xref: /llvm-project/mlir/test/Dialect/Linalg/tile-tensors.mlir (revision 0d4efa27252cbbea4b5672d4d8ffc15a3ba51d83)
1// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s
2
3// CHECK-LABEL: func @matmul_tensors(
4// CHECK-SAME:    %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
5// CHECK-SAME:    %[[TB:[0-9a-z]+]]: tensor<?x?xf32>
6// CHECK-SAME:    %[[TC:[0-9a-z]+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
7func.func @matmul_tensors(
8  %arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>)
9    -> tensor<?x?xf32> {
10//      CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?xf32>) {
11//      CHECK:   %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xf32>) {
12//      CHECK:     %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?xf32>) {
13//      CHECK:       %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
14//      CHECK:       %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
15//      CHECK:       %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
16//      CHECK:       %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>)
17// CHECK-SAME:                                  outs(%[[sTC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
18//      CHECK:       %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}]  : tensor<?x?xf32> into tensor<?x?xf32>
19//      CHECK:       scf.yield %[[TD]] : tensor<?x?xf32>
20//      CHECK:     scf.yield %[[TD2]] : tensor<?x?xf32>
21//      CHECK:   scf.yield %[[TD1]] : tensor<?x?xf32>
22  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
23                     outs(%arg2: tensor<?x?xf32>)
24    -> tensor<?x?xf32>
25
26//      CHECK: return %[[TD0]] : tensor<?x?xf32>
27  return %0 : tensor<?x?xf32>
28}
29
30module attributes {transform.with_named_sequence} {
31  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
32    %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
33    %1, %loops:3 = transform.structured.tile_using_for %0 tile_sizes [2, 3, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
34    transform.yield
35  }
36}
37
38// -----
39
40// CHECK:       #[[$MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)>
41// CHECK-NEXT:  #[[$MAP1:.*]] = affine_map<(d0, d1, d2) -> (d2, d1)>
42// CHECK-NEXT:  #[[$MAP2:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
43#access_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>,
44                affine_map<(d0, d1, d2) -> (d2, d1)>,
45                affine_map<(d0, d1, d2) -> (d0, d1)>]
46
47// CHECK-LABEL: func @matmul_as_contract_tensors(
48// CHECK-SAME:    %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
49// CHECK-SAME:    %[[TB:[0-9a-z]+]]: tensor<?x?xf32>
50// CHECK-SAME:    %[[TC:[0-9a-z]+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
51func.func @matmul_as_contract_tensors(
52  %A: tensor<?x?xf32>, %B: tensor<?x?xf32>, %C: tensor<?x?xf32>)
53    -> tensor<?x?xf32> {
54//      CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<?x?xf32>) {
55//      CHECK:   %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<?x?xf32>) {
56//      CHECK:     %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<?x?xf32>) {
57//      CHECK:       %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
58//      CHECK:       %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
59//      CHECK:       %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<?x?xf32> to tensor<?x?xf32>
60//      CHECK:       %[[sTD:.*]] = linalg.contract
61// CHECK-SAME:          indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]]
62// CHECK-SAME:          ins(%[[sTA]], %[[sTB]] : tensor<?x?xf32>, tensor<?x?xf32>)
63// CHECK-SAME:          outs(%[[sTC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
64//      CHECK:       %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}]  : tensor<?x?xf32> into tensor<?x?xf32>
65//      CHECK:       scf.yield %[[TD]] : tensor<?x?xf32>
66//      CHECK:     scf.yield %[[TD2]] : tensor<?x?xf32>
67//      CHECK:   scf.yield %[[TD1]] : tensor<?x?xf32>
68  %0 = linalg.contract indexing_maps = #access_maps
69                       ins(%A, %B: tensor<?x?xf32>, tensor<?x?xf32>)
70                       outs(%C: tensor<?x?xf32>)
71    -> tensor<?x?xf32>
72
73//      CHECK: return %[[TD0]] : tensor<?x?xf32>
74  return %0 : tensor<?x?xf32>
75}
76
77module attributes {transform.with_named_sequence} {
78  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
79    %0 = transform.structured.match ops{["linalg.contract"]} in %arg1 : (!transform.any_op) -> !transform.any_op
80    %1, %loops:3 = transform.structured.tile_using_for %0 tile_sizes [2, 3, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
81    transform.yield
82  }
83}
84
85// -----
86
87// CHECK-LABEL: func @matmul_tensors_with_size_zeros(
88// CHECK-SAME:    %[[TA:[0-9a-z]+]]: tensor<?x?xf32>
89// CHECK-SAME:    %[[TB:[0-9a-z]+]]: tensor<?x?xf32>
90// CHECK-SAME:    %[[TC:[0-9a-z]+]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
91func.func @matmul_tensors_with_size_zeros(
92  %arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>, %arg2: tensor<?x?xf32>)
93    -> tensor<?x?xf32> {
94
95//      CHECK:     %[[RES:.*]] = linalg.matmul ins(%[[TA]], %[[TB]] : tensor<?x?xf32>, tensor<?x?xf32>)
96// CHECK-SAME:                                outs(%[[TC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
97//      CHECK:     return %[[RES]]
98  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x?xf32>)
99                     outs(%arg2: tensor<?x?xf32>)
100    -> tensor<?x?xf32>
101  return %0 : tensor<?x?xf32>
102}
103
104module attributes {transform.with_named_sequence} {
105  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
106    %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
107    %1 = transform.structured.tile_using_for %0 tile_sizes [0, 0, 0] : (!transform.any_op) -> (!transform.any_op)
108    transform.yield
109  }
110}
111
112// -----
113
114func.func @generic_op_tensors(
115  %arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
116  %c0 = arith.constant 0 : index
117  %c1 = arith.constant 1 : index
118  %c2 = arith.constant 2 : index
119  %0 = tensor.dim %arg0, %c0 : tensor<?x?x?xf32>
120  %1 = tensor.dim %arg0, %c1 : tensor<?x?x?xf32>
121  %2 = tensor.dim %arg0, %c2 : tensor<?x?x?xf32>
122  %3 = tensor.empty(%0, %1, %2) : tensor<?x?x?xf32>
123  %4 = linalg.generic
124    {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
125                      affine_map<(d0, d1, d2) -> (d0, d2, d1)>,
126                      affine_map<(d0, d1, d2) -> (d2, d1, d0)>],
127     iterator_types = ["parallel", "parallel", "parallel"]}
128    ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
129    outs(%3 : tensor<?x?x?xf32>) {
130    ^bb0(%arg2 : f32, %arg3: f32, %arg4: f32):
131      %5 = arith.addf %arg2, %arg3 : f32
132      linalg.yield %5 : f32
133    } -> tensor<?x?x?xf32>
134  return %4 : tensor<?x?x?xf32>
135}
136
137module attributes {transform.with_named_sequence} {
138  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
139    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
140    %1, %loops:3 = transform.structured.tile_using_for %0 tile_sizes [2, 3, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
141    transform.yield
142  }
143}
144
145// CHECK-LABEL: func @generic_op_tensors
146//  CHECK-SAME:   %[[ARG0:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
147//  CHECK-SAME:   %[[ARG1:[a-zA-Z0-9_]+]]: tensor<?x?x?xf32>
148//       CHECK:   %[[INIT:.+]] = tensor.empty
149//       CHECK:   %[[TD0:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC0:.+]] = %[[INIT]]) -> (tensor<?x?x?xf32>) {
150//       CHECK:     %[[TD1:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC1:.+]] = %[[TC0]]) -> (tensor<?x?x?xf32>) {
151//       CHECK:       %[[TD2:.+]] = scf.for %{{.+}} to %{{.+}} step %{{.+}} iter_args(%[[TC2:.+]] = %[[TC1]]) -> (tensor<?x?x?xf32>) {
152//       CHECK:       %[[STARG0:.+]] = tensor.extract_slice %[[ARG0]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
153//       CHECK:       %[[STARG1:.+]] = tensor.extract_slice %[[ARG1]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
154//       CHECK:       %[[STARG2:.+]] = tensor.extract_slice %[[TC2]][{{.+}}] : tensor<?x?x?xf32> to tensor<?x?x?xf32>
155//       CHECK:       %[[STRETURN:.+]] = linalg.generic
156//  CHECK-SAME:         ins(%[[STARG0]], %[[STARG1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
157//  CHECK-SAME:         outs(%[[STARG2]] : tensor<?x?x?xf32>)
158//       CHECK:       %[[TD:.+]] = tensor.insert_slice %[[STRETURN]] into %[[TC2]]
159//       CHECK:       scf.yield %[[TD]]
160//       CHECK:     }
161//       CHECK:     scf.yield %[[TD2]]
162//       CHECK:   }
163//       CHECK:   scf.yield %[[TD1]]
164//       CHECK: }
165//       CHECK: return %[[TD0]]
166
167// -----
168
169//  CHECK-DAG:  #[[MAP0:.*]] = affine_map<(d0)[s0] -> (-d0 + s0, 2)>
170
171//      CHECK:  fold_extract_slice
172// CHECK-SAME:    %[[ARG0:[0-9a-zA-Z]*]]: tensor<?x128xf32>
173// CHECK-SAME:    %[[ARG1:[0-9a-zA-Z]*]]: tensor<?x42xf32>
174func.func @fold_extract_slice(
175  %arg0 : tensor<?x128xf32>, %arg1 : tensor<?x42xf32>, %arg2 : tensor<?x42x?xf32>) -> tensor<?x42xf32> {
176
177  //      CHECK:    %[[C0:.*]] = arith.constant 0
178  %c0 = arith.constant 0 : index
179
180  //      CHECK:    %[[DIM:.*]] = tensor.dim %[[ARG1]], %[[C0]]
181  %0 = tensor.dim %arg1, %c0 : tensor<?x42xf32>
182  %1 = tensor.extract_slice %arg0[3, 4] [%0, 42] [1, 1] : tensor<?x128xf32> to tensor<?x42xf32>
183
184  //      CHECK:   %[[E:.*]] = tensor.extract_slice %[[ARG0]][3, 4] [%[[DIM]], 42] [1, 1] : tensor<?x128xf32> to tensor<?x42xf32>
185
186  //      CHECK:    scf.for %[[IV0:[0-9a-zA-Z]*]] =
187  //      CHECK:      scf.for %[[IV1:[0-9a-zA-Z]*]] =
188
189  //      CHECK:      %[[SIZE0:.*]] = affine.min #[[MAP0]](%[[IV0]])[%[[DIM]]
190  // Fold the existing extract slice op into the one created by the tiling.
191  //      CHECK:        %[[T0:.*]] = tensor.extract_slice %[[E]]
192  // CHECK-SAME:                                          %[[IV0]], %[[IV1]]
193  // CHECK-SAME:                                          %[[SIZE0]], 3
194  // CHECK-SAME:                                          1, 1
195  //      CHECK:        {{.*}} = linalg.generic {{.*}} ins(%[[T0]]
196  %2 = linalg.generic
197    {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1)>,
198                      affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
199                      affine_map<(d0, d1, d2) -> (d0, d1)>],
200     iterator_types = ["parallel", "parallel", "parallel"]}
201    ins(%1, %arg2 : tensor<?x42xf32>, tensor<?x42x?xf32>)
202    outs(%arg1 : tensor<?x42xf32>) {
203    ^bb0(%arg3 : f32, %arg4: f32, %arg5: f32):
204      %5 = arith.addf %arg3, %arg5 : f32
205      linalg.yield %5 : f32
206    } -> tensor<?x42xf32>
207  return %2 : tensor<?x42xf32>
208}
209
210module attributes {transform.with_named_sequence} {
211  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
212    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
213    %1, %loops:3 = transform.structured.tile_using_for %0 tile_sizes [2, 3, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
214    transform.yield
215  }
216}
217