xref: /llvm-project/mlir/test/Integration/Dialect/Linalg/CPU/ArmSVE/1d-depthwise-conv.mlir (revision fe55c34d19628304e0ca6a0e14a0b786b93d0e02)
1// DEFINE: %{compile} =  mlir-opt %s \
2// DEFINE:    -transform-interpreter -test-transform-dialect-erase-schedule \
3// DEFINE:    -one-shot-bufferize="bufferize-function-boundaries" -lower-vector-mask -buffer-deallocation-pipeline -cse -canonicalize -convert-vector-to-scf -arm-sve-legalize-vector-storage \
4// DEFINE:    -convert-vector-to-llvm="enable-arm-sve" -test-lower-to-llvm -o %t
5// DEFINE: %{entry_point} = conv
6// DEFINE: %{run} = %mcr_aarch64_cmd %t -e %{entry_point} -entry-point-result=void --march=aarch64 --mattr="+sve"\
7// DEFINE:    -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
8
9// RUN: rm -f %t && %{compile} && %{run} | FileCheck %s
10
11func.func @conv() {
12  // Define input/output tensors
13  %input_init = tensor.empty() : tensor<1x8x6xi32>
14  %output_init = tensor.empty() : tensor<1x7x6xi32>
15
16  %five = arith.constant 5 : i32
17  %zero = arith.constant 0 : i32
18  %input = linalg.fill ins(%five : i32) outs(%input_init : tensor<1x8x6xi32>) -> tensor<1x8x6xi32>
19  %output = linalg.fill ins(%zero : i32) outs(%output_init : tensor<1x7x6xi32>) -> tensor<1x7x6xi32>
20
21  // Define the filter tensor
22  %filter = arith.constant dense<[
23    [ 1,  2, 3, 4, 5, 6],
24    [ 11, 12, 13, 14, 15, 16]
25  ]> : tensor<2x6xi32>
26
27  // static sizes -> dynamic sizes
28  %input_dyn = tensor.cast %input_init : tensor<1x8x6xi32> to tensor<1x8x?xi32>
29  %output_dyn = tensor.cast %output : tensor<1x7x6xi32> to tensor<1x7x?xi32>
30  %filter_dyn = tensor.cast %filter : tensor<2x6xi32> to tensor<2x?xi32>
31
32  // Run the convolution
33  %res = linalg.depthwise_conv_1d_nwc_wc
34    ins(%input_dyn, %filter_dyn : tensor<1x8x?xi32>, tensor<2x?xi32>)
35    outs(%output_dyn : tensor<1x7x?xi32>) -> tensor<1x7x?xi32>
36
37  // Print the results
38  // CHECK: SVE: START OF TEST OUTPUT
39  vector.print str "SVE: START OF TEST OUTPUT\n"
40
41  // CHECK-NEXT: Unranked Memref base@ = {{.*}} rank = 3 offset = 0 sizes = [1, 7, 6] strides = [42, 6, 1] data =
42  // CHECK-COUNT-7: [60, 70, 80, 90, 100, 110]
43  %xf = tensor.cast %res : tensor<1x7x?xi32> to tensor<*xi32>
44  call @printMemrefI32(%xf) : (tensor<*xi32>) -> ()
45
46  // CHECK-NEXT: SVE: END OF TEST OUTPUT
47  vector.print str "SVE: END OF TEST OUTPUT\n"
48
49  return
50}
51
52module attributes {transform.with_named_sequence} {
53  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
54    %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg0 : (!transform.any_op) -> !transform.any_op
55    transform.structured.vectorize %0 vector_sizes [1, 7, [8], 2] : !transform.any_op
56    transform.yield
57  }
58}
59
60func.func private @printMemrefI32(%ptr : tensor<*xi32>)
61