xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate_dim_1.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=4 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30
31#MAT_C_C = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
32#MAT_D_C = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
33#MAT_C_D = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : dense)}>
34#MAT_D_D = #sparse_tensor.encoding<{
35  map = (d0, d1) -> (d1 : dense, d0 : dense)
36}>
37
38#MAT_C_C_P = #sparse_tensor.encoding<{
39  map = (d0, d1) -> (d1 : compressed, d0 : compressed)
40}>
41
42#MAT_C_D_P = #sparse_tensor.encoding<{
43  map = (d0, d1) -> (d1 : compressed, d0 : dense)
44}>
45
46#MAT_D_C_P = #sparse_tensor.encoding<{
47  map = (d0, d1) -> (d1 : dense, d0 : compressed)
48}>
49
50module {
51  func.func private @printMemrefF64(%ptr : tensor<*xf64>)
52  func.func private @printMemref1dF64(%ptr : memref<?xf64>) attributes { llvm.emit_c_interface }
53
54  //
55  // Tests without permutation (concatenate on dimension 1)
56  //
57
58  // Concats all sparse matrices (with different encodings) to a sparse matrix.
59  func.func @concat_sparse_sparse_dim1(%arg0: tensor<4x2xf64, #MAT_C_C>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C> {
60    %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
61         : tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64, #MAT_C_C>
62    return %0 : tensor<4x9xf64, #MAT_C_C>
63  }
64
65  // Concats all sparse matrices (with different encodings) to a dense matrix.
66  func.func @concat_sparse_dense_dim1(%arg0: tensor<4x2xf64, #MAT_C_C>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64> {
67    %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
68         : tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64>
69    return %0 : tensor<4x9xf64>
70  }
71
72  // Concats mix sparse and dense matrices to a sparse matrix.
73  func.func @concat_mix_sparse_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C> {
74    %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
75         : tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64, #MAT_C_C>
76    return %0 : tensor<4x9xf64, #MAT_C_C>
77  }
78
79  // Concats mix sparse and dense matrices to a dense matrix.
80  func.func @concat_mix_dense_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64> {
81    %0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
82         : tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64>
83    return %0 : tensor<4x9xf64>
84  }
85
86  func.func @dump_mat_dense_4x9(%A: tensor<4x9xf64>) {
87    %1 = tensor.cast %A : tensor<4x9xf64> to tensor<*xf64>
88    call @printMemrefF64(%1) : (tensor<*xf64>) -> ()
89
90    return
91  }
92
93  // Driver method to call and verify kernels.
94  func.func @main() {
95    %m42 = arith.constant dense<
96      [ [ 1.0, 0.0 ],
97        [ 3.1, 0.0 ],
98        [ 0.0, 2.0 ],
99        [ 0.0, 0.0 ] ]> : tensor<4x2xf64>
100    %m43 = arith.constant dense<
101      [ [ 1.0, 0.0, 1.0 ],
102        [ 1.0, 0.0, 0.5 ],
103        [ 0.0, 0.0, 1.0 ],
104        [ 5.0, 2.0, 0.0 ] ]> : tensor<4x3xf64>
105    %m44 = arith.constant dense<
106      [ [ 0.0, 0.0, 1.5, 1.0],
107        [ 0.0, 3.5, 0.0, 0.0],
108        [ 1.0, 5.0, 2.0, 0.0],
109        [ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64>
110
111    %sm42cc = sparse_tensor.convert %m42 : tensor<4x2xf64> to tensor<4x2xf64, #MAT_C_C>
112    %sm43cd = sparse_tensor.convert %m43 : tensor<4x3xf64> to tensor<4x3xf64, #MAT_C_D>
113    %sm44dc = sparse_tensor.convert %m44 : tensor<4x4xf64> to tensor<4x4xf64, #MAT_D_C>
114
115    //
116    // CHECK:      ---- Sparse Tensor ----
117    // CHECK-NEXT: nse = 18
118    // CHECK-NEXT: dim = ( 4, 9 )
119    // CHECK-NEXT: lvl = ( 4, 9 )
120    // CHECK-NEXT: pos[0] : ( 0, 4 )
121    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
122    // CHECK-NEXT: pos[1] : ( 0, 5, 9, 14, 18 )
123    // CHECK-NEXT: crd[1] : ( 0, 2, 4, 7, 8, 0, 2, 4, 6, 1, 4, 5, 6, 7, 2, 3, 5, 6 )
124    // CHECK-NEXT: values : ( 1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 )
125    // CHECK-NEXT: ----
126    //
127    %8 = call @concat_sparse_sparse_dim1(%sm42cc, %sm43cd, %sm44dc)
128               : (tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C>
129    sparse_tensor.print %8 : tensor<4x9xf64, #MAT_C_C>
130
131    // CHECK:      {{\[}}[1,   0,   1,   0,   1,   0,   0,   1.5,   1],
132    // CHECK-NEXT:  [3.1,   0,   1,   0,   0.5,   0,   3.5,   0,   0],
133    // CHECK-NEXT:  [0,   2,   0,   0,   1,   1,   5,   2,   0],
134    // CHECK-NEXT:  [0,   0,   5,   2,   0,   1,   0.5,   0,   0]]
135    %9 = call @concat_sparse_dense_dim1(%sm42cc, %sm43cd, %sm44dc)
136               : (tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64>
137    call @dump_mat_dense_4x9(%9) : (tensor<4x9xf64>) -> ()
138
139    //
140    // CHECK:      ---- Sparse Tensor ----
141    // CHECK-NEXT: nse = 18
142    // CHECK-NEXT: dim = ( 4, 9 )
143    // CHECK-NEXT: lvl = ( 4, 9 )
144    // CHECK-NEXT: pos[0] : ( 0, 4 )
145    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
146    // CHECK-NEXT: pos[1] : ( 0, 5, 9, 14, 18 )
147    // CHECK-NEXT: crd[1] : ( 0, 2, 4, 7, 8, 0, 2, 4, 6, 1, 4, 5, 6, 7, 2, 3, 5, 6 )
148    // CHECK-NEXT: values : ( 1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 )
149    // CHECK-NEXT: ----
150    //
151    %10 = call @concat_mix_sparse_dim1(%m42, %sm43cd, %sm44dc)
152               : (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C>
153    sparse_tensor.print %10 : tensor<4x9xf64, #MAT_C_C>
154
155    // CHECK:      {{\[}}[1,   0,   1,   0,   1,   0,   0,   1.5,   1],
156    // CHECK-NEXT:  [3.1,   0,   1,   0,   0.5,   0,   3.5,   0,   0],
157    // CHECK-NEXT:  [0,   2,   0,   0,   1,   1,   5,   2,   0],
158    // CHECK-NEXT:  [0,   0,   5,   2,   0,   1,   0.5,   0,   0]]
159    %11 = call @concat_mix_dense_dim1(%m42, %sm43cd, %sm44dc)
160               : (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64>
161    call @dump_mat_dense_4x9(%11) : (tensor<4x9xf64>) -> ()
162
163    // Release resources.
164    bufferization.dealloc_tensor %sm42cc  : tensor<4x2xf64, #MAT_C_C>
165    bufferization.dealloc_tensor %sm43cd  : tensor<4x3xf64, #MAT_C_D>
166    bufferization.dealloc_tensor %sm44dc  : tensor<4x4xf64, #MAT_D_C>
167
168    bufferization.dealloc_tensor %8  : tensor<4x9xf64, #MAT_C_C>
169    bufferization.dealloc_tensor %9  : tensor<4x9xf64>
170    bufferization.dealloc_tensor %10 : tensor<4x9xf64, #MAT_C_C>
171    bufferization.dealloc_tensor %11 : tensor<4x9xf64>
172    return
173  }
174}
175