xref: /llvm-project/mlir/test/Conversion/TensorToLinalg/tensor-ops-to-linalg.mlir (revision bb82092de71466728630050691fa9c20796b3cbc)
1// RUN: mlir-opt -split-input-file -convert-tensor-to-linalg -cse -verify-diagnostics %s | FileCheck %s
2
3//===----------------------------------------------------------------------===//
4// tensor.pad
5//===----------------------------------------------------------------------===//
6// CHECK-LABEL:   func @generalize_pad_tensor_static_shape(
7// CHECK-SAME:                                             %[[IN:.*]]: tensor<1x28x28x1xf32>) -> tensor<1x32x32x1xf32> {
8// CHECK:           %[[C0:.*]] = arith.constant 0.000000e+00 : f32
9// CHECK:           %[[INIT:.*]] = tensor.empty() : tensor<1x32x32x1xf32>
10// CHECK:           %[[FILL:.*]] = linalg.fill ins(%[[C0]] : f32) outs(%[[INIT]] : tensor<1x32x32x1xf32>) -> tensor<1x32x32x1xf32>
11// CHECK:           %[[PADDED:.*]] = tensor.insert_slice %[[IN]] into %[[FILL]][0, 2, 2, 0] [1, 28, 28, 1] [1, 1, 1, 1] : tensor<1x28x28x1xf32> into tensor<1x32x32x1xf32>
12// CHECK:           return %[[PADDED]] : tensor<1x32x32x1xf32>
13func.func @generalize_pad_tensor_static_shape(%arg0: tensor<1x28x28x1xf32>) -> tensor<1x32x32x1xf32> {
14  %cst = arith.constant 0.000000e+00 : f32
15  %0 = tensor.pad %arg0 low[0, 2, 2, 0] high[0, 2, 2, 0]  {
16  ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index):
17    tensor.yield %cst : f32
18  } : tensor<1x28x28x1xf32> to tensor<1x32x32x1xf32>
19  return %0 : tensor<1x32x32x1xf32>
20}
21
22// CHECK-LABEL:   func @generalize_pad_tensor_dynamic_shape(
23// CHECK-SAME:                                              %[[IN:.*]]: tensor<4x?x2x?xf32>,
24// CHECK-SAME:                                              %[[OFFSET:.*]]: index) -> tensor<4x?x?x?xf32> {
25// CHECK-DAG:       %[[CST:.*]] = arith.constant 0.000000e+00 : f32
26// CHECK-DAG:       %[[C1:.*]] = arith.constant 1 : index
27// CHECK:           %[[DIM1:.*]] = tensor.dim %[[IN]], %[[C1]] : tensor<4x?x2x?xf32>
28// CHECK-DAG:       %[[C2:.*]] = arith.constant 2 : index
29// CHECK:           %[[OUT_DIM2:.*]] = arith.addi %[[OFFSET]], %[[C2]] : index
30// CHECK-DAG:       %[[C3:.*]] = arith.constant 3 : index
31// CHECK:           %[[DIM3:.*]] = tensor.dim %[[IN]], %[[C3]] : tensor<4x?x2x?xf32>
32// CHECK:           %[[OUT_DIM3:.*]] = arith.addi %[[DIM3]], %[[OFFSET]] : index
33// CHECK:           %[[INIT:.*]] = tensor.empty(%[[DIM1]], %[[OUT_DIM2]], %[[OUT_DIM3]]) : tensor<4x?x?x?xf32>
34// CHECK:           %[[FILL:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[INIT]] : tensor<4x?x?x?xf32>) -> tensor<4x?x?x?xf32>
35// CHECK:           %[[PADDED:.*]] = tensor.insert_slice %[[IN]] into %[[FILL]][0, 0, %[[OFFSET]], 0] [4, %[[DIM1]], 2, %[[DIM3]]] [1, 1, 1, 1] : tensor<4x?x2x?xf32> into tensor<4x?x?x?xf32>
36// CHECK:           return %[[PADDED]] : tensor<4x?x?x?xf32>
37// CHECK:         }
38func.func @generalize_pad_tensor_dynamic_shape(%arg0: tensor<4x?x2x?xf32>, %arg1: index) -> tensor<4x?x?x?xf32> {
39  %c0 = arith.constant 0 : index
40  %cst = arith.constant 0.0 : f32
41  %out = tensor.pad %arg0 low[%c0, %c0, %arg1, %c0] high[%c0, %c0, %c0, %arg1]  {
42  ^bb0(%gen_arg1: index, %gen_arg2: index, %gen_arg3: index, %gen_arg4: index):
43    tensor.yield %cst : f32
44  } : tensor<4x?x2x?xf32> to tensor<4x?x?x?xf32>
45  return %out : tensor<4x?x?x?xf32>
46}
47