1//-------------------------------------------------------------------------------------------------- 2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. 3// 4// Set-up that's shared across all tests in this directory. In principle, this 5// config could be moved to lit.local.cfg. However, there are downstream users that 6// do not use these LIT config files. Hence why this is kept inline. 7// 8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true 9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} 10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" 11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" 12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils 13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils 14// DEFINE: %{run_opts} = -e main -entry-point-result=void 15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs} 16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} 17// 18// DEFINE: %{env} = 19//-------------------------------------------------------------------------------------------------- 20 21// RUN: %{compile} | %{run} | FileCheck %s 22// 23// Do the same run, but now with direct IR generation. 24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true 25// RUN: %{compile} | %{run} | FileCheck %s 26// 27// Do the same run, but now with direct IR generation and vectorization. 28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true 29// RUN: %{compile} | %{run} | FileCheck %s 30// 31// Do the same run, but now with direct IR generation and VLA vectorization. 32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} 33 34#CCCC = #sparse_tensor.encoding<{ 35 map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : compressed, d2 : compressed, d3 : compressed) 36}> 37 38#CDCD = #sparse_tensor.encoding<{ 39 map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : dense, d2 : compressed, d3 : dense) 40}> 41 42#DCCD = #sparse_tensor.encoding<{ 43 map = (d0, d1, d2, d3) -> (d0 : dense, d1 : compressed, d2 : compressed, d3 : dense) 44}> 45 46// Creates and returns 4-D buffer of size (%s1, %s2, %s3, %s4) filled with the value %f 47func.func @alloc_4d_filled_f32(%s1 : index, %s2 : index, %s3 : index, %s4 : index, %f : f32) -> tensor<?x?x?x?xf32> { 48 %buf = tensor.empty(%s1, %s2, %s3, %s4) : tensor<?x?x?x?xf32> 49 %ret = linalg.fill ins(%f : f32) outs(%buf : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> 50 return %ret : tensor<?x?x?x?xf32> 51} 52 53func.func @conv_2d_nhwc_hwcf(%arg0: tensor<?x?x?x?xf32>, %arg1: tensor<?x?x?x?xf32>, %arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> { 54 %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, 55 strides = dense<1> : tensor<2xi64>} 56 ins (%arg0, %arg1: tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) 57 outs (%arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> 58 return %ret : tensor<?x?x?x?xf32> 59} 60 61func.func @conv_2d_nhwc_hwcf_CCCC(%arg0: tensor<?x?x?x?xf32, #CCCC>, %arg1: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32, #CCCC> { 62 %c1 = arith.constant 1 : index 63 %c3 = arith.constant 3 : index 64 %c6 = arith.constant 6 : index 65 %s = tensor.empty(%c3, %c6, %c6, %c1) : tensor<?x?x?x?xf32, #CCCC> 66 %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, 67 strides = dense<1> : tensor<2xi64>} 68 ins (%arg0, %arg1: tensor<?x?x?x?xf32, #CCCC>, tensor<?x?x?x?xf32>) 69 outs (%s: tensor<?x?x?x?xf32, #CCCC>) -> tensor<?x?x?x?xf32, #CCCC> 70 return %ret : tensor<?x?x?x?xf32, #CCCC> 71} 72 73func.func @conv_2d_nhwc_hwcf_CDCD(%arg0: tensor<?x?x?x?xf32, #CDCD>, %arg1: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32, #CDCD> { 74 %c1 = arith.constant 1 : index 75 %c3 = arith.constant 3 : index 76 %c6 = arith.constant 6 : index 77 %s = tensor.empty(%c3, %c6, %c6, %c1) : tensor<?x?x?x?xf32, #CDCD> 78 %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, 79 strides = dense<1> : tensor<2xi64>} 80 ins (%arg0, %arg1: tensor<?x?x?x?xf32, #CDCD>, tensor<?x?x?x?xf32>) 81 outs (%s: tensor<?x?x?x?xf32, #CDCD>) -> tensor<?x?x?x?xf32, #CDCD> 82 return %ret : tensor<?x?x?x?xf32, #CDCD> 83} 84 85func.func @conv_2d_nhwc_hwcf_DCCD(%arg0: tensor<?x?x?x?xf32, #DCCD>, %arg1: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32, #DCCD> { 86 %c1 = arith.constant 1 : index 87 %c3 = arith.constant 3 : index 88 %c6 = arith.constant 6 : index 89 %s = tensor.empty(%c3, %c6, %c6, %c1) : tensor<?x?x?x?xf32, #DCCD> 90 %ret = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, 91 strides = dense<1> : tensor<2xi64>} 92 ins (%arg0, %arg1: tensor<?x?x?x?xf32, #DCCD>, tensor<?x?x?x?xf32>) 93 outs (%s: tensor<?x?x?x?xf32, #DCCD>) -> tensor<?x?x?x?xf32, #DCCD> 94 return %ret : tensor<?x?x?x?xf32, #DCCD> 95} 96 97func.func @main() { 98 %c0 = arith.constant 0 : index 99 %c1 = arith.constant 1 : index 100 %c3 = arith.constant 3 : index 101 %c6 = arith.constant 6 : index 102 %c8 = arith.constant 8 : index 103 %f10 = arith.constant 10.00000e+00 : f32 104 %val = arith.constant 2.00000e+00 : f32 105 %zero = arith.constant 0.00000e+00 : f32 106 107 %filter2D_nhwc = call @alloc_4d_filled_f32(%c3, %c3, %c3, %c1, %val) :(index, index, index, index, f32) -> (tensor<?x?x?x?xf32>) 108 %in2D_tmp = call @alloc_4d_filled_f32(%c3, %c8, %c8, %c3, %val) : (index, index, index, index, f32) -> (tensor<?x?x?x?xf32>) 109 %in2D_nhwc = tensor.insert %f10 into %in2D_tmp[%c0, %c0, %c3, %c0] : tensor<?x?x?x?xf32> 110 %out2D_nhwc = call @alloc_4d_filled_f32(%c3, %c6, %c6, %c1, %zero) : (index, index, index, index, f32) -> (tensor<?x?x?x?xf32>) 111 112 %in2D_nhwc_CCCC = sparse_tensor.convert %in2D_nhwc 113 : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32, #CCCC> 114 %in2D_nhwc_CDCD = sparse_tensor.convert %in2D_nhwc 115 : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32, #CDCD> 116 %in2D_nhwc_DCCD = sparse_tensor.convert %in2D_nhwc 117 : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32, #DCCD> 118 119 %dense_ret = call @conv_2d_nhwc_hwcf(%in2D_nhwc, %filter2D_nhwc, %out2D_nhwc) : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32>) 120 %CCCC_ret = call @conv_2d_nhwc_hwcf_CCCC(%in2D_nhwc_CCCC, %filter2D_nhwc) : (tensor<?x?x?x?xf32, #CCCC>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32, #CCCC>) 121 %CDCD_ret = call @conv_2d_nhwc_hwcf_CDCD(%in2D_nhwc_CDCD, %filter2D_nhwc) : (tensor<?x?x?x?xf32, #CDCD>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32, #CDCD>) 122 %DCCD_ret = call @conv_2d_nhwc_hwcf_DCCD(%in2D_nhwc_DCCD, %filter2D_nhwc) : (tensor<?x?x?x?xf32, #DCCD>, tensor<?x?x?x?xf32>) -> (tensor<?x?x?x?xf32, #DCCD>) 123 124 // CHECK: ( ( ( ( 108 ), ( 124 ), ( 124 ), ( 124 ), ( 108 ), ( 108 ) ), 125 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 126 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 127 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 128 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 129 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ) ), 130 // CHECK-SAME: ( ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 131 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 132 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 133 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 134 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 135 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ) ), 136 // CHECK-SAME: ( ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 137 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 138 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 139 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 140 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ), 141 // CHECK-SAME: ( ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ), ( 108 ) ) ) ) 142 %dense_v = vector.transfer_read %dense_ret[%c0, %c0, %c0, %c0], %zero 143 : tensor<?x?x?x?xf32>, vector<3x6x6x1xf32> 144 vector.print %dense_v : vector<3x6x6x1xf32> 145 146 // 147 // CHECK: ---- Sparse Tensor ---- 148 // CHECK-NEXT: nse = 108 149 // CHECK-NEXT: dim = ( 3, 6, 6, 1 ) 150 // CHECK-NEXT: lvl = ( 3, 6, 6, 1 ) 151 // CHECK-NEXT: pos[0] : ( 0, 3 ) 152 // CHECK-NEXT: crd[0] : ( 0, 1, 2 ) 153 // CHECK-NEXT: pos[1] : ( 0, 6, 12, 18 ) 154 // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5 ) 155 // CHECK-NEXT: pos[2] : ( 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108 ) 156 // CHECK-NEXT: crd[2] : ( 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 157 // CHECK-SAME: 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 158 // CHECK-SAME: 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 159 // CHECK-SAME: 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 160 // CHECK-SAME: 4, 5, 0, 1, 2, 3, 4, 5 ) 161 // CHECK-NEXT: pos[3] : ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 162 // CHECK-SAME: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 163 // CHECK-SAME: 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 164 // CHECK-SAME: 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 165 // CHECK-SAME: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 166 // CHECK-SAME: 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108 ) 167 // CHECK-NEXT: crd[3] : ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 168 // CHECK-SAME: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 169 // CHECK-SAME: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 170 // CHECK-SAME: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 171 // CHECK-SAME: 0, 0, 0, 0, 0, 0, 0, 0 ) 172 // CHECK-NEXT: values : ( 108, 124, 124, 124, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 173 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 174 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 175 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 176 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 177 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 178 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 179 // CHECK-SAME: 108, 108, 108 ) 180 // CHECK-NEXT: ---- 181 // 182 sparse_tensor.print %CCCC_ret : tensor<?x?x?x?xf32, #CCCC> 183 184 // 185 // CHECK: ---- Sparse Tensor ---- 186 // CHECK-NEXT: nse = 108 187 // CHECK-NEXT: dim = ( 3, 6, 6, 1 ) 188 // CHECK-NEXT: lvl = ( 3, 6, 6, 1 ) 189 // CHECK-NEXT: pos[0] : ( 0, 3 ) 190 // CHECK-NEXT: crd[0] : ( 0, 1, 2 ) 191 // CHECK-NEXT: pos[2] : ( 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108 ) 192 // CHECK-NEXT: crd[2] : ( 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 193 // CHECK-SAME: 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 194 // CHECK-SAME: 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 195 // CHECK-SAME: 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 196 // CHECK-SAME: 4, 5, 0, 1, 2, 3, 4, 5 ) 197 // CHECK-NEXT: values : ( 108, 124, 124, 124, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 198 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 199 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 200 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 201 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 202 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 203 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 204 // CHECK-SAME: 108, 108, 108 ) 205 // CHECK-NEXT: ---- 206 // 207 sparse_tensor.print %CDCD_ret : tensor<?x?x?x?xf32, #CDCD> 208 209 // 210 // CHECK: ---- Sparse Tensor ---- 211 // CHECK-NEXT: nse = 108 212 // CHECK-NEXT: dim = ( 3, 6, 6, 1 ) 213 // CHECK-NEXT: lvl = ( 3, 6, 6, 1 ) 214 // CHECK-NEXT: pos[1] : ( 0, 6, 12, 18 ) 215 // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5 ) 216 // CHECK-NEXT: pos[2] : ( 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108 ) 217 // CHECK-NEXT: crd[2] : ( 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 218 // CHECK-SAME: 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 219 // CHECK-SAME: 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 220 // CHECK-SAME: 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 221 // CHECK-SAME: 4, 5, 0, 1, 2, 3, 4, 5 ) 222 // CHECK-NEXT: values : ( 108, 124, 124, 124, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 223 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 224 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 225 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 226 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 227 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 228 // CHECK-SAME: 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 229 // CHECK-SAME: 108, 108, 108 ) 230 // CHECK-NEXT: ---- 231 // 232 sparse_tensor.print %DCCD_ret : tensor<?x?x?x?xf32, #DCCD> 233 234 // Free the resources 235 bufferization.dealloc_tensor %in2D_nhwc : tensor<?x?x?x?xf32> 236 bufferization.dealloc_tensor %filter2D_nhwc : tensor<?x?x?x?xf32> 237 bufferization.dealloc_tensor %out2D_nhwc : tensor<?x?x?x?xf32> 238 239 bufferization.dealloc_tensor %in2D_nhwc_CDCD : tensor<?x?x?x?xf32, #CDCD> 240 bufferization.dealloc_tensor %in2D_nhwc_CCCC : tensor<?x?x?x?xf32, #CCCC> 241 bufferization.dealloc_tensor %in2D_nhwc_DCCD : tensor<?x?x?x?xf32, #DCCD> 242 243 bufferization.dealloc_tensor %CCCC_ret : tensor<?x?x?x?xf32, #CCCC> 244 bufferization.dealloc_tensor %CDCD_ret : tensor<?x?x?x?xf32, #CDCD> 245 bufferization.dealloc_tensor %DCCD_ret : tensor<?x?x?x?xf32, #DCCD> 246 247 return 248} 249