xref: /llvm-project/mlir/test/Dialect/SparseTensor/spy_sddmm_bsr.mlir (revision ced2fc7819d5ddea616ec330f18e08ff284c1868)
1// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s
2
3//
4// A SDDMM implementation with "spy" function and
5// in-place update of the sampling sparse matrix.
6//
7
8#BSR = #sparse_tensor.encoding<{
9  map = (i, j) -> (
10    i floordiv 2 : dense,
11    j floordiv 2 : compressed,
12    i mod 2 : dense,
13    j mod 2 : dense)
14}>
15
16#trait_SDDMM = {
17  indexing_maps = [
18    affine_map<(i,j,k) -> (i,k)>,  // A
19    affine_map<(i,j,k) -> (k,j)>,  // B
20    affine_map<(i,j,k) -> (i,j)>   // S (in/out)
21  ],
22  iterator_types = ["parallel", "parallel", "reduction"],
23  doc = "S(i,j) += spy[S(i,j)] x SUM_k A(i,k) B(k,j)"
24}
25
26//
27// CHECK: #[[$BSR:.+]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 2 : compressed, d0 mod 2 : dense, d1 mod 2 : dense) }>
28// CHECK: #[[$MAP:.+]] = #sparse_tensor.encoding<{ map = (d0, d1, d2, d3) -> (d0 : dense, d1 : compressed, d2 : dense, d3 : dense) }>
29//
30// CHECK-LABEL:   func.func @SDDMM_block(
31// CHECK-SAME:      %[[VAL_0:.*]]: tensor<?x?xf32, #[[$BSR]]>,
32// CHECK-SAME:      %[[VAL_1:.*]]: tensor<?x?xf32>,
33// CHECK-SAME:      %[[VAL_2:.*]]: tensor<?x?xf32>) -> tensor<?x?xf32, #[[$BSR]]> {
34// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 1 : index
35// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 0 : index
36// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 2 : index
37// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f32
38// CHECK-DAG:       %[[VAL_7:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<?x?xf32, #[[$BSR]]> to tensor<?x?x2x2xf32, #[[$MAP]]>
39// CHECK-DAG:       %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor<?x?xf32>
40// CHECK-DAG:       %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<?x?xf32> to memref<?x?xf32>
41// CHECK-DAG:       %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : tensor<?x?xf32> to memref<?x?xf32>
42// CHECK-DAG:       %[[VAL_11:.*]] = sparse_tensor.lvl %[[VAL_7]], %[[VAL_4]] : tensor<?x?x2x2xf32, #[[$MAP]]>
43// CHECK-DAG:       %[[VAL_12:.*]] = sparse_tensor.positions %[[VAL_7]] {level = 1 : index} : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xindex>
44// CHECK-DAG:       %[[VAL_13:.*]] = sparse_tensor.coordinates %[[VAL_7]] {level = 1 : index} : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xindex>
45// CHECK-DAG:       %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_7]] : tensor<?x?x2x2xf32, #[[$MAP]]> to memref<?xf32>
46// CHECK:           scf.for %[[VAL_15:.*]] = %[[VAL_4]] to %[[VAL_11]] step %[[VAL_3]] {
47// CHECK:             %[[VAL_16:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_15]]] : memref<?xindex>
48// CHECK:             %[[VAL_17:.*]] = arith.addi %[[VAL_15]], %[[VAL_3]] : index
49// CHECK:             %[[VAL_18:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_17]]] : memref<?xindex>
50// CHECK:             scf.for %[[VAL_19:.*]] = %[[VAL_16]] to %[[VAL_18]] step %[[VAL_3]] {
51// CHECK:               %[[VAL_20:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_19]]] : memref<?xindex>
52// CHECK:               %[[VAL_22:.*]] = arith.muli %[[VAL_19]], %[[VAL_5]] : index
53// CHECK:               scf.for %[[VAL_21:.*]] = %[[VAL_4]] to %[[VAL_5]] step %[[VAL_3]] {
54// CHECK:                 %[[VAL_23:.*]] = arith.addi %[[VAL_21]], %[[VAL_22]] : index
55// CHECK:                 %[[VAL_25:.*]] = arith.muli %[[VAL_23]], %[[VAL_5]] : index
56// CHECK:                 scf.for %[[VAL_24:.*]] = %[[VAL_4]] to %[[VAL_5]] step %[[VAL_3]] {
57// CHECK:                   %[[VAL_26:.*]] = arith.addi %[[VAL_24]], %[[VAL_25]] : index
58// CHECK:                   %[[VAL_27:.*]] = scf.for %[[VAL_28:.*]] = %[[VAL_4]] to %[[VAL_8]] step %[[VAL_3]] iter_args(%[[VAL_29:.*]] = %[[VAL_6]]) -> (f32) {
59// CHECK:                     %[[VAL_30:.*]] = arith.muli %[[VAL_15]], %[[VAL_5]] : index
60// CHECK:                     %[[VAL_31:.*]] = arith.addi %[[VAL_30]], %[[VAL_21]] : index
61// CHECK:                     %[[VAL_32:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_31]], %[[VAL_28]]] : memref<?x?xf32>
62// CHECK:                     %[[VAL_33:.*]] = arith.muli %[[VAL_20]], %[[VAL_5]] : index
63// CHECK:                     %[[VAL_34:.*]] = arith.addi %[[VAL_33]], %[[VAL_24]] : index
64// CHECK:                     %[[VAL_35:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_28]], %[[VAL_34]]] : memref<?x?xf32>
65// CHECK:                     %[[VAL_36:.*]] = arith.mulf %[[VAL_32]], %[[VAL_35]] : f32
66// CHECK:                     %[[VAL_37:.*]] = arith.addf %[[VAL_29]], %[[VAL_36]] : f32
67// CHECK:                     scf.yield %[[VAL_37]] : f32
68// CHECK:                   } {"Emitted from" = "linalg.generic"}
69// CHECK:                   memref.store %[[VAL_27]], %[[VAL_14]]{{\[}}%[[VAL_26]]] : memref<?xf32>
70// CHECK:                 } {"Emitted from" = "linalg.generic"}
71// CHECK:               } {"Emitted from" = "linalg.generic"}
72// CHECK:             } {"Emitted from" = "linalg.generic"}
73// CHECK:           } {"Emitted from" = "linalg.generic"}
74// CHECK:           %[[VAL_38:.*]] = sparse_tensor.load %[[VAL_7]] : tensor<?x?x2x2xf32, #[[$MAP]]>
75// CHECK:           %[[VAL_39:.*]] = sparse_tensor.reinterpret_map %[[VAL_38]] : tensor<?x?x2x2xf32, #[[$MAP]]> to tensor<?x?xf32, #[[$BSR]]>
76// CHECK:           return %[[VAL_39]] : tensor<?x?xf32, #[[$BSR]]>
77// CHECK:         }
78module {
79  func.func @SDDMM_block(%args: tensor<?x?xf32, #BSR>,
80                         %arga: tensor<?x?xf32>,
81                         %argb: tensor<?x?xf32>) -> tensor<?x?xf32, #BSR> {
82    %result = linalg.generic #trait_SDDMM
83      ins(%arga, %argb: tensor<?x?xf32>, tensor<?x?xf32>)
84      outs(%args: tensor<?x?xf32, #BSR>) {
85        ^bb(%a: f32, %b: f32, %s: f32):
86           %f0 = arith.constant 0.0 : f32
87           %u = sparse_tensor.unary %s : f32 to f32
88             present={
89                ^bb0(%p: f32):
90                  %mul = arith.mulf %a, %b : f32
91                  sparse_tensor.yield %mul : f32
92             }
93             absent={}
94           %r = sparse_tensor.reduce %s, %u, %f0 : f32 {
95              ^bb0(%p: f32, %q: f32):
96                %add = arith.addf %p, %q : f32
97                sparse_tensor.yield %add : f32
98            }
99           linalg.yield %r : f32
100      } -> tensor<?x?xf32, #BSR>
101    return %result : tensor<?x?xf32, #BSR>
102  }
103}
104