j) -> (i,j)>,  // A
49    affine_map<(i,j) -> (i,j)>,  // B
50    affine_map<(i,j) -> (i,j)>   // X (out)
51  ],
52  iterator_types = ["parallel", "parallel"],
53  doc = "X(i,j) = A(i,j) + B(i,j)"
54}
55
56module {
57  func.func @add_coo_csr(%arga: tensor<8x8xf32, #CSR>,
58                         %argb: tensor<8x8xf32, #SortedCOOSoA>)
59		         -> tensor<8x8xf32> {
60    %empty = tensor.empty() : tensor<8x8xf32>
61    %zero = arith.constant 0.000000e+00 : f32
62    %init = linalg.fill
63        ins(%zero : f32)
64        outs(%empty : tensor<8x8xf32>) -> tensor<8x8xf32>
65    %0 = linalg.generic #trait
66      ins(%arga, %argb: tensor<8x8xf32, #CSR>,
67                        tensor<8x8xf32, #SortedCOOSoA>)
68      outs(%init: tensor<8x8xf32>) {
69        ^bb(%a: f32, %b: f32, %x: f32):
70          %0 = arith.addf %a, %b : f32
71          linalg.yield %0 : f32
72        } -> tensor<8x8xf32>
73    return %0 : tensor<8x8xf32>
74  }
75
76  func.func @add_coo_coo(%arga: tensor<8x8xf32, #SortedCOO>,
77                         %argb: tensor<8x8xf32, #SortedCOOSoA>)
78		         -> tensor<8x8xf32> {
79    %empty = tensor.empty() : tensor<8x8xf32>
80    %zero = arith.constant 0.000000e+00 : f32
81    %init = linalg.fill
82        ins(%zero : f32)
83        outs(%empty : tensor<8x8xf32>) -> tensor<8x8xf32>
84    %0 = linalg.generic #trait
85      ins(%arga, %argb: tensor<8x8xf32, #SortedCOO>,
86                        tensor<8x8xf32, #SortedCOOSoA>)
87      outs(%init: tensor<8x8xf32>) {
88        ^bb(%a: f32, %b: f32, %x: f32):
89          %0 = arith.addf %a, %b : f32
90          linalg.yield %0 : f32
91        } -> tensor<8x8xf32>
92    return %0 : tensor<8x8xf32>
93  }
94
95  func.func @add_coo_coo_out_coo(%arga: tensor<8x8xf32, #SortedCOO>,
96                                 %argb: tensor<8x8xf32, #SortedCOOSoA>)
97		                 -> tensor<8x8xf32, #SortedCOOSoA> {
98    %init = tensor.empty() : tensor<8x8xf32, #SortedCOOSoA>
99    %0 = linalg.generic #trait
100      ins(%arga, %argb: tensor<8x8xf32, #SortedCOO>,
101                        tensor<8x8xf32, #SortedCOOSoA>)
102      outs(%init: tensor<8x8xf32, #SortedCOOSoA>) {
103        ^bb(%a: f32, %b: f32, %x: f32):
104          %0 = arith.addf %a, %b : f32
105          linalg.yield %0 : f32
106        } -> tensor<8x8xf32, #SortedCOOSoA>
107    return %0 : tensor<8x8xf32, #SortedCOOSoA>
108  }
109
110
111  func.func @add_coo_dense(%arga: tensor<8x8xf32>,
112                           %argb: tensor<8x8xf32, #SortedCOOSoA>)
113  	    	         -> tensor<8x8xf32> {
114    %empty = tensor.empty() : tensor<8x8xf32>
115    %zero = arith.constant 0.000000e+00 : f32
116    %init = linalg.fill
117        ins(%zero : f32)
118        outs(%empty : tensor<8x8xf32>) -> tensor<8x8xf32>
119    %0 = linalg.generic #trait
120      ins(%arga, %argb: tensor<8x8xf32>,
121                        tensor<8x8xf32, #SortedCOOSoA>)
122      outs(%init: tensor<8x8xf32>) {
123        ^bb(%a: f32, %b: f32, %x: f32):
124          %0 = arith.addf %a, %b : f32
125          linalg.yield %0 : f32
126        } -> tensor<8x8xf32>
127    return %0 : tensor<8x8xf32>
128  }
129
130  func.func @main() {
131    %c0  = arith.constant 0 : index
132    %c1  = arith.constant 1 : index
133    %c8  = arith.constant 8 : index
134
135    %A = arith.constant dense<
136        [ [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ],
137          [ 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1 ],
138          [ 2.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2 ],
139          [ 3.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3 ],
140          [ 4.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4 ],
141          [ 5.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5 ],
142          [ 6.6, 2.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6 ],
143          [ 7.7, 2.7, 3.7, 4.7, 5.7, 6.7, 7.7, 8.7 ] ]
144    > : tensor<8x8xf32>
145    %B = arith.constant dense<
146        [ [ 7.8, 2.8, 3.8, 0.8, 3.8, 0.1, 7.8, 8.8 ],
147          [ 3.3, 2.3, 1.3, 4.3, 3.3, 6.3, 9.3, 8.3 ],
148          [ 6.6, 2.6, 3.6, 4.6, 3.6, 6.6, 7.6, 7.6 ],
149          [ 1.0, 3.0, 3.0, 4.0, 3.0, 6.0, 7.0, 8.0 ],
150          [ 0.1, 2.1, 3.1, 4.1, 3.1, 6.1, 7.1, 8.1 ],
151          [ 4.4, 2.4, 3.4, 4.4, 3.4, 6.4, 8.4, 8.4 ],
152          [ 5.5, 3.5, 1.5, 4.5, 3.5, 6.5, 7.5, 8.5 ],
153          [ 7.7, 2.7, 3.7, 0.7, 5.7, 3.7, 3.7, 0.7 ] ]
154    > : tensor<8x8xf32>
155
156    // Stress test with a "sparse" version of A and B.
157    %CSR_A = sparse_tensor.convert %A
158      : tensor<8x8xf32> to tensor<8x8xf32, #CSR>
159    %COO_A = sparse_tensor.convert %A
160      : tensor<8x8xf32> to tensor<8x8xf32, #SortedCOO>
161    %COO_B = sparse_tensor.convert %B
162      : tensor<8x8xf32> to tensor<8x8xf32, #SortedCOOSoA>
163
164    %C1 = call @add_coo_dense(%A, %COO_B) : (tensor<8x8xf32>,
165                                             tensor<8x8xf32, #SortedCOOSoA>)
166                                          -> tensor<8x8xf32>
167    %C2 = call @add_coo_csr(%CSR_A, %COO_B) : (tensor<8x8xf32, #CSR>,
168                                               tensor<8x8xf32, #SortedCOOSoA>)
169                                            -> tensor<8x8xf32>
170    %C3 = call @add_coo_coo(%COO_A, %COO_B) : (tensor<8x8xf32, #SortedCOO>,
171                                               tensor<8x8xf32, #SortedCOOSoA>)
172                                            -> tensor<8x8xf32>
173    %COO_RET = call @add_coo_coo_out_coo(%COO_A, %COO_B) : (tensor<8x8xf32, #SortedCOO>,
174                                                            tensor<8x8xf32, #SortedCOOSoA>)
175                                                         -> tensor<8x8xf32, #SortedCOOSoA>
176    %C4 = sparse_tensor.convert %COO_RET : tensor<8x8xf32, #SortedCOOSoA> to tensor<8x8xf32>
177
178    //
179    // Verify computed matrix C.
180    //
181    // CHECK-COUNT-4:      ( 8.8, 4.8, 6.8, 4.8, 8.8, 6.1, 14.8, 16.8 )
182    // CHECK-NEXT-COUNT-4: ( 4.4, 4.4, 4.4, 8.4, 8.4, 12.4, 16.4, 16.4 )
183    // CHECK-NEXT-COUNT-4: ( 8.8, 4.8, 6.8, 8.8, 8.8, 12.8, 14.8, 15.8 )
184    // CHECK-NEXT-COUNT-4: ( 4.3, 5.3, 6.3, 8.3, 8.3, 12.3, 14.3, 16.3 )
185    // CHECK-NEXT-COUNT-4: ( 4.5, 4.5, 6.5, 8.5, 8.5, 12.5, 14.5, 16.5 )
186    // CHECK-NEXT-COUNT-4: ( 9.9, 4.9, 6.9, 8.9, 8.9, 12.9, 15.9, 16.9 )
187    // CHECK-NEXT-COUNT-4: ( 12.1, 6.1, 5.1, 9.1, 9.1, 13.1, 15.1, 17.1 )
188    // CHECK-NEXT-COUNT-4: ( 15.4, 5.4, 7.4, 5.4, 11.4, 10.4, 11.4, 9.4 )
189    //
190    %f0  = arith.constant 0.0 : f32
191    scf.for %i = %c0 to %c8 step %c1 {
192      %v1 = vector.transfer_read %C1[%i, %c0], %f0
193        : tensor<8x8xf32>, vector<8xf32>
194      %v2 = vector.transfer_read %C2[%i, %c0], %f0
195        : tensor<8x8xf32>, vector<8xf32>
196      %v3 = vector.transfer_read %C3[%i, %c0], %f0
197        : tensor<8x8xf32>, vector<8xf32>
198      %v4 = vector.transfer_read %C4[%i, %c0], %f0
199        : tensor<8x8xf32>, vector<8xf32>
200      vector.print %v1 : vector<8xf32>
201      vector.print %v2 : vector<8xf32>
202      vector.print %v3 : vector<8xf32>
203      vector.print %v4 : vector<8xf32>
204    }
205
206    //
207    // Ensure that COO-SoA output has the same values.
208    //
209    // CHECK:      ---- Sparse Tensor ----
210    // CHECK-NEXT: nse = 64
211    // CHECK-NEXT: dim = ( 8, 8 )
212    // CHECK-NEXT: lvl = ( 8, 8 )
213    // CHECK-NEXT: pos[0] : ( 0, 64 )
214    // CHECK-NEXT: crd[0] : ( 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
215    // CHECK-SAME:            2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
216    // CHECK-SAME:            5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7,
217    // CHECK-SAME:            7, 7, 7, 7 )
218    // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3,
219    // CHECK-SAME:            4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
220    // CHECK-SAME:            0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3,
221    // CHECK-SAME:            4, 5, 6, 7 )
222    // CHECK-NEXT: values : ( 8.8, 4.8, 6.8, 4.8, 8.8, 6.1, 14.8, 16.8, 4.4, 4.4, 4.4, 8.4,
223    // CHECK-SAME:            8.4, 12.4, 16.4, 16.4, 8.8, 4.8, 6.8, 8.8, 8.8, 12.8, 14.8,
224    // CHECK-SAME:            15.8, 4.3, 5.3, 6.3, 8.3, 8.3, 12.3, 14.3, 16.3, 4.5, 4.5,
225    // CHECK-SAME:            6.5, 8.5, 8.5, 12.5, 14.5, 16.5, 9.9, 4.9, 6.9, 8.9, 8.9,
226    // CHECK-SAME:            12.9, 15.9, 16.9, 12.1, 6.1, 5.1, 9.1, 9.1, 13.1, 15.1, 17.1,
227    // CHECK-SAME:            15.4, 5.4, 7.4, 5.4, 11.4, 10.4, 11.4, 9.4 )
228    // CHECK-NEXT: ----
229    //
230    sparse_tensor.print %COO_RET : tensor<8x8xf32, #SortedCOOSoA>
231
232    // Release resources.
233    bufferization.dealloc_tensor %C1 : tensor<8x8xf32>
234    bufferization.dealloc_tensor %C2 : tensor<8x8xf32>
235    bufferization.dealloc_tensor %C3 : tensor<8x8xf32>
236    bufferization.dealloc_tensor %C4 : tensor<8x8xf32>
237    bufferization.dealloc_tensor %CSR_A : tensor<8x8xf32, #CSR>
238    bufferization.dealloc_tensor %COO_A : tensor<8x8xf32, #SortedCOO>
239    bufferization.dealloc_tensor %COO_B : tensor<8x8xf32, #SortedCOOSoA>
240    bufferization.dealloc_tensor %COO_RET : tensor<8x8xf32, #SortedCOOSoA>
241
242
243    return
244  }
245}
246