xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/reshape_dot.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{env} %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
25// RUN: %{compile} | %{env} %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{env} %{run} | FileCheck %s
30//
31// Do the same run, but now with direct IR generation and VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{env} %{run_sve} | FileCheck %s %}
33
34
35#COO_2D = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton), posWidth = 32, crdWidth = 32 }>
36#COO_3D = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : compressed(nonunique), d1 : singleton(nonunique), d2 : singleton), posWidth = 32, crdWidth = 32 }>
37
38module {
39  func.func private @printMemref3dF32(%ptr : tensor<?x?x?xf32> {bufferization.access = "read"}) attributes { llvm.emit_c_interface }
40  func.func private @printMemref2dF32(%ptr : tensor<?x?xf32> {bufferization.access = "read"}) attributes { llvm.emit_c_interface }
41
42  func.func @test_sparse_rhs(%arg0: tensor<5x6xf32>, %arg1: tensor<6x2x3xf32, #COO_3D>) -> tensor<?x?x?xf32> {
43    %collapsed = tensor.collapse_shape %arg1 [[0], [1, 2]] : tensor<6x2x3xf32, #COO_3D> into tensor<6x6xf32, #COO_2D>
44    %0 = tensor.empty() : tensor<5x6xf32>
45    %cst = arith.constant 0.000000e+00 : f32
46    %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<5x6xf32>) -> tensor<5x6xf32>
47    %2 = linalg.matmul ins(%arg0, %collapsed : tensor<5x6xf32>, tensor<6x6xf32, #COO_2D>) outs(%1 : tensor<5x6xf32>) -> tensor<5x6xf32>
48    %expanded = tensor.expand_shape %2 [[0], [1, 2]] output_shape [5,2,3]: tensor<5x6xf32> into tensor<5x2x3xf32>
49    %ret1 = tensor.cast %expanded : tensor<5x2x3xf32> to tensor<?x?x?xf32>
50
51    // Note: tensor.collapse_shape is a metadata-only operation on dense tensors
52    // but requires reallocation on sparse tensors.
53    bufferization.dealloc_tensor %collapsed : tensor<6x6xf32, #COO_2D>
54
55    return %ret1 : tensor<?x?x?xf32>
56  }
57
58  func.func @test_sparse_all(%arg0: tensor<5x6xf32, #COO_2D>, %arg1: tensor<6x2x3xf32, #COO_3D>) -> tensor<?x?x?xf32> {
59    %collapsed = tensor.collapse_shape %arg1 [[0], [1, 2]] : tensor<6x2x3xf32, #COO_3D> into tensor<6x6xf32, #COO_2D>
60    %0 = tensor.empty() : tensor<5x6xf32>
61    %cst = arith.constant 0.000000e+00 : f32
62    %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<5x6xf32>) -> tensor<5x6xf32>
63    %2 = linalg.matmul ins(%arg0, %collapsed : tensor<5x6xf32, #COO_2D>, tensor<6x6xf32, #COO_2D>) outs(%1 : tensor<5x6xf32>) -> tensor<5x6xf32>
64    %expanded = tensor.expand_shape %2 [[0], [1, 2]] output_shape [5,2,3]: tensor<5x6xf32> into tensor<5x2x3xf32>
65    %ret1 = tensor.cast %expanded : tensor<5x2x3xf32> to tensor<?x?x?xf32>
66
67    // Note: tensor.collapse_shape is a metadata-only operation on dense tensors
68    // but requires reallocation on sparse tensors.
69    bufferization.dealloc_tensor %collapsed : tensor<6x6xf32, #COO_2D>
70
71    return %ret1 : tensor<?x?x?xf32>
72  }
73
74  func.func @test_dense(%arg0: tensor<5x6xf32>, %arg1: tensor<6x2x3xf32>) -> tensor<?x?x?xf32> {
75    %collapsed = tensor.collapse_shape %arg1 [[0], [1, 2]] : tensor<6x2x3xf32> into tensor<6x6xf32>
76    %0 = tensor.empty() : tensor<5x6xf32>
77    %cst = arith.constant 0.000000e+00 : f32
78    %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<5x6xf32>) -> tensor<5x6xf32>
79    %2 = linalg.matmul ins(%arg0, %collapsed : tensor<5x6xf32>, tensor<6x6xf32>) outs(%1 : tensor<5x6xf32>) -> tensor<5x6xf32>
80    %expanded = tensor.expand_shape %2 [[0], [1, 2]] output_shape [5,2,3]: tensor<5x6xf32> into tensor<5x2x3xf32>
81    %ret1 = tensor.cast %expanded : tensor<5x2x3xf32> to tensor<?x?x?xf32>
82    return %ret1 :  tensor<?x?x?xf32>
83  }
84
85  func.func @test_sparse_all_2(%arg0: tensor<5x6xf32, #COO_2D>, %arg1: tensor<2x3x6xf32, #COO_3D>) -> tensor<?x?x?xf32> {
86    // collapse the first two level this time, as this is the level requires coiterations.
87    %collapsed = tensor.collapse_shape %arg1 [[0, 1], [2]] : tensor<2x3x6xf32, #COO_3D> into tensor<6x6xf32, #COO_2D>
88    %0 = tensor.empty() : tensor<5x6xf32>
89    %cst = arith.constant 0.000000e+00 : f32
90    %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<5x6xf32>) -> tensor<5x6xf32>
91    %2 = linalg.matmul ins(%arg0, %collapsed : tensor<5x6xf32, #COO_2D>, tensor<6x6xf32, #COO_2D>) outs(%1 : tensor<5x6xf32>) -> tensor<5x6xf32>
92    %expanded = tensor.expand_shape %2 [[0], [1, 2]] output_shape [5,2,3]: tensor<5x6xf32> into tensor<5x2x3xf32>
93    %ret1 = tensor.cast %expanded : tensor<5x2x3xf32> to tensor<?x?x?xf32>
94
95    // Note: tensor.collapse_shape is a metadata-only operation on dense tensors
96    // but requires reallocation on sparse tensors.
97    bufferization.dealloc_tensor %collapsed : tensor<6x6xf32, #COO_2D>
98
99    return %ret1 : tensor<?x?x?xf32>
100  }
101
102
103  func.func @main() {
104    // Setup two sparse vectors.
105    %d1 = arith.constant sparse<
106        [ [0, 0], [1, 1], [2, 2], [2, 3], [4, 5] ],
107          [1.0,      2.0,    3.0,    4.0,   5.0]
108    > : tensor<5x6xf32>
109
110    %d2 = arith.constant sparse<
111      [ [0, 0, 0], [1, 1, 1], [2, 1, 1] ],
112        [     6.0,       7.0,      8.0]
113    > : tensor<6x2x3xf32>
114    %shape = arith.constant dense<[2, 3, 6]> : tensor<3xi32>
115
116    %d3 = tensor.reshape %d2(%shape): (tensor<6x2x3xf32>, tensor<3xi32>) -> tensor<2x3x6xf32>
117    %s1 = sparse_tensor.convert %d1 : tensor<5x6xf32> to tensor<5x6xf32, #COO_2D>
118    %s2 = sparse_tensor.convert %d2 : tensor<6x2x3xf32> to tensor<6x2x3xf32, #COO_3D>
119    %s3 = sparse_tensor.convert %d3 : tensor<2x3x6xf32> to tensor<2x3x6xf32, #COO_3D>
120
121    //      CHECK: Memref base@ = {{.*}} rank = 3 offset = 0 sizes = [5, 2, 3] strides = [6, 3, 1] data =
122    // CHECK-NEXT:[
123    // CHECK-SAME: [
124    // CHECK-SAME:  [6,    0,    0],
125    // CHECK-NEXT:  [0,    0,    0]],
126    // CHECK-NEXT: [
127    // CHECK-SAME:  [0,    0,    0],
128    // CHECK-NEXT:  [0,    14,    0]],
129    // CHECK-NEXT: [
130    // CHECK-SAME:  [0,    0,    0],
131    // CHECK-NEXT:  [0,    24,    0]],
132    // CHECK-NEXT: [
133    // CHECK-SAME:  [0,    0,    0],
134    // CHECK-NEXT:  [0,    0,    0]],
135    // CHECK-NEXT: [
136    // CHECK-SAME:  [0,    0,    0],
137    // CHECK-NEXT:  [0,    0,    0]]]
138    %do1 = call @test_dense(%d1, %d2) : (tensor<5x6xf32>, tensor<6x2x3xf32>) -> tensor<?x?x?xf32>
139    call @printMemref3dF32(%do1) : (tensor<?x?x?xf32>) -> ()
140
141    // Same results.
142    // CHECK-NEXT: Memref base@ = {{.*}} rank = 3 offset = 0 sizes = [5, 2, 3] strides = [6, 3, 1] data =
143    // CHECK-NEXT:[
144    // CHECK-SAME: [
145    // CHECK-SAME:  [6,    0,    0],
146    // CHECK-NEXT:  [0,    0,    0]],
147    // CHECK-NEXT: [
148    // CHECK-SAME:  [0,    0,    0],
149    // CHECK-NEXT:  [0,    14,    0]],
150    // CHECK-NEXT: [
151    // CHECK-SAME:  [0,    0,    0],
152    // CHECK-NEXT:  [0,    24,    0]],
153    // CHECK-NEXT: [
154    // CHECK-SAME:  [0,    0,    0],
155    // CHECK-NEXT:  [0,    0,    0]],
156    // CHECK-NEXT: [
157    // CHECK-SAME:  [0,    0,    0],
158    // CHECK-NEXT:  [0,    0,    0]]]
159    %so1 = call @test_sparse_rhs(%d1, %s2): (tensor<5x6xf32>, tensor<6x2x3xf32, #COO_3D>) -> tensor<?x?x?xf32>
160    call @printMemref3dF32(%so1) : (tensor<?x?x?xf32>) -> ()
161
162    // Same results.
163    // CHECK-NEXT: Memref base@ = {{.*}} rank = 3 offset = 0 sizes = [5, 2, 3] strides = [6, 3, 1] data =
164    // CHECK-NEXT:[
165    // CHECK-SAME: [
166    // CHECK-SAME:  [6,    0,    0],
167    // CHECK-NEXT:  [0,    0,    0]],
168    // CHECK-NEXT: [
169    // CHECK-SAME:  [0,    0,    0],
170    // CHECK-NEXT:  [0,    14,    0]],
171    // CHECK-NEXT: [
172    // CHECK-SAME:  [0,    0,    0],
173    // CHECK-NEXT:  [0,    24,    0]],
174    // CHECK-NEXT: [
175    // CHECK-SAME:  [0,    0,    0],
176    // CHECK-NEXT:  [0,    0,    0]],
177    // CHECK-NEXT: [
178    // CHECK-SAME:  [0,    0,    0],
179    // CHECK-NEXT:  [0,    0,    0]]]
180    %so2 = call @test_sparse_all(%s1, %s2): (tensor<5x6xf32, #COO_2D>, tensor<6x2x3xf32, #COO_3D>) -> tensor<?x?x?xf32>
181    call @printMemref3dF32(%so2) : (tensor<?x?x?xf32>) -> ()
182
183    // Same results.
184    // CHECK-NEXT: Memref base@ = {{.*}} rank = 3 offset = 0 sizes = [5, 2, 3] strides = [6, 3, 1] data =
185    // CHECK-NEXT:[
186    // CHECK-SAME: [
187    // CHECK-SAME:  [6,    0,    0],
188    // CHECK-NEXT:  [0,    0,    0]],
189    // CHECK-NEXT: [
190    // CHECK-SAME:  [0,    0,    0],
191    // CHECK-NEXT:  [0,    14,    0]],
192    // CHECK-NEXT: [
193    // CHECK-SAME:  [0,    0,    0],
194    // CHECK-NEXT:  [0,    24,    0]],
195    // CHECK-NEXT: [
196    // CHECK-SAME:  [0,    0,    0],
197    // CHECK-NEXT:  [0,    0,    0]],
198    // CHECK-NEXT: [
199    // CHECK-SAME:  [0,    0,    0],
200    // CHECK-NEXT:  [0,    0,    0]]]
201    %so3 = call @test_sparse_all_2(%s1, %s3): (tensor<5x6xf32, #COO_2D>, tensor<2x3x6xf32, #COO_3D>) -> tensor<?x?x?xf32>
202    call @printMemref3dF32(%so2) : (tensor<?x?x?xf32>) -> ()
203
204    bufferization.dealloc_tensor %s1 : tensor<5x6xf32, #COO_2D>
205    bufferization.dealloc_tensor %s2 : tensor<6x2x3xf32, #COO_3D>
206    bufferization.dealloc_tensor %s3 : tensor<2x3x6xf32, #COO_3D>
207    bufferization.dealloc_tensor %do1 : tensor<?x?x?xf32>
208    bufferization.dealloc_tensor %so1 : tensor<?x?x?xf32>
209    bufferization.dealloc_tensor %so2 : tensor<?x?x?xf32>
210    bufferization.dealloc_tensor %so3 : tensor<?x?x?xf32>
211
212    return
213  }
214}
215