xref: /llvm-project/mlir/lib/IR/SymbolTable.cpp (revision feec2d901c17a08c358fa379e722cbe84248ed02)
1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/SymbolTable.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/OpImplementation.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringSwitch.h"
16 
17 using namespace mlir;
18 
19 /// Return true if the given operation is unknown and may potentially define a
20 /// symbol table.
21 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
22   return op->getNumRegions() == 1 && !op->getDialect();
23 }
24 
25 /// Returns the string name of the given symbol, or null if this is not a
26 /// symbol.
27 static StringAttr getNameIfSymbol(Operation *op) {
28   return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
29 }
30 static StringAttr getNameIfSymbol(Operation *op, Identifier symbolAttrNameId) {
31   return op->getAttrOfType<StringAttr>(symbolAttrNameId);
32 }
33 
34 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
35 /// that are usable within the symbol table operations from 'symbol' as far up
36 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
37 /// Returns success if all references up to 'within' could be computed.
38 static LogicalResult
39 collectValidReferencesFor(Operation *symbol, StringAttr symbolName,
40                           Operation *within,
41                           SmallVectorImpl<SymbolRefAttr> &results) {
42   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
43   MLIRContext *ctx = symbol->getContext();
44 
45   auto leafRef = FlatSymbolRefAttr::get(symbolName);
46   results.push_back(leafRef);
47 
48   // Early exit for when 'within' is the parent of 'symbol'.
49   Operation *symbolTableOp = symbol->getParentOp();
50   if (within == symbolTableOp)
51     return success();
52 
53   // Collect references until 'symbolTableOp' reaches 'within'.
54   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
55   Identifier symbolNameId =
56       Identifier::get(SymbolTable::getSymbolAttrName(), ctx);
57   do {
58     // Each parent of 'symbol' should define a symbol table.
59     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
60       return failure();
61     // Each parent of 'symbol' should also be a symbol.
62     StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId);
63     if (!symbolTableName)
64       return failure();
65     results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs));
66 
67     symbolTableOp = symbolTableOp->getParentOp();
68     if (symbolTableOp == within)
69       break;
70     nestedRefs.insert(nestedRefs.begin(),
71                       FlatSymbolRefAttr::get(symbolTableName));
72   } while (true);
73   return success();
74 }
75 
76 /// Walk all of the operations within the given set of regions, without
77 /// traversing into any nested symbol tables. Stops walking if the result of the
78 /// callback is anything other than `WalkResult::advance`.
79 static Optional<WalkResult>
80 walkSymbolTable(MutableArrayRef<Region> regions,
81                 function_ref<Optional<WalkResult>(Operation *)> callback) {
82   SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
83   while (!worklist.empty()) {
84     for (Operation &op : worklist.pop_back_val()->getOps()) {
85       Optional<WalkResult> result = callback(&op);
86       if (result != WalkResult::advance())
87         return result;
88 
89       // If this op defines a new symbol table scope, we can't traverse. Any
90       // symbol references nested within 'op' are different semantically.
91       if (!op.hasTrait<OpTrait::SymbolTable>()) {
92         for (Region &region : op.getRegions())
93           worklist.push_back(&region);
94       }
95     }
96   }
97   return WalkResult::advance();
98 }
99 
100 //===----------------------------------------------------------------------===//
101 // SymbolTable
102 //===----------------------------------------------------------------------===//
103 
104 /// Build a symbol table with the symbols within the given operation.
105 SymbolTable::SymbolTable(Operation *symbolTableOp)
106     : symbolTableOp(symbolTableOp) {
107   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
108          "expected operation to have SymbolTable trait");
109   assert(symbolTableOp->getNumRegions() == 1 &&
110          "expected operation to have a single region");
111   assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
112          "expected operation to have a single block");
113 
114   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
115                                             symbolTableOp->getContext());
116   for (auto &op : symbolTableOp->getRegion(0).front()) {
117     StringAttr name = getNameIfSymbol(&op, symbolNameId);
118     if (!name)
119       continue;
120 
121     auto inserted = symbolTable.insert({name, &op});
122     (void)inserted;
123     assert(inserted.second &&
124            "expected region to contain uniquely named symbol operations");
125   }
126 }
127 
128 /// Look up a symbol with the specified name, returning null if no such name
129 /// exists. Names never include the @ on them.
130 Operation *SymbolTable::lookup(StringRef name) const {
131   return lookup(StringAttr::get(symbolTableOp->getContext(), name));
132 }
133 Operation *SymbolTable::lookup(StringAttr name) const {
134   return symbolTable.lookup(name);
135 }
136 
137 /// Erase the given symbol from the table.
138 void SymbolTable::erase(Operation *symbol) {
139   StringAttr name = getNameIfSymbol(symbol);
140   assert(name && "expected valid 'name' attribute");
141   assert(symbol->getParentOp() == symbolTableOp &&
142          "expected this operation to be inside of the operation with this "
143          "SymbolTable");
144 
145   auto it = symbolTable.find(name);
146   if (it != symbolTable.end() && it->second == symbol) {
147     symbolTable.erase(it);
148     symbol->erase();
149   }
150 }
151 
152 // TODO: Consider if this should be renamed to something like insertOrUpdate
153 /// Insert a new symbol into the table and associated operation if not already
154 /// there and rename it as necessary to avoid collisions. Return the name of
155 /// the symbol after insertion as attribute.
156 StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
157   // The symbol cannot be the child of another op and must be the child of the
158   // symbolTableOp after this.
159   //
160   // TODO: consider if SymbolTable's constructor should behave the same.
161   if (!symbol->getParentOp()) {
162     auto &body = symbolTableOp->getRegion(0).front();
163     if (insertPt == Block::iterator()) {
164       insertPt = Block::iterator(body.end());
165     } else {
166       assert((insertPt == body.end() ||
167               insertPt->getParentOp() == symbolTableOp) &&
168              "expected insertPt to be in the associated module operation");
169     }
170     // Insert before the terminator, if any.
171     if (insertPt == Block::iterator(body.end()) && !body.empty() &&
172         std::prev(body.end())->hasTrait<OpTrait::IsTerminator>())
173       insertPt = std::prev(body.end());
174 
175     body.getOperations().insert(insertPt, symbol);
176   }
177   assert(symbol->getParentOp() == symbolTableOp &&
178          "symbol is already inserted in another op");
179 
180   // Add this symbol to the symbol table, uniquing the name if a conflict is
181   // detected.
182   StringAttr name = getSymbolName(symbol);
183   if (symbolTable.insert({name, symbol}).second)
184     return name;
185   // If the symbol was already in the table, also return.
186   if (symbolTable.lookup(name) == symbol)
187     return name;
188   // If a conflict was detected, then the symbol will not have been added to
189   // the symbol table. Try suffixes until we get to a unique name that works.
190   SmallString<128> nameBuffer(name.getValue());
191   unsigned originalLength = nameBuffer.size();
192 
193   MLIRContext *context = symbol->getContext();
194 
195   // Iteratively try suffixes until we find one that isn't used.
196   do {
197     nameBuffer.resize(originalLength);
198     nameBuffer += '_';
199     nameBuffer += std::to_string(uniquingCounter++);
200   } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol})
201                 .second);
202   setSymbolName(symbol, nameBuffer);
203   return getSymbolName(symbol);
204 }
205 
206 /// Returns the name of the given symbol operation.
207 StringAttr SymbolTable::getSymbolName(Operation *symbol) {
208   StringAttr name = getNameIfSymbol(symbol);
209   assert(name && "expected valid symbol name");
210   return name;
211 }
212 
213 /// Sets the name of the given symbol operation.
214 void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) {
215   symbol->setAttr(getSymbolAttrName(), name);
216 }
217 
218 /// Returns the visibility of the given symbol operation.
219 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
220   // If the attribute doesn't exist, assume public.
221   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
222   if (!vis)
223     return Visibility::Public;
224 
225   // Otherwise, switch on the string value.
226   return StringSwitch<Visibility>(vis.getValue())
227       .Case("private", Visibility::Private)
228       .Case("nested", Visibility::Nested)
229       .Case("public", Visibility::Public);
230 }
231 /// Sets the visibility of the given symbol operation.
232 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
233   MLIRContext *ctx = symbol->getContext();
234 
235   // If the visibility is public, just drop the attribute as this is the
236   // default.
237   if (vis == Visibility::Public) {
238     symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
239     return;
240   }
241 
242   // Otherwise, update the attribute.
243   assert((vis == Visibility::Private || vis == Visibility::Nested) &&
244          "unknown symbol visibility kind");
245 
246   StringRef visName = vis == Visibility::Private ? "private" : "nested";
247   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName));
248 }
249 
250 /// Returns the nearest symbol table from a given operation `from`. Returns
251 /// nullptr if no valid parent symbol table could be found.
252 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
253   assert(from && "expected valid operation");
254   if (isPotentiallyUnknownSymbolTable(from))
255     return nullptr;
256 
257   while (!from->hasTrait<OpTrait::SymbolTable>()) {
258     from = from->getParentOp();
259 
260     // Check that this is a valid op and isn't an unknown symbol table.
261     if (!from || isPotentiallyUnknownSymbolTable(from))
262       return nullptr;
263   }
264   return from;
265 }
266 
267 /// Walks all symbol table operations nested within, and including, `op`. For
268 /// each symbol table operation, the provided callback is invoked with the op
269 /// and a boolean signifying if the symbols within that symbol table can be
270 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
271 /// all of the symbol uses of symbols within `op` are visible.
272 void SymbolTable::walkSymbolTables(
273     Operation *op, bool allSymUsesVisible,
274     function_ref<void(Operation *, bool)> callback) {
275   bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
276   if (isSymbolTable) {
277     SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
278     allSymUsesVisible |= !symbol || symbol.isPrivate();
279   } else {
280     // Otherwise if 'op' is not a symbol table, any nested symbols are
281     // guaranteed to be hidden.
282     allSymUsesVisible = true;
283   }
284 
285   for (Region &region : op->getRegions())
286     for (Block &block : region)
287       for (Operation &nestedOp : block)
288         walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
289 
290   // If 'op' had the symbol table trait, visit it after any nested symbol
291   // tables.
292   if (isSymbolTable)
293     callback(op, allSymUsesVisible);
294 }
295 
296 /// Returns the operation registered with the given symbol name with the
297 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
298 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
299 /// was found.
300 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
301                                        StringAttr symbol) {
302   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
303   Region &region = symbolTableOp->getRegion(0);
304   if (region.empty())
305     return nullptr;
306 
307   // Look for a symbol with the given name.
308   Identifier symbolNameId = Identifier::get(SymbolTable::getSymbolAttrName(),
309                                             symbolTableOp->getContext());
310   for (auto &op : region.front())
311     if (getNameIfSymbol(&op, symbolNameId) == symbol)
312       return &op;
313   return nullptr;
314 }
315 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
316                                        SymbolRefAttr symbol) {
317   SmallVector<Operation *, 4> resolvedSymbols;
318   if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
319     return nullptr;
320   return resolvedSymbols.back();
321 }
322 
323 /// Internal implementation of `lookupSymbolIn` that allows for specialized
324 /// implementations of the lookup function.
325 static LogicalResult lookupSymbolInImpl(
326     Operation *symbolTableOp, SymbolRefAttr symbol,
327     SmallVectorImpl<Operation *> &symbols,
328     function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) {
329   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
330 
331   // Lookup the root reference for this symbol.
332   symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
333   if (!symbolTableOp)
334     return failure();
335   symbols.push_back(symbolTableOp);
336 
337   // If there are no nested references, just return the root symbol directly.
338   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
339   if (nestedRefs.empty())
340     return success();
341 
342   // Verify that the root is also a symbol table.
343   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
344     return failure();
345 
346   // Otherwise, lookup each of the nested non-leaf references and ensure that
347   // each corresponds to a valid symbol table.
348   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
349     symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr());
350     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
351       return failure();
352     symbols.push_back(symbolTableOp);
353   }
354   symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
355   return success(symbols.back());
356 }
357 
358 LogicalResult
359 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
360                             SmallVectorImpl<Operation *> &symbols) {
361   auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) {
362     return lookupSymbolIn(symbolTableOp, symbol);
363   };
364   return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
365 }
366 
367 /// Returns the operation registered with the given symbol name within the
368 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
369 /// nullptr if no valid symbol was found.
370 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
371                                                 StringAttr symbol) {
372   Operation *symbolTableOp = getNearestSymbolTable(from);
373   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
374 }
375 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
376                                                 SymbolRefAttr symbol) {
377   Operation *symbolTableOp = getNearestSymbolTable(from);
378   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
379 }
380 
381 raw_ostream &mlir::operator<<(raw_ostream &os,
382                               SymbolTable::Visibility visibility) {
383   switch (visibility) {
384   case SymbolTable::Visibility::Public:
385     return os << "public";
386   case SymbolTable::Visibility::Private:
387     return os << "private";
388   case SymbolTable::Visibility::Nested:
389     return os << "nested";
390   }
391   llvm_unreachable("Unexpected visibility");
392 }
393 
394 //===----------------------------------------------------------------------===//
395 // SymbolTable Trait Types
396 //===----------------------------------------------------------------------===//
397 
398 LogicalResult detail::verifySymbolTable(Operation *op) {
399   if (op->getNumRegions() != 1)
400     return op->emitOpError()
401            << "Operations with a 'SymbolTable' must have exactly one region";
402   if (!llvm::hasSingleElement(op->getRegion(0)))
403     return op->emitOpError()
404            << "Operations with a 'SymbolTable' must have exactly one block";
405 
406   // Check that all symbols are uniquely named within child regions.
407   DenseMap<Attribute, Location> nameToOrigLoc;
408   for (auto &block : op->getRegion(0)) {
409     for (auto &op : block) {
410       // Check for a symbol name attribute.
411       auto nameAttr =
412           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
413       if (!nameAttr)
414         continue;
415 
416       // Try to insert this symbol into the table.
417       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
418       if (!it.second)
419         return op.emitError()
420             .append("redefinition of symbol named '", nameAttr.getValue(), "'")
421             .attachNote(it.first->second)
422             .append("see existing symbol definition here");
423     }
424   }
425 
426   // Verify any nested symbol user operations.
427   SymbolTableCollection symbolTable;
428   auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> {
429     if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
430       return WalkResult(user.verifySymbolUses(symbolTable));
431     return WalkResult::advance();
432   };
433 
434   Optional<WalkResult> result =
435       walkSymbolTable(op->getRegions(), verifySymbolUserFn);
436   return success(result && !result->wasInterrupted());
437 }
438 
439 LogicalResult detail::verifySymbol(Operation *op) {
440   // Verify the name attribute.
441   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
442     return op->emitOpError() << "requires string attribute '"
443                              << mlir::SymbolTable::getSymbolAttrName() << "'";
444 
445   // Verify the visibility attribute.
446   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
447     StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
448     if (!visStrAttr)
449       return op->emitOpError() << "requires visibility attribute '"
450                                << mlir::SymbolTable::getVisibilityAttrName()
451                                << "' to be a string attribute, but got " << vis;
452 
453     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
454                             visStrAttr.getValue()))
455       return op->emitOpError()
456              << "visibility expected to be one of [\"public\", \"private\", "
457                 "\"nested\"], but got "
458              << visStrAttr;
459   }
460   return success();
461 }
462 
463 //===----------------------------------------------------------------------===//
464 // Symbol Use Lists
465 //===----------------------------------------------------------------------===//
466 
467 /// Walk all of the symbol references within the given operation, invoking the
468 /// provided callback for each found use. The callbacks takes as arguments: the
469 /// use of the symbol, and the nested access chain to the attribute within the
470 /// operation dictionary. An access chain is a set of indices into nested
471 /// container attributes. For example, a symbol use in an attribute dictionary
472 /// that looks like the following:
473 ///
474 ///    {use = [{other_attr, @symbol}]}
475 ///
476 /// May have the following access chain:
477 ///
478 ///     [0, 0, 1]
479 ///
480 static WalkResult walkSymbolRefs(
481     Operation *op,
482     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
483   // Check to see if the operation has any attributes.
484   DictionaryAttr attrDict = op->getAttrDictionary();
485   if (attrDict.empty())
486     return WalkResult::advance();
487 
488   // A worklist of a container attribute and the current index into the held
489   // attribute list.
490   struct WorklistItem {
491     SubElementAttrInterface container;
492     SmallVector<Attribute> immediateSubElements;
493 
494     explicit WorklistItem(SubElementAttrInterface container) {
495       SmallVector<Attribute> subElements;
496       container.walkImmediateSubElements(
497           [&](Attribute attr) { subElements.push_back(attr); }, [](Type) {});
498       immediateSubElements = std::move(subElements);
499     }
500   };
501 
502   SmallVector<WorklistItem, 1> attrWorklist(1, WorklistItem(attrDict));
503   SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
504 
505   // Process the symbol references within the given nested attribute range.
506   auto processAttrs = [&](int &index,
507                           WorklistItem &worklistItem) -> WalkResult {
508     for (Attribute attr :
509          llvm::drop_begin(worklistItem.immediateSubElements, index)) {
510       /// Check for a nested container attribute, these will also need to be
511       /// walked.
512       if (auto interface = attr.dyn_cast<SubElementAttrInterface>()) {
513         attrWorklist.emplace_back(interface);
514         curAccessChain.push_back(-1);
515         return WalkResult::advance();
516       }
517 
518       // Invoke the provided callback if we find a symbol use and check for a
519       // requested interrupt.
520       if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
521         if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
522           return WalkResult::interrupt();
523 
524       // Make sure to keep the index counter in sync.
525       ++index;
526     }
527 
528     // Pop this container attribute from the worklist.
529     attrWorklist.pop_back();
530     curAccessChain.pop_back();
531     return WalkResult::advance();
532   };
533 
534   WalkResult result = WalkResult::advance();
535   do {
536     WorklistItem &item = attrWorklist.back();
537     int &index = curAccessChain.back();
538     ++index;
539 
540     // Process the given attribute, which is guaranteed to be a container.
541     result = processAttrs(index, item);
542   } while (!attrWorklist.empty() && !result.wasInterrupted());
543   return result;
544 }
545 
546 /// Walk all of the uses, for any symbol, that are nested within the given
547 /// regions, invoking the provided callback for each. This does not traverse
548 /// into any nested symbol tables.
549 static Optional<WalkResult> walkSymbolUses(
550     MutableArrayRef<Region> regions,
551     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
552   return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> {
553     // Check that this isn't a potentially unknown symbol table.
554     if (isPotentiallyUnknownSymbolTable(op))
555       return llvm::None;
556 
557     return walkSymbolRefs(op, callback);
558   });
559 }
560 /// Walk all of the uses, for any symbol, that are nested within the given
561 /// operation 'from', invoking the provided callback for each. This does not
562 /// traverse into any nested symbol tables.
563 static Optional<WalkResult> walkSymbolUses(
564     Operation *from,
565     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
566   // If this operation has regions, and it, as well as its dialect, isn't
567   // registered then conservatively fail. The operation may define a
568   // symbol table, so we can't opaquely know if we should traverse to find
569   // nested uses.
570   if (isPotentiallyUnknownSymbolTable(from))
571     return llvm::None;
572 
573   // Walk the uses on this operation.
574   if (walkSymbolRefs(from, callback).wasInterrupted())
575     return WalkResult::interrupt();
576 
577   // Only recurse if this operation is not a symbol table. A symbol table
578   // defines a new scope, so we can't walk the attributes from within the symbol
579   // table op.
580   if (!from->hasTrait<OpTrait::SymbolTable>())
581     return walkSymbolUses(from->getRegions(), callback);
582   return WalkResult::advance();
583 }
584 
585 namespace {
586 /// This class represents a single symbol scope. A symbol scope represents the
587 /// set of operations nested within a symbol table that may reference symbols
588 /// within that table. A symbol scope does not contain the symbol table
589 /// operation itself, just its contained operations. A scope ends at leaf
590 /// operations or another symbol table operation.
591 struct SymbolScope {
592   /// Walk the symbol uses within this scope, invoking the given callback.
593   /// This variant is used when the callback type matches that expected by
594   /// 'walkSymbolUses'.
595   template <typename CallbackT,
596             typename std::enable_if_t<!std::is_same<
597                 typename llvm::function_traits<CallbackT>::result_t,
598                 void>::value> * = nullptr>
599   Optional<WalkResult> walk(CallbackT cback) {
600     if (Region *region = limit.dyn_cast<Region *>())
601       return walkSymbolUses(*region, cback);
602     return walkSymbolUses(limit.get<Operation *>(), cback);
603   }
604   /// This variant is used when the callback type matches a stripped down type:
605   /// void(SymbolTable::SymbolUse use)
606   template <typename CallbackT,
607             typename std::enable_if_t<std::is_same<
608                 typename llvm::function_traits<CallbackT>::result_t,
609                 void>::value> * = nullptr>
610   Optional<WalkResult> walk(CallbackT cback) {
611     return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
612       return cback(use), WalkResult::advance();
613     });
614   }
615 
616   /// The representation of the symbol within this scope.
617   SymbolRefAttr symbol;
618 
619   /// The IR unit representing this scope.
620   llvm::PointerUnion<Operation *, Region *> limit;
621 };
622 } // end anonymous namespace
623 
624 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
625 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
626                                                        Operation *limit) {
627   StringAttr symName = SymbolTable::getSymbolName(symbol);
628   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
629 
630   // Compute the ancestors of 'limit'.
631   SetVector<Operation *, SmallVector<Operation *, 4>,
632             SmallPtrSet<Operation *, 4>>
633       limitAncestors;
634   Operation *limitAncestor = limit;
635   do {
636     // Check to see if 'symbol' is an ancestor of 'limit'.
637     if (limitAncestor == symbol) {
638       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
639       // doesn't support parent references.
640       if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
641           symbol->getParentOp())
642         return {{SymbolRefAttr::get(symName), limit}};
643       return {};
644     }
645 
646     limitAncestors.insert(limitAncestor);
647   } while ((limitAncestor = limitAncestor->getParentOp()));
648 
649   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
650   Operation *commonAncestor = symbol->getParentOp();
651   do {
652     if (limitAncestors.count(commonAncestor))
653       break;
654   } while ((commonAncestor = commonAncestor->getParentOp()));
655   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
656 
657   // Compute the set of valid nested references for 'symbol' as far up to the
658   // common ancestor as possible.
659   SmallVector<SymbolRefAttr, 2> references;
660   bool collectedAllReferences = succeeded(
661       collectValidReferencesFor(symbol, symName, commonAncestor, references));
662 
663   // Handle the case where the common ancestor is 'limit'.
664   if (commonAncestor == limit) {
665     SmallVector<SymbolScope, 2> scopes;
666 
667     // Walk each of the ancestors of 'symbol', calling the compute function for
668     // each one.
669     Operation *limitIt = symbol->getParentOp();
670     for (size_t i = 0, e = references.size(); i != e;
671          ++i, limitIt = limitIt->getParentOp()) {
672       assert(limitIt->hasTrait<OpTrait::SymbolTable>());
673       scopes.push_back({references[i], &limitIt->getRegion(0)});
674     }
675     return scopes;
676   }
677 
678   // Otherwise, we just need the symbol reference for 'symbol' that will be
679   // used within 'limit'. This is the last reference in the list we computed
680   // above if we were able to collect all references.
681   if (!collectedAllReferences)
682     return {};
683   return {{references.back(), limit}};
684 }
685 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
686                                                        Region *limit) {
687   auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
688 
689   // If we collected some scopes to walk, make sure to constrain the one for
690   // limit to the specific region requested.
691   if (!scopes.empty())
692     scopes.back().limit = limit;
693   return scopes;
694 }
695 template <typename IRUnit>
696 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol,
697                                                        IRUnit *limit) {
698   return {{SymbolRefAttr::get(symbol), limit}};
699 }
700 
701 /// Returns true if the given reference 'SubRef' is a sub reference of the
702 /// reference 'ref', i.e. 'ref' is a further qualified reference.
703 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
704   if (ref == subRef)
705     return true;
706 
707   // If the references are not pointer equal, check to see if `subRef` is a
708   // prefix of `ref`.
709   if (ref.isa<FlatSymbolRefAttr>() ||
710       ref.getRootReference() != subRef.getRootReference())
711     return false;
712 
713   auto refLeafs = ref.getNestedReferences();
714   auto subRefLeafs = subRef.getNestedReferences();
715   return subRefLeafs.size() < refLeafs.size() &&
716          subRefLeafs == refLeafs.take_front(subRefLeafs.size());
717 }
718 
719 //===----------------------------------------------------------------------===//
720 // SymbolTable::getSymbolUses
721 
722 /// The implementation of SymbolTable::getSymbolUses below.
723 template <typename FromT>
724 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
725   std::vector<SymbolTable::SymbolUse> uses;
726   auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
727     uses.push_back(symbolUse);
728     return WalkResult::advance();
729   };
730   auto result = walkSymbolUses(from, walkFn);
731   return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
732 }
733 
734 /// Get an iterator range for all of the uses, for any symbol, that are nested
735 /// within the given operation 'from'. This does not traverse into any nested
736 /// symbol tables, and will also only return uses on 'from' if it does not
737 /// also define a symbol table. This is because we treat the region as the
738 /// boundary of the symbol table, and not the op itself. This function returns
739 /// None if there are any unknown operations that may potentially be symbol
740 /// tables.
741 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
742   return getSymbolUsesImpl(from);
743 }
744 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
745   return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
746 }
747 
748 //===----------------------------------------------------------------------===//
749 // SymbolTable::getSymbolUses
750 
751 /// The implementation of SymbolTable::getSymbolUses below.
752 template <typename SymbolT, typename IRUnitT>
753 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
754                                                          IRUnitT *limit) {
755   std::vector<SymbolTable::SymbolUse> uses;
756   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
757     if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
758           if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
759             uses.push_back(symbolUse);
760         }))
761       return llvm::None;
762   }
763   return SymbolTable::UseRange(std::move(uses));
764 }
765 
766 /// Get all of the uses of the given symbol that are nested within the given
767 /// operation 'from', invoking the provided callback for each. This does not
768 /// traverse into any nested symbol tables. This function returns None if there
769 /// are any unknown operations that may potentially be symbol tables.
770 auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from)
771     -> Optional<UseRange> {
772   return getSymbolUsesImpl(symbol, from);
773 }
774 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
775     -> Optional<UseRange> {
776   return getSymbolUsesImpl(symbol, from);
777 }
778 auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from)
779     -> Optional<UseRange> {
780   return getSymbolUsesImpl(symbol, from);
781 }
782 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
783     -> Optional<UseRange> {
784   return getSymbolUsesImpl(symbol, from);
785 }
786 
787 //===----------------------------------------------------------------------===//
788 // SymbolTable::symbolKnownUseEmpty
789 
790 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
791 template <typename SymbolT, typename IRUnitT>
792 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
793   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
794     // Walk all of the symbol uses looking for a reference to 'symbol'.
795     if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
796           return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
797                      ? WalkResult::interrupt()
798                      : WalkResult::advance();
799         }) != WalkResult::advance())
800       return false;
801   }
802   return true;
803 }
804 
805 /// Return if the given symbol is known to have no uses that are nested within
806 /// the given operation 'from'. This does not traverse into any nested symbol
807 /// tables. This function will also return false if there are any unknown
808 /// operations that may potentially be symbol tables.
809 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) {
810   return symbolKnownUseEmptyImpl(symbol, from);
811 }
812 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
813   return symbolKnownUseEmptyImpl(symbol, from);
814 }
815 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) {
816   return symbolKnownUseEmptyImpl(symbol, from);
817 }
818 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
819   return symbolKnownUseEmptyImpl(symbol, from);
820 }
821 
822 //===----------------------------------------------------------------------===//
823 // SymbolTable::replaceAllSymbolUses
824 
825 /// Rebuild the given attribute container after replacing all references to a
826 /// symbol with the updated attribute in 'accesses'.
827 static SubElementAttrInterface rebuildAttrAfterRAUW(
828     SubElementAttrInterface container,
829     ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
830     unsigned depth) {
831   // Given a range of Attributes, update the ones referred to by the given
832   // access chains to point to the new symbol attribute.
833 
834   SmallVector<std::pair<size_t, Attribute>> replacements;
835 
836   SmallVector<Attribute> subElements;
837   container.walkImmediateSubElements(
838       [&](Attribute attribute) { subElements.push_back(attribute); },
839       [](Type) {});
840   for (unsigned i = 0, e = accesses.size(); i != e;) {
841     ArrayRef<int> access = accesses[i].first;
842 
843     // Check to see if this is a leaf access, i.e. a SymbolRef.
844     if (access.size() == depth + 1) {
845       replacements.emplace_back(access.back(), accesses[i].second);
846       ++i;
847       continue;
848     }
849 
850     // Otherwise, this is a container. Collect all of the accesses for this
851     // index and recurse. The recursion here is bounded by the size of the
852     // largest access array.
853     auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
854       ArrayRef<int> nextAccess = it.first;
855       return nextAccess.size() > depth + 1 &&
856              nextAccess[depth] == access[depth];
857     });
858     auto result = rebuildAttrAfterRAUW(subElements[access[depth]],
859                                        nestedAccesses, depth + 1);
860     replacements.emplace_back(access[depth], result);
861 
862     // Skip over all of the accesses that refer to the nested container.
863     i += nestedAccesses.size();
864   }
865 
866   return container.replaceImmediateSubAttribute(replacements);
867 }
868 
869 /// Generates a new symbol reference attribute with a new leaf reference.
870 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
871                                         FlatSymbolRefAttr newLeafAttr) {
872   if (oldAttr.isa<FlatSymbolRefAttr>())
873     return newLeafAttr;
874   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
875   nestedRefs.back() = newLeafAttr;
876   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs);
877 }
878 
879 /// The implementation of SymbolTable::replaceAllSymbolUses below.
880 template <typename SymbolT, typename IRUnitT>
881 static LogicalResult
882 replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) {
883   // A collection of operations along with their new attribute dictionary.
884   std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
885 
886   // The current operation being processed.
887   Operation *curOp = nullptr;
888 
889   // The set of access chains into the attribute dictionary of the current
890   // operation, as well as the replacement attribute to use.
891   SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
892 
893   // Generate a new attribute dictionary for the current operation by replacing
894   // references to the old symbol.
895   auto generateNewAttrDict = [&] {
896     auto oldDict = curOp->getAttrDictionary();
897     auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
898     return newDict.cast<DictionaryAttr>();
899   };
900 
901   // Generate a new attribute to replace the given attribute.
902   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol);
903   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
904     SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
905     auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
906                       ArrayRef<int> accessChain) {
907       SymbolRefAttr useRef = symbolUse.getSymbolRef();
908       if (!isReferencePrefixOf(scope.symbol, useRef))
909         return WalkResult::advance();
910 
911       // If we have a valid match, check to see if this is a proper
912       // subreference. If it is, then we will need to generate a different new
913       // attribute specifically for this use.
914       SymbolRefAttr replacementRef = newAttr;
915       if (useRef != scope.symbol) {
916         if (scope.symbol.isa<FlatSymbolRefAttr>()) {
917           replacementRef =
918               SymbolRefAttr::get(newSymbol, useRef.getNestedReferences());
919         } else {
920           auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
921           nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
922               newLeafAttr;
923           replacementRef =
924               SymbolRefAttr::get(useRef.getRootReference(), nestedRefs);
925         }
926       }
927 
928       // If there was a previous operation, generate a new attribute dict
929       // for it. This means that we've finished processing the current
930       // operation, so generate a new dictionary for it.
931       if (curOp && symbolUse.getUser() != curOp) {
932         updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
933         accessChains.clear();
934       }
935 
936       // Record this access.
937       curOp = symbolUse.getUser();
938       accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
939       return WalkResult::advance();
940     };
941     if (!scope.walk(walkFn))
942       return failure();
943 
944     // Check to see if we have a dangling op that needs to be processed.
945     if (curOp) {
946       updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
947       curOp = nullptr;
948     }
949   }
950 
951   // Update the attribute dictionaries as necessary.
952   for (auto &it : updatedAttrDicts)
953     it.first->setAttrs(it.second);
954   return success();
955 }
956 
957 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
958 /// provided symbol 'newSymbol' that are nested within the given operation
959 /// 'from'. This does not traverse into any nested symbol tables. If there are
960 /// any unknown operations that may potentially be symbol tables, no uses are
961 /// replaced and failure is returned.
962 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
963                                                 StringAttr newSymbol,
964                                                 Operation *from) {
965   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
966 }
967 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
968                                                 StringAttr newSymbol,
969                                                 Operation *from) {
970   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
971 }
972 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
973                                                 StringAttr newSymbol,
974                                                 Region *from) {
975   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
976 }
977 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
978                                                 StringAttr newSymbol,
979                                                 Region *from) {
980   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
981 }
982 
983 //===----------------------------------------------------------------------===//
984 // SymbolTableCollection
985 //===----------------------------------------------------------------------===//
986 
987 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
988                                                  StringAttr symbol) {
989   return getSymbolTable(symbolTableOp).lookup(symbol);
990 }
991 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
992                                                  SymbolRefAttr name) {
993   SmallVector<Operation *, 4> symbols;
994   if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
995     return nullptr;
996   return symbols.back();
997 }
998 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
999 /// a given SymbolRefAttr. Returns failure if any of the nested references could
1000 /// not be resolved.
1001 LogicalResult
1002 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
1003                                       SymbolRefAttr name,
1004                                       SmallVectorImpl<Operation *> &symbols) {
1005   auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) {
1006     return lookupSymbolIn(symbolTableOp, symbol);
1007   };
1008   return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
1009 }
1010 
1011 /// Returns the operation registered with the given symbol name within the
1012 /// closest parent operation of, or including, 'from' with the
1013 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
1014 /// found.
1015 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
1016                                                           StringAttr symbol) {
1017   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
1018   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
1019 }
1020 Operation *
1021 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
1022                                                SymbolRefAttr symbol) {
1023   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
1024   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
1025 }
1026 
1027 /// Lookup, or create, a symbol table for an operation.
1028 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
1029   auto it = symbolTables.try_emplace(op, nullptr);
1030   if (it.second)
1031     it.first->second = std::make_unique<SymbolTable>(op);
1032   return *it.first->second;
1033 }
1034 
1035 //===----------------------------------------------------------------------===//
1036 // SymbolUserMap
1037 //===----------------------------------------------------------------------===//
1038 
1039 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable,
1040                              Operation *symbolTableOp)
1041     : symbolTable(symbolTable) {
1042   // Walk each of the symbol tables looking for discardable callgraph nodes.
1043   SmallVector<Operation *> symbols;
1044   auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
1045     for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) {
1046       auto symbolUses = SymbolTable::getSymbolUses(&nestedOp);
1047       assert(symbolUses && "expected uses to be valid");
1048 
1049       for (const SymbolTable::SymbolUse &use : *symbolUses) {
1050         symbols.clear();
1051         (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(),
1052                                          symbols);
1053         for (Operation *symbolOp : symbols)
1054           symbolToUsers[symbolOp].insert(use.getUser());
1055       }
1056     }
1057   };
1058   // We just set `allSymUsesVisible` to false here because it isn't necessary
1059   // for building the user map.
1060   SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false,
1061                                 walkFn);
1062 }
1063 
1064 void SymbolUserMap::replaceAllUsesWith(Operation *symbol,
1065                                        StringAttr newSymbolName) {
1066   auto it = symbolToUsers.find(symbol);
1067   if (it == symbolToUsers.end())
1068     return;
1069   SetVector<Operation *> &users = it->second;
1070 
1071   // Replace the uses within the users of `symbol`.
1072   for (Operation *user : users)
1073     (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user);
1074 
1075   // Move the current users of `symbol` to the new symbol if it is in the
1076   // symbol table.
1077   Operation *newSymbol =
1078       symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName);
1079   if (newSymbol != symbol) {
1080     // Transfer over the users to the new symbol.
1081     auto newIt = symbolToUsers.find(newSymbol);
1082     if (newIt == symbolToUsers.end())
1083       symbolToUsers.try_emplace(newSymbol, std::move(users));
1084     else
1085       newIt->second.set_union(users);
1086     symbolToUsers.erase(symbol);
1087   }
1088 }
1089 
1090 //===----------------------------------------------------------------------===//
1091 // Visibility parsing implementation.
1092 //===----------------------------------------------------------------------===//
1093 
1094 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser,
1095                                                  NamedAttrList &attrs) {
1096   StringRef visibility;
1097   if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"}))
1098     return failure();
1099 
1100   StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility);
1101   attrs.push_back(parser.getBuilder().getNamedAttr(
1102       SymbolTable::getVisibilityAttrName(), visibilityAttr));
1103   return success();
1104 }
1105 
1106 //===----------------------------------------------------------------------===//
1107 // Symbol Interfaces
1108 //===----------------------------------------------------------------------===//
1109 
1110 /// Include the generated symbol interfaces.
1111 #include "mlir/IR/SymbolInterfaces.cpp.inc"
1112