1// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s 2 3// 4// A SDDMM implementation with "spy" function and 5// in-place update of the sampling sparse matrix. 6// 7 8#BSR = #sparse_tensor.encoding<{ 9 map = (i, j) -> ( 10 i floordiv 2 : dense, 11 j floordiv 2 : compressed, 12 i mod 2 : dense, 13 j mod 2 : dense) 14}> 15 16#trait_SDDMM = { 17 indexing_maps = [ 18 affine_map<(i,j,k) -> (i,k)>, // A 19 affine_map<(i,j,k) -> (k,j)>, // B 20 affine_map<(i,j,k) -> (i,j)> // S (in/out) 21 ], 22 iterator_types = ["parallel", "parallel", "reduction"], 23 doc = "S(i,j) += spy[S(i,j)] x SUM_k A(i,k) B(k,j)" 24} 25 26// 27// CHECK: #[[$BSR:.+]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense) }> 28// CHECK: #[[$MAP:.+]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3) -> (d0 : dense, d1 : compressed, d2 : dense, d3 : dense) }> 29// 30// CHECK-LABEL: func.func @SDDMM_block( 31// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xf32, #[[$BSR]]>, 32// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xf32>, 33// CHECK-SAME: %[[VAL_2:.*]]: tensor<?x?xf32>) -> tensor<?x?xf32, #[[$BSR]]> { 34// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index 35// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index 36// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index 37// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f32 38// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<?x?xf32, #[[$BSR]]> to tensor<?x?x2x2xf32, #[[$MAP]]> 39// CHECK-DAG: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor<?x?xf32> 40// CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<?x?xf32> to memref<?x?xf32> 41// CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : tensor<?x?xf32> to memref<?x?xf32> 42// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.lvl %[[VAL_7]], %[[VAL_4]] : tensor<?x?x2x2xf32, #[[$MAP]]> 43// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_7]] {level = 1 : index} : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xindex> 44// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_7]] {level = 1 : index} : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xindex> 45// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_7]] : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xf32> 46// CHECK: scf.for %[[VAL_15:.*]] = %[[VAL_4]] to %[[VAL_11]] step %[[VAL_3]] { 47// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_15]]] : memref<?xindex> 48// CHECK: %[[VAL_17:.*]] = arith.addi %[[VAL_15]], %[[VAL_3]] : index 49// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_17]]] : memref<?xindex> 50// CHECK: scf.for %[[VAL_19:.*]] = %[[VAL_16]] to %[[VAL_18]] step %[[VAL_3]] { 51// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_19]]] : memref<?xindex> 52// CHECK: %[[VAL_22:.*]] = arith.muli %[[VAL_19]], %[[VAL_5]] : index 53// CHECK: scf.for %[[VAL_21:.*]] = %[[VAL_4]] to %[[VAL_5]] step %[[VAL_3]] { 54// CHECK: %[[VAL_23:.*]] = arith.addi %[[VAL_21]], %[[VAL_22]] : index 55// CHECK: %[[VAL_25:.*]] = arith.muli %[[VAL_23]], %[[VAL_5]] : index 56// CHECK: scf.for %[[VAL_24:.*]] = %[[VAL_4]] to %[[VAL_5]] step %[[VAL_3]] { 57// CHECK: %[[VAL_26:.*]] = arith.addi %[[VAL_24]], %[[VAL_25]] : index 58// CHECK: %[[VAL_27:.*]] = scf.for %[[VAL_28:.*]] = %[[VAL_4]] to %[[VAL_8]] step %[[VAL_3]] iter_args(%[[VAL_29:.*]] = %[[VAL_6]]) -> (f32) { 59// CHECK: %[[VAL_30:.*]] = arith.muli %[[VAL_15]], %[[VAL_5]] : index 60// CHECK: %[[VAL_31:.*]] = arith.addi %[[VAL_30]], %[[VAL_21]] : index 61// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_31]], %[[VAL_28]]] : memref<?x?xf32> 62// CHECK: %[[VAL_33:.*]] = arith.muli %[[VAL_20]], %[[VAL_5]] : index 63// CHECK: %[[VAL_34:.*]] = arith.addi %[[VAL_33]], %[[VAL_24]] : index 64// CHECK: %[[VAL_35:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_28]], %[[VAL_34]]] : memref<?x?xf32> 65// CHECK: %[[VAL_36:.*]] = arith.mulf %[[VAL_32]], %[[VAL_35]] : f32 66// CHECK: %[[VAL_37:.*]] = arith.addf %[[VAL_29]], %[[VAL_36]] : f32 67// CHECK: scf.yield %[[VAL_37]] : f32 68// CHECK: } {"Emitted from" = "linalg.generic"} 69// CHECK: memref.store %[[VAL_27]], %[[VAL_14]]{{\[}}%[[VAL_26]]] : memref<?xf32> 70// CHECK: } {"Emitted from" = "linalg.generic"} 71// CHECK: } {"Emitted from" = "linalg.generic"} 72// CHECK: } {"Emitted from" = "linalg.generic"} 73// CHECK: } {"Emitted from" = "linalg.generic"} 74// CHECK: %[[VAL_38:.*]] = sparse_tensor.load %[[VAL_7]] : tensor<?x?x2x2xf32, #[[$MAP]]> 75// CHECK: %[[VAL_39:.*]] = sparse_tensor.reinterpret_map %[[VAL_38]] : tensor<?x?x2x2xf32, #[[$MAP]]> to tensor<?x?xf32, #[[$BSR]]> 76// CHECK: return %[[VAL_39]] : tensor<?x?xf32, #[[$BSR]]> 77// CHECK: } 78module { 79 func.func @SDDMM_block(%args: tensor<?x?xf32, #BSR>, 80 %arga: tensor<?x?xf32>, 81 %argb: tensor<?x?xf32>) -> tensor<?x?xf32, #BSR> { 82 %result = linalg.generic #trait_SDDMM 83 ins(%arga, %argb: tensor<?x?xf32>, tensor<?x?xf32>) 84 outs(%args: tensor<?x?xf32, #BSR>) { 85 ^bb(%a: f32, %b: f32, %s: f32): 86 %f0 = arith.constant 0.0 : f32 87 %u = sparse_tensor.unary %s : f32 to f32 88 present={ 89 ^bb0(%p: f32): 90 %mul = arith.mulf %a, %b : f32 91 sparse_tensor.yield %mul : f32 92 } 93 absent={} 94 %r = sparse_tensor.reduce %s, %u, %f0 : f32 { 95 ^bb0(%p: f32, %q: f32): 96 %add = arith.addf %p, %q : f32 97 sparse_tensor.yield %add : f32 98 } 99 linalg.yield %r : f32 100 } -> tensor<?x?xf32, #BSR> 101 return %result : tensor<?x?xf32, #BSR> 102 } 103} 104