xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_collapse_shape.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30//
31// Do the same run, but now with direct IR generation and VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
33
34#SparseVector = #sparse_tensor.encoding<{
35  map = (d0) -> (d0 : compressed)
36}>
37
38#SparseMatrix = #sparse_tensor.encoding<{
39  map = (d0, d1) -> (d0 : compressed, d1 : compressed)
40}>
41
42#Sparse3dTensor = #sparse_tensor.encoding<{
43  map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed)
44}>
45
46#Sparse4dTensor = #sparse_tensor.encoding<{
47  map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : compressed, d2 : compressed, d3 : compressed)
48}>
49
50//
51// Test with various forms of the two most elementary reshape
52// operations: collapse.
53//
54module {
55
56  func.func @collapse_dense(%arg0: tensor<3x4xf64>) -> tensor<12xf64> {
57    %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64> into tensor<12xf64>
58    return %0 : tensor<12xf64>
59  }
60
61  func.func @collapse_from_sparse(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64> {
62    %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64, #SparseMatrix> into tensor<12xf64>
63    return %0 : tensor<12xf64>
64  }
65
66  func.func @collapse_to_sparse(%arg0: tensor<3x4xf64>) -> tensor<12xf64, #SparseVector> {
67    %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64> into tensor<12xf64, #SparseVector>
68    return %0 : tensor<12xf64, #SparseVector>
69  }
70
71  func.func @collapse_sparse2sparse(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector> {
72    %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64, #SparseMatrix> into tensor<12xf64, #SparseVector>
73    return %0 : tensor<12xf64, #SparseVector>
74  }
75
76  func.func @collapse_dense_6x10(%arg0: tensor<2x3x5x2xf64>) -> tensor<6x10xf64> {
77    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64> into tensor<6x10xf64>
78    return %0 : tensor<6x10xf64>
79  }
80
81  func.func @collapse_from_sparse_6x10(%arg0: tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64> {
82    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64, #Sparse4dTensor> into tensor<6x10xf64>
83    return %0 : tensor<6x10xf64>
84  }
85
86  func.func @collapse_to_sparse_6x10(%arg0: tensor<2x3x5x2xf64>) -> tensor<6x10xf64, #SparseMatrix> {
87    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64> into tensor<6x10xf64, #SparseMatrix>
88    return %0 : tensor<6x10xf64, #SparseMatrix>
89  }
90
91  func.func @collapse_sparse2sparse_6x10(%arg0: tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64, #SparseMatrix> {
92    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64, #Sparse4dTensor> into tensor<6x10xf64, #SparseMatrix>
93    return %0 : tensor<6x10xf64, #SparseMatrix>
94  }
95
96  func.func @collapse_dense_dyn(%arg0: tensor<?x?x?x?xf64>) -> tensor<?x?xf64> {
97    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64> into tensor<?x?xf64>
98    return %0 : tensor<?x?xf64>
99  }
100
101  func.func @collapse_from_sparse_dyn(%arg0: tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64> {
102    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64, #Sparse4dTensor> into tensor<?x?xf64>
103    return %0 : tensor<?x?xf64>
104  }
105
106  func.func @collapse_to_sparse_dyn(%arg0: tensor<?x?x?x?xf64>) -> tensor<?x?xf64, #SparseMatrix> {
107    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64> into tensor<?x?xf64, #SparseMatrix>
108    return %0 : tensor<?x?xf64, #SparseMatrix>
109  }
110
111  func.func @collapse_sparse2sparse_dyn(%arg0: tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64, #SparseMatrix> {
112    %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64, #Sparse4dTensor> into tensor<?x?xf64, #SparseMatrix>
113    return %0 : tensor<?x?xf64, #SparseMatrix>
114  }
115
116  //
117  // Main driver.
118  //
119  func.func @main() {
120    %c0 = arith.constant 0 : index
121    %df = arith.constant -1.0 : f64
122
123    // Setup test vectors and matrices..
124    %m = arith.constant dense <[ [ 1.1,  0.0,  1.3,  0.0 ],
125                                 [ 2.1,  0.0,  2.3,  0.0 ],
126                                 [ 3.1,  0.0,  3.3,  0.0 ]]> : tensor<3x4xf64>
127    %n = arith.constant dense <[
128      [ [[ 1.0, 0.0], [ 3.0, 0.0], [ 5.0, 0.0], [ 7.0, 0.0], [ 9.0, 0.0]],
129        [[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]],
130        [[21.0, 0.0], [23.0, 0.0], [25.0, 0.0], [27.0, 0.0], [29.0, 0.0]] ],
131      [ [[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]],
132        [[41.0, 0.0], [43.0, 0.0], [45.0, 0.0], [47.0, 0.0], [49.0, 0.0]],
133        [[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]] ] ]> : tensor<2x3x5x2xf64>
134    %sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix>
135    %sn = sparse_tensor.convert %n : tensor<2x3x5x2xf64> to tensor<2x3x5x2xf64, #Sparse4dTensor>
136
137    %dm = tensor.cast %m : tensor<3x4xf64> to tensor<?x?xf64>
138
139    %dn = tensor.cast %n : tensor<2x3x5x2xf64> to tensor<?x?x?x?xf64>
140    %sdn = sparse_tensor.convert %dn : tensor<?x?x?x?xf64> to tensor<?x?x?x?xf64, #Sparse4dTensor>
141
142    // Call the kernels.
143    %collapse0 = call @collapse_dense(%m) : (tensor<3x4xf64>) -> tensor<12xf64>
144    %collapse1 = call @collapse_from_sparse(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64>
145    %collapse2 = call @collapse_to_sparse(%m) : (tensor<3x4xf64>) -> tensor<12xf64, #SparseVector>
146    %collapse3 = call @collapse_sparse2sparse(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector>
147    %collapse4 = call @collapse_dense_6x10(%n) : (tensor<2x3x5x2xf64>) -> tensor<6x10xf64>
148    %collapse5 = call @collapse_from_sparse_6x10(%sn) : (tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64>
149    %collapse6 = call @collapse_to_sparse_6x10(%n) : (tensor<2x3x5x2xf64>) -> tensor<6x10xf64, #SparseMatrix>
150    %collapse7 = call @collapse_sparse2sparse_6x10(%sn) : (tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64, #SparseMatrix>
151    %collapse8 = call @collapse_dense_dyn(%dn) : (tensor<?x?x?x?xf64>) -> tensor<?x?xf64>
152    %collapse9 = call @collapse_from_sparse_dyn(%sdn) : (tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64>
153    %collapse10 = call @collapse_to_sparse_dyn(%dn) : (tensor<?x?x?x?xf64>) -> tensor<?x?xf64, #SparseMatrix>
154    %collapse11 = call @collapse_sparse2sparse_dyn(%sdn) : (tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64, #SparseMatrix>
155
156    //
157    // Verify results of collapse
158    //
159    // CHECK:      ( 1.1, 0, 1.3, 0, 2.1, 0, 2.3, 0, 3.1, 0, 3.3, 0 )
160    // CHECK-NEXT: ( 1.1, 0, 1.3, 0, 2.1, 0, 2.3, 0, 3.1, 0, 3.3, 0 )
161    //
162    // CHECK:      ---- Sparse Tensor ----
163    // CHECK-NEXT: nse = 6
164    // CHECK-NEXT: dim = ( 12 )
165    // CHECK-NEXT: lvl = ( 12 )
166    // CHECK-NEXT: pos[0] : ( 0, 6 )
167    // CHECK-NEXT: crd[0] : ( 0, 2, 4, 6, 8, 10 )
168    // CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 )
169    // CHECK-NEXT: ----
170    //
171    // CHECK:      ---- Sparse Tensor ----
172    // CHECK-NEXT: nse = 6
173    // CHECK-NEXT: dim = ( 12 )
174    // CHECK-NEXT: lvl = ( 12 )
175    // CHECK-NEXT: pos[0] : ( 0, 6 )
176    // CHECK-NEXT: crd[0] : ( 0, 2, 4, 6, 8, 10 )
177    // CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 )
178    // CHECK-NEXT: ----
179    //
180    // CHECK:      ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
181    // CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
182    //
183    // CHECK:      ---- Sparse Tensor ----
184    // CHECK-NEXT: nse = 15
185    // CHECK-NEXT: dim = ( 6, 10 )
186    // CHECK-NEXT: lvl = ( 6, 10 )
187    // CHECK-NEXT: pos[0] : ( 0, 3 )
188    // CHECK-NEXT: crd[0] : ( 0, 2, 4 )
189    // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 )
190    // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 )
191    // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 )
192    // CHECK-NEXT: ----
193    //
194    // CHECK:      ---- Sparse Tensor ----
195    // CHECK-NEXT: nse = 15
196    // CHECK-NEXT: dim = ( 6, 10 )
197    // CHECK-NEXT: lvl = ( 6, 10 )
198    // CHECK-NEXT: pos[0] : ( 0, 3 )
199    // CHECK-NEXT: crd[0] : ( 0, 2, 4 )
200    // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 )
201    // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 )
202    // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 )
203    // CHECK-NEXT: ----
204    //
205    // CHECK:      ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
206    // CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
207    //
208    // CHECK:      ---- Sparse Tensor ----
209    // CHECK-NEXT: nse = 15
210    // CHECK-NEXT: dim = ( 6, 10 )
211    // CHECK-NEXT: lvl = ( 6, 10 )
212    // CHECK-NEXT: pos[0] : ( 0, 3 )
213    // CHECK-NEXT: crd[0] : ( 0, 2, 4 )
214    // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 )
215    // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 )
216    // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 )
217    // CHECK-NEXT: ----
218    //
219    // CHECK:      ---- Sparse Tensor ----
220    // CHECK-NEXT: nse = 15
221    // CHECK-NEXT: dim = ( 6, 10 )
222    // CHECK-NEXT: lvl = ( 6, 10 )
223    // CHECK-NEXT: pos[0] : ( 0, 3 )
224    // CHECK-NEXT: crd[0] : ( 0, 2, 4 )
225    // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 )
226    // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 )
227    // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 )
228    // CHECK-NEXT: ----
229    //
230    %v0 = vector.transfer_read %collapse0[%c0], %df: tensor<12xf64>, vector<12xf64>
231    vector.print %v0 : vector<12xf64>
232    %v1 = vector.transfer_read %collapse1[%c0], %df: tensor<12xf64>, vector<12xf64>
233    vector.print %v1 : vector<12xf64>
234    sparse_tensor.print %collapse2 : tensor<12xf64, #SparseVector>
235    sparse_tensor.print %collapse3 : tensor<12xf64, #SparseVector>
236
237    %v4 = vector.transfer_read %collapse4[%c0, %c0], %df: tensor<6x10xf64>, vector<6x10xf64>
238    vector.print %v4 : vector<6x10xf64>
239    %v5 = vector.transfer_read %collapse5[%c0, %c0], %df: tensor<6x10xf64>, vector<6x10xf64>
240    vector.print %v5 : vector<6x10xf64>
241    sparse_tensor.print %collapse6 : tensor<6x10xf64, #SparseMatrix>
242    sparse_tensor.print %collapse7 : tensor<6x10xf64, #SparseMatrix>
243
244    %v8 = vector.transfer_read %collapse8[%c0, %c0], %df: tensor<?x?xf64>, vector<6x10xf64>
245    vector.print %v8 : vector<6x10xf64>
246    %v9 = vector.transfer_read %collapse9[%c0, %c0], %df: tensor<?x?xf64>, vector<6x10xf64>
247    vector.print %v9 : vector<6x10xf64>
248    sparse_tensor.print %collapse10 : tensor<?x?xf64, #SparseMatrix>
249    sparse_tensor.print %collapse11 : tensor<?x?xf64, #SparseMatrix>
250
251    // Release sparse resources.
252    bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix>
253    bufferization.dealloc_tensor %sn : tensor<2x3x5x2xf64, #Sparse4dTensor>
254    bufferization.dealloc_tensor %sdn : tensor<?x?x?x?xf64, #Sparse4dTensor>
255    bufferization.dealloc_tensor %collapse2 : tensor<12xf64, #SparseVector>
256    bufferization.dealloc_tensor %collapse3 : tensor<12xf64, #SparseVector>
257    bufferization.dealloc_tensor %collapse6 : tensor<6x10xf64, #SparseMatrix>
258    bufferization.dealloc_tensor %collapse7 : tensor<6x10xf64, #SparseMatrix>
259    bufferization.dealloc_tensor %collapse10 : tensor<?x?xf64, #SparseMatrix>
260    bufferization.dealloc_tensor %collapse11 : tensor<?x?xf64, #SparseMatrix>
261
262    // Release dense resources.
263    bufferization.dealloc_tensor %collapse1 : tensor<12xf64>
264    bufferization.dealloc_tensor %collapse5 : tensor<6x10xf64>
265    bufferization.dealloc_tensor %collapse9: tensor<?x?xf64>
266
267    return
268  }
269}
270