1// RUN: mlir-opt %s --sparse-gpu-codegen="num-threads=0" | FileCheck %s 2 3#BSR = #sparse_tensor.encoding<{ 4 map = (i, j) -> ( 5 i floordiv 2 : dense, 6 j floordiv 2 : compressed, 7 i mod 2 : dense, 8 j mod 2 : dense) 9}> 10 11#trait_SDDMM = { 12 indexing_maps = [ 13 affine_map<(i,j,k) -> (i,k)>, // A 14 affine_map<(i,j,k) -> (k,j)>, // B 15 affine_map<(i,j,k) -> (i,j)> // S (in/out) 16 ], 17 iterator_types = ["parallel", "parallel", "reduction"], 18 doc = "S(i,j) += spy[S(i,j)] x SUM_k A(i,k) B(k,j)" 19} 20 21// CHECK-LABEL: func.func @SDDMM_block( 22// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?xf32, #sparse{{[0-9]*}}>, 23// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?xf32>, 24// CHECK-SAME: %[[VAL_2:.*]]: tensor<?x?xf32>) -> tensor<?x?xf32, #sparse{{[0-9]*}}> { 25// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index 26// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index 27// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index 28// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 4 : index 29// CHECK: %[[VAL_7:.*]] = sparse_tensor.number_of_entries %[[VAL_0]] : tensor<?x?xf32, #sparse{{[0-9]*}}> 30// CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor<?x?xf32> 31// CHECK: %[[VAL_9:.*]] = tensor.dim %[[VAL_1]], %[[VAL_4]] : tensor<?x?xf32> 32// CHECK: %[[VAL_10:.*]] = tensor.dim %[[VAL_2]], %[[VAL_4]] : tensor<?x?xf32> 33// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : tensor<?x?xf32> to memref<?x?xf32> 34// CHECK: %[[VAL_12:.*]] = gpu.wait async 35// CHECK: %[[VAL_13:.*]] = memref.dim %[[VAL_11]], %[[VAL_3]] : memref<?x?xf32> 36// CHECK: %[[VAL_14:.*]] = memref.dim %[[VAL_11]], %[[VAL_4]] : memref<?x?xf32> 37// CHECK: %[[VAL_15:.*]], %[[VAL_16:.*]] = gpu.alloc async {{\[}}%[[VAL_12]]] (%[[VAL_13]], %[[VAL_14]]) : memref<?x?xf32> 38// CHECK: %[[VAL_17:.*]] = gpu.memcpy async {{\[}}%[[VAL_16]]] %[[VAL_15]], %[[VAL_11]] : memref<?x?xf32>, memref<?x?xf32> 39// CHECK: %[[VAL_18:.*]] = bufferization.to_memref %[[VAL_2]] : tensor<?x?xf32> to memref<?x?xf32> 40// CHECK: %[[VAL_19:.*]] = gpu.wait async 41// CHECK: %[[VAL_20:.*]] = memref.dim %[[VAL_18]], %[[VAL_3]] : memref<?x?xf32> 42// CHECK: %[[VAL_21:.*]] = memref.dim %[[VAL_18]], %[[VAL_4]] : memref<?x?xf32> 43// CHECK: %[[VAL_22:.*]], %[[VAL_23:.*]] = gpu.alloc async {{\[}}%[[VAL_19]]] (%[[VAL_20]], %[[VAL_21]]) : memref<?x?xf32> 44// CHECK: %[[VAL_24:.*]] = gpu.memcpy async {{\[}}%[[VAL_23]]] %[[VAL_22]], %[[VAL_18]] : memref<?x?xf32>, memref<?x?xf32> 45// CHECK: %[[VAL_25:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} 46// CHECK: %[[VAL_26:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} 47// CHECK: %[[VAL_27:.*]] = sparse_tensor.values %[[VAL_0]] 48// CHECK: %[[VAL_28:.*]] = gpu.wait async 49// CHECK: %[[VAL_29:.*]] = memref.dim %[[VAL_25]], %[[VAL_3]] : memref<?xindex> 50// CHECK: %[[VAL_30:.*]], %[[VAL_31:.*]] = gpu.alloc async {{\[}}%[[VAL_28]]] (%[[VAL_29]]) : memref<?xindex> 51// CHECK: %[[VAL_32:.*]] = gpu.memcpy async {{\[}}%[[VAL_31]]] %[[VAL_30]], %[[VAL_25]] : memref<?xindex>, memref<?xindex> 52// CHECK: %[[VAL_33:.*]] = gpu.wait async 53// CHECK: %[[VAL_34:.*]] = memref.dim %[[VAL_26]], %[[VAL_3]] : memref<?xindex> 54// CHECK: %[[VAL_35:.*]], %[[VAL_36:.*]] = gpu.alloc async {{\[}}%[[VAL_33]]] (%[[VAL_34]]) : memref<?xindex> 55// CHECK: %[[VAL_37:.*]] = gpu.memcpy async {{\[}}%[[VAL_36]]] %[[VAL_35]], %[[VAL_26]] : memref<?xindex>, memref<?xindex> 56// CHECK: %[[VAL_38:.*]] = gpu.wait async 57// CHECK: %[[VAL_39:.*]] = memref.dim %[[VAL_27]], %[[VAL_3]] : memref<?xf32> 58// CHECK: %[[VAL_40:.*]], %[[VAL_41:.*]] = gpu.alloc async {{\[}}%[[VAL_38]]] (%[[VAL_39]]) : memref<?xf32> 59// CHECK: %[[VAL_42:.*]] = gpu.memcpy async {{\[}}%[[VAL_41]]] %[[VAL_40]], %[[VAL_27]] : memref<?xf32>, memref<?xf32> 60// CHECK: gpu.wait {{\[}}%[[VAL_17]], %[[VAL_24]], %[[VAL_32]], %[[VAL_37]], %[[VAL_42]]] 61// CHECK: %[[VAL_43:.*]] = gpu.wait async 62// CHECK: %[[VAL_44:.*]], %[[VAL_45:.*]] = gpu.create_dn_tensor async {{\[}}%[[VAL_43]]] %[[VAL_15]], %[[VAL_8]], %[[VAL_9]] : index, index into memref<?x?xf32> 63// CHECK: %[[VAL_46:.*]], %[[VAL_47:.*]] = gpu.create_dn_tensor async {{\[}}%[[VAL_45]]] %[[VAL_22]], %[[VAL_9]], %[[VAL_10]] : index, index into memref<?x?xf32> 64// CHECK: %[[VAL_48:.*]] = arith.divui %[[VAL_8]], %[[VAL_5]] : index 65// CHECK: %[[VAL_49:.*]] = arith.divui %[[VAL_10]], %[[VAL_5]] : index 66// CHECK: %[[VAL_50:.*]] = arith.divui %[[VAL_7]], %[[VAL_6]] : index 67// CHECK: %[[VAL_51:.*]], %[[VAL_52:.*]] = gpu.create_bsr async {{\[}}%[[VAL_47]]] %[[VAL_48]], %[[VAL_49]], %[[VAL_50]], %[[VAL_5]], %[[VAL_5]], %[[VAL_30]], %[[VAL_35]], %[[VAL_40]] : memref<?xindex>, memref<?xindex>, memref<?xf32> 68// CHECK: %[[VAL_53:.*]], %[[VAL_54:.*]] = gpu.sddmm_buffer_size async {{\[}}%[[VAL_52]]] %[[VAL_44]], %[[VAL_46]], %[[VAL_51]] into f32 69// CHECK: %[[VAL_55:.*]], %[[VAL_56:.*]] = gpu.alloc async {{\[}}%[[VAL_54]]] (%[[VAL_53]]) : memref<?xi8> 70// CHECK: %[[VAL_57:.*]] = gpu.sddmm async {{\[}}%[[VAL_56]]] %[[VAL_44]], %[[VAL_46]], %[[VAL_51]], %[[VAL_55]] : memref<?xi8> into f32 71// CHECK: %[[VAL_58:.*]] = gpu.destroy_dn_tensor async {{\[}}%[[VAL_57]]] %[[VAL_44]] 72// CHECK: %[[VAL_59:.*]] = gpu.destroy_dn_tensor async {{\[}}%[[VAL_58]]] %[[VAL_46]] 73// CHECK: %[[VAL_60:.*]] = gpu.destroy_sp_mat async {{\[}}%[[VAL_59]]] %[[VAL_51]] 74// CHECK: %[[VAL_61:.*]] = gpu.dealloc async {{\[}}%[[VAL_60]]] %[[VAL_55]] : memref<?xi8> 75// CHECK: %[[VAL_62:.*]] = gpu.dealloc async {{\[}}%[[VAL_61]]] %[[VAL_15]] : memref<?x?xf32> 76// CHECK: %[[VAL_63:.*]] = gpu.dealloc async {{\[}}%[[VAL_62]]] %[[VAL_22]] : memref<?x?xf32> 77// CHECK: %[[VAL_64:.*]] = gpu.dealloc async {{\[}}%[[VAL_63]]] %[[VAL_30]] : memref<?xindex> 78// CHECK: %[[VAL_65:.*]] = gpu.dealloc async {{\[}}%[[VAL_64]]] %[[VAL_35]] : memref<?xindex> 79// CHECK: %[[VAL_66:.*]] = gpu.memcpy async {{\[}}%[[VAL_65]]] %[[VAL_27]], %[[VAL_40]] : memref<?xf32>, memref<?xf32> 80// CHECK: %[[VAL_67:.*]] = gpu.dealloc async {{\[}}%[[VAL_66]]] %[[VAL_40]] : memref<?xf32> 81// CHECK: gpu.wait {{\[}}%[[VAL_67]]] 82// CHECK: %[[VAL_68:.*]] = sparse_tensor.load %[[VAL_0]] : tensor<?x?xf32, #sparse{{[0-9]*}}> 83// CHECK: return %[[VAL_68]] : tensor<?x?xf32, #sparse{{[0-9]*}}> 84// CHECK: } 85func.func @SDDMM_block(%args: tensor<?x?xf32, #BSR>, 86 %arga: tensor<?x?xf32>, 87 %argb: tensor<?x?xf32>) -> tensor<?x?xf32, #BSR> { 88 %result = linalg.generic #trait_SDDMM 89 ins(%arga, %argb: tensor<?x?xf32>, tensor<?x?xf32>) 90 outs(%args: tensor<?x?xf32, #BSR>) { 91 ^bb(%a: f32, %b: f32, %s: f32): 92 %f0 = arith.constant 0.0 : f32 93 %u = sparse_tensor.unary %s : f32 to f32 94 present={ 95 ^bb0(%p: f32): 96 %mul = arith.mulf %a, %b : f32 97 sparse_tensor.yield %mul : f32 98 } 99 absent={} 100 %r = sparse_tensor.reduce %s, %u, %f0 : f32 { 101 ^bb0(%p: f32, %q: f32): 102 %add = arith.addf %p, %q : f32 103 sparse_tensor.yield %add : f32 104 } 105 linalg.yield %r : f32 106 } -> tensor<?x?xf32, #BSR> 107 return %result : tensor<?x?xf32, #BSR> 108} 109