xref: /llvm-project/mlir/test/Dialect/Linalg/transform-op-generalize.mlir (revision e4384149b58f7c3d19c5d38bc46038c660b77ca9)
1// RUN: mlir-opt --transform-interpreter %s | FileCheck %s
2
3// CHECK-LABEL: func.func @generalize_unary
4func.func @generalize_unary(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
5
6  // CHECK-NOT:   linalg.elemwise_unary
7  //     CHECK:   linalg.generic
8  %0 = linalg.elemwise_unary ins(%arg0 : tensor<?x?xf32>)
9                             outs(%arg1: tensor<?x?xf32>) -> tensor<?x?xf32>
10  return %0 : tensor<?x?xf32>
11}
12
13// CHECK-LABEL: func @map_no_inputs(
14func.func @map_no_inputs(%input: tensor<16x32x64xf32>,
15                  %init: tensor<16x64xf32>) -> tensor<16x64xf32> {
16  // CHECK-NOT:   linalg.map
17  //     CHECK:   linalg.generic
18  %reduce = linalg.reduce
19      ins(%input:tensor<16x32x64xf32>)
20      outs(%init:tensor<16x64xf32>)
21      dimensions = [1]
22      (%in: f32, %out: f32) {
23        %0 = arith.addf %out, %in: f32
24        linalg.yield %0: f32
25      }
26  func.return %reduce : tensor<16x64xf32>
27}
28module attributes {transform.with_named_sequence} {
29  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
30    %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
31    %1 = transform.structured.generalize %0 : (!transform.any_op) -> !transform.any_op
32    transform.yield
33  }
34}
35