xref: /llvm-project/mlir/lib/IR/SymbolTable.cpp (revision fcb1591b46f12b8908a8cdb252611708820102f8)
1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/SymbolTable.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/OpImplementation.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/StringSwitch.h"
16 #include <optional>
17 
18 using namespace mlir;
19 
20 /// Return true if the given operation is unknown and may potentially define a
21 /// symbol table.
22 static bool isPotentiallyUnknownSymbolTable(Operation *op) {
23   return op->getNumRegions() == 1 && !op->getDialect();
24 }
25 
26 /// Returns the string name of the given symbol, or null if this is not a
27 /// symbol.
28 static StringAttr getNameIfSymbol(Operation *op) {
29   return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
30 }
31 static StringAttr getNameIfSymbol(Operation *op, StringAttr symbolAttrNameId) {
32   return op->getAttrOfType<StringAttr>(symbolAttrNameId);
33 }
34 
35 /// Computes the nested symbol reference attribute for the symbol 'symbolName'
36 /// that are usable within the symbol table operations from 'symbol' as far up
37 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
38 /// Returns success if all references up to 'within' could be computed.
39 static LogicalResult
40 collectValidReferencesFor(Operation *symbol, StringAttr symbolName,
41                           Operation *within,
42                           SmallVectorImpl<SymbolRefAttr> &results) {
43   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
44   MLIRContext *ctx = symbol->getContext();
45 
46   auto leafRef = FlatSymbolRefAttr::get(symbolName);
47   results.push_back(leafRef);
48 
49   // Early exit for when 'within' is the parent of 'symbol'.
50   Operation *symbolTableOp = symbol->getParentOp();
51   if (within == symbolTableOp)
52     return success();
53 
54   // Collect references until 'symbolTableOp' reaches 'within'.
55   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
56   StringAttr symbolNameId =
57       StringAttr::get(ctx, SymbolTable::getSymbolAttrName());
58   do {
59     // Each parent of 'symbol' should define a symbol table.
60     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
61       return failure();
62     // Each parent of 'symbol' should also be a symbol.
63     StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId);
64     if (!symbolTableName)
65       return failure();
66     results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs));
67 
68     symbolTableOp = symbolTableOp->getParentOp();
69     if (symbolTableOp == within)
70       break;
71     nestedRefs.insert(nestedRefs.begin(),
72                       FlatSymbolRefAttr::get(symbolTableName));
73   } while (true);
74   return success();
75 }
76 
77 /// Walk all of the operations within the given set of regions, without
78 /// traversing into any nested symbol tables. Stops walking if the result of the
79 /// callback is anything other than `WalkResult::advance`.
80 static std::optional<WalkResult>
81 walkSymbolTable(MutableArrayRef<Region> regions,
82                 function_ref<std::optional<WalkResult>(Operation *)> callback) {
83   SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
84   while (!worklist.empty()) {
85     for (Operation &op : worklist.pop_back_val()->getOps()) {
86       std::optional<WalkResult> result = callback(&op);
87       if (result != WalkResult::advance())
88         return result;
89 
90       // If this op defines a new symbol table scope, we can't traverse. Any
91       // symbol references nested within 'op' are different semantically.
92       if (!op.hasTrait<OpTrait::SymbolTable>()) {
93         for (Region &region : op.getRegions())
94           worklist.push_back(&region);
95       }
96     }
97   }
98   return WalkResult::advance();
99 }
100 
101 /// Walk all of the operations nested under, and including, the given operation,
102 /// without traversing into any nested symbol tables. Stops walking if the
103 /// result of the callback is anything other than `WalkResult::advance`.
104 static std::optional<WalkResult>
105 walkSymbolTable(Operation *op,
106                 function_ref<std::optional<WalkResult>(Operation *)> callback) {
107   std::optional<WalkResult> result = callback(op);
108   if (result != WalkResult::advance() || op->hasTrait<OpTrait::SymbolTable>())
109     return result;
110   return walkSymbolTable(op->getRegions(), callback);
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // SymbolTable
115 //===----------------------------------------------------------------------===//
116 
117 /// Build a symbol table with the symbols within the given operation.
118 SymbolTable::SymbolTable(Operation *symbolTableOp)
119     : symbolTableOp(symbolTableOp) {
120   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
121          "expected operation to have SymbolTable trait");
122   assert(symbolTableOp->getNumRegions() == 1 &&
123          "expected operation to have a single region");
124   assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
125          "expected operation to have a single block");
126 
127   StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(),
128                                             SymbolTable::getSymbolAttrName());
129   for (auto &op : symbolTableOp->getRegion(0).front()) {
130     StringAttr name = getNameIfSymbol(&op, symbolNameId);
131     if (!name)
132       continue;
133 
134     auto inserted = symbolTable.insert({name, &op});
135     (void)inserted;
136     assert(inserted.second &&
137            "expected region to contain uniquely named symbol operations");
138   }
139 }
140 
141 /// Look up a symbol with the specified name, returning null if no such name
142 /// exists. Names never include the @ on them.
143 Operation *SymbolTable::lookup(StringRef name) const {
144   return lookup(StringAttr::get(symbolTableOp->getContext(), name));
145 }
146 Operation *SymbolTable::lookup(StringAttr name) const {
147   return symbolTable.lookup(name);
148 }
149 
150 void SymbolTable::remove(Operation *op) {
151   StringAttr name = getNameIfSymbol(op);
152   assert(name && "expected valid 'name' attribute");
153   assert(op->getParentOp() == symbolTableOp &&
154          "expected this operation to be inside of the operation with this "
155          "SymbolTable");
156 
157   auto it = symbolTable.find(name);
158   if (it != symbolTable.end() && it->second == op)
159     symbolTable.erase(it);
160 }
161 
162 void SymbolTable::erase(Operation *symbol) {
163   remove(symbol);
164   symbol->erase();
165 }
166 
167 // TODO: Consider if this should be renamed to something like insertOrUpdate
168 /// Insert a new symbol into the table and associated operation if not already
169 /// there and rename it as necessary to avoid collisions. Return the name of
170 /// the symbol after insertion as attribute.
171 StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
172   // The symbol cannot be the child of another op and must be the child of the
173   // symbolTableOp after this.
174   //
175   // TODO: consider if SymbolTable's constructor should behave the same.
176   if (!symbol->getParentOp()) {
177     auto &body = symbolTableOp->getRegion(0).front();
178     if (insertPt == Block::iterator()) {
179       insertPt = Block::iterator(body.end());
180     } else {
181       assert((insertPt == body.end() ||
182               insertPt->getParentOp() == symbolTableOp) &&
183              "expected insertPt to be in the associated module operation");
184     }
185     // Insert before the terminator, if any.
186     if (insertPt == Block::iterator(body.end()) && !body.empty() &&
187         std::prev(body.end())->hasTrait<OpTrait::IsTerminator>())
188       insertPt = std::prev(body.end());
189 
190     body.getOperations().insert(insertPt, symbol);
191   }
192   assert(symbol->getParentOp() == symbolTableOp &&
193          "symbol is already inserted in another op");
194 
195   // Add this symbol to the symbol table, uniquing the name if a conflict is
196   // detected.
197   StringAttr name = getSymbolName(symbol);
198   if (symbolTable.insert({name, symbol}).second)
199     return name;
200   // If the symbol was already in the table, also return.
201   if (symbolTable.lookup(name) == symbol)
202     return name;
203 
204   MLIRContext *context = symbol->getContext();
205   SmallString<128> nameBuffer = generateSymbolName<128>(
206       name.getValue(),
207       [&](StringRef candidate) {
208         return !symbolTable
209                     .insert({StringAttr::get(context, candidate), symbol})
210                     .second;
211       },
212       uniquingCounter);
213   setSymbolName(symbol, nameBuffer);
214   return getSymbolName(symbol);
215 }
216 
217 LogicalResult SymbolTable::rename(StringAttr from, StringAttr to) {
218   Operation *op = lookup(from);
219   return rename(op, to);
220 }
221 
222 LogicalResult SymbolTable::rename(Operation *op, StringAttr to) {
223   StringAttr from = getNameIfSymbol(op);
224   (void)from;
225 
226   assert(from && "expected valid 'name' attribute");
227   assert(op->getParentOp() == symbolTableOp &&
228          "expected this operation to be inside of the operation with this "
229          "SymbolTable");
230   assert(lookup(from) == op && "current name does not resolve to op");
231   assert(lookup(to) == nullptr && "new name already exists");
232 
233   if (failed(SymbolTable::replaceAllSymbolUses(op, to, getOp())))
234     return failure();
235 
236   // Remove op with old name, change name, add with new name. The order is
237   // important here due to how `remove` and `insert` rely on the op name.
238   remove(op);
239   setSymbolName(op, to);
240   insert(op);
241 
242   assert(lookup(to) == op && "new name does not resolve to renamed op");
243   assert(lookup(from) == nullptr && "old name still exists");
244 
245   return success();
246 }
247 
248 LogicalResult SymbolTable::rename(StringAttr from, StringRef to) {
249   auto toAttr = StringAttr::get(getOp()->getContext(), to);
250   return rename(from, toAttr);
251 }
252 
253 LogicalResult SymbolTable::rename(Operation *op, StringRef to) {
254   auto toAttr = StringAttr::get(getOp()->getContext(), to);
255   return rename(op, toAttr);
256 }
257 
258 FailureOr<StringAttr>
259 SymbolTable::renameToUnique(StringAttr oldName,
260                             ArrayRef<SymbolTable *> others) {
261 
262   // Determine new name that is unique in all symbol tables.
263   StringAttr newName;
264   {
265     MLIRContext *context = oldName.getContext();
266     SmallString<64> prefix = oldName.getValue();
267     int uniqueId = 0;
268     prefix.push_back('_');
269     while (true) {
270       newName = StringAttr::get(context, prefix + Twine(uniqueId++));
271       auto lookupNewName = [&](SymbolTable *st) { return st->lookup(newName); };
272       if (!lookupNewName(this) && llvm::none_of(others, lookupNewName)) {
273         break;
274       }
275     }
276   }
277 
278   // Apply renaming.
279   if (failed(rename(oldName, newName)))
280     return failure();
281   return newName;
282 }
283 
284 FailureOr<StringAttr>
285 SymbolTable::renameToUnique(Operation *op, ArrayRef<SymbolTable *> others) {
286   StringAttr from = getNameIfSymbol(op);
287   assert(from && "expected valid 'name' attribute");
288   return renameToUnique(from, others);
289 }
290 
291 /// Returns the name of the given symbol operation.
292 StringAttr SymbolTable::getSymbolName(Operation *symbol) {
293   StringAttr name = getNameIfSymbol(symbol);
294   assert(name && "expected valid symbol name");
295   return name;
296 }
297 
298 /// Sets the name of the given symbol operation.
299 void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) {
300   symbol->setAttr(getSymbolAttrName(), name);
301 }
302 
303 /// Returns the visibility of the given symbol operation.
304 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
305   // If the attribute doesn't exist, assume public.
306   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
307   if (!vis)
308     return Visibility::Public;
309 
310   // Otherwise, switch on the string value.
311   return StringSwitch<Visibility>(vis.getValue())
312       .Case("private", Visibility::Private)
313       .Case("nested", Visibility::Nested)
314       .Case("public", Visibility::Public);
315 }
316 /// Sets the visibility of the given symbol operation.
317 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
318   MLIRContext *ctx = symbol->getContext();
319 
320   // If the visibility is public, just drop the attribute as this is the
321   // default.
322   if (vis == Visibility::Public) {
323     symbol->removeAttr(StringAttr::get(ctx, getVisibilityAttrName()));
324     return;
325   }
326 
327   // Otherwise, update the attribute.
328   assert((vis == Visibility::Private || vis == Visibility::Nested) &&
329          "unknown symbol visibility kind");
330 
331   StringRef visName = vis == Visibility::Private ? "private" : "nested";
332   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName));
333 }
334 
335 /// Returns the nearest symbol table from a given operation `from`. Returns
336 /// nullptr if no valid parent symbol table could be found.
337 Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
338   assert(from && "expected valid operation");
339   if (isPotentiallyUnknownSymbolTable(from))
340     return nullptr;
341 
342   while (!from->hasTrait<OpTrait::SymbolTable>()) {
343     from = from->getParentOp();
344 
345     // Check that this is a valid op and isn't an unknown symbol table.
346     if (!from || isPotentiallyUnknownSymbolTable(from))
347       return nullptr;
348   }
349   return from;
350 }
351 
352 /// Walks all symbol table operations nested within, and including, `op`. For
353 /// each symbol table operation, the provided callback is invoked with the op
354 /// and a boolean signifying if the symbols within that symbol table can be
355 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether
356 /// all of the symbol uses of symbols within `op` are visible.
357 void SymbolTable::walkSymbolTables(
358     Operation *op, bool allSymUsesVisible,
359     function_ref<void(Operation *, bool)> callback) {
360   bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
361   if (isSymbolTable) {
362     SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
363     allSymUsesVisible |= !symbol || symbol.isPrivate();
364   } else {
365     // Otherwise if 'op' is not a symbol table, any nested symbols are
366     // guaranteed to be hidden.
367     allSymUsesVisible = true;
368   }
369 
370   for (Region &region : op->getRegions())
371     for (Block &block : region)
372       for (Operation &nestedOp : block)
373         walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
374 
375   // If 'op' had the symbol table trait, visit it after any nested symbol
376   // tables.
377   if (isSymbolTable)
378     callback(op, allSymUsesVisible);
379 }
380 
381 /// Returns the operation registered with the given symbol name with the
382 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
383 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
384 /// was found.
385 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
386                                        StringAttr symbol) {
387   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
388   Region &region = symbolTableOp->getRegion(0);
389   if (region.empty())
390     return nullptr;
391 
392   // Look for a symbol with the given name.
393   StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(),
394                                             SymbolTable::getSymbolAttrName());
395   for (auto &op : region.front())
396     if (getNameIfSymbol(&op, symbolNameId) == symbol)
397       return &op;
398   return nullptr;
399 }
400 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
401                                        SymbolRefAttr symbol) {
402   SmallVector<Operation *, 4> resolvedSymbols;
403   if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
404     return nullptr;
405   return resolvedSymbols.back();
406 }
407 
408 /// Internal implementation of `lookupSymbolIn` that allows for specialized
409 /// implementations of the lookup function.
410 static LogicalResult lookupSymbolInImpl(
411     Operation *symbolTableOp, SymbolRefAttr symbol,
412     SmallVectorImpl<Operation *> &symbols,
413     function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) {
414   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
415 
416   // Lookup the root reference for this symbol.
417   symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference());
418   if (!symbolTableOp)
419     return failure();
420   symbols.push_back(symbolTableOp);
421 
422   // If there are no nested references, just return the root symbol directly.
423   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
424   if (nestedRefs.empty())
425     return success();
426 
427   // Verify that the root is also a symbol table.
428   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
429     return failure();
430 
431   // Otherwise, lookup each of the nested non-leaf references and ensure that
432   // each corresponds to a valid symbol table.
433   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
434     symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr());
435     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
436       return failure();
437     symbols.push_back(symbolTableOp);
438   }
439   symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference()));
440   return success(symbols.back());
441 }
442 
443 LogicalResult
444 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
445                             SmallVectorImpl<Operation *> &symbols) {
446   auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) {
447     return lookupSymbolIn(symbolTableOp, symbol);
448   };
449   return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn);
450 }
451 
452 /// Returns the operation registered with the given symbol name within the
453 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
454 /// nullptr if no valid symbol was found.
455 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
456                                                 StringAttr symbol) {
457   Operation *symbolTableOp = getNearestSymbolTable(from);
458   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
459 }
460 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
461                                                 SymbolRefAttr symbol) {
462   Operation *symbolTableOp = getNearestSymbolTable(from);
463   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
464 }
465 
466 raw_ostream &mlir::operator<<(raw_ostream &os,
467                               SymbolTable::Visibility visibility) {
468   switch (visibility) {
469   case SymbolTable::Visibility::Public:
470     return os << "public";
471   case SymbolTable::Visibility::Private:
472     return os << "private";
473   case SymbolTable::Visibility::Nested:
474     return os << "nested";
475   }
476   llvm_unreachable("Unexpected visibility");
477 }
478 
479 //===----------------------------------------------------------------------===//
480 // SymbolTable Trait Types
481 //===----------------------------------------------------------------------===//
482 
483 LogicalResult detail::verifySymbolTable(Operation *op) {
484   if (op->getNumRegions() != 1)
485     return op->emitOpError()
486            << "Operations with a 'SymbolTable' must have exactly one region";
487   if (!llvm::hasSingleElement(op->getRegion(0)))
488     return op->emitOpError()
489            << "Operations with a 'SymbolTable' must have exactly one block";
490 
491   // Check that all symbols are uniquely named within child regions.
492   DenseMap<Attribute, Location> nameToOrigLoc;
493   for (auto &block : op->getRegion(0)) {
494     for (auto &op : block) {
495       // Check for a symbol name attribute.
496       auto nameAttr =
497           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
498       if (!nameAttr)
499         continue;
500 
501       // Try to insert this symbol into the table.
502       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
503       if (!it.second)
504         return op.emitError()
505             .append("redefinition of symbol named '", nameAttr.getValue(), "'")
506             .attachNote(it.first->second)
507             .append("see existing symbol definition here");
508     }
509   }
510 
511   // Verify any nested symbol user operations.
512   SymbolTableCollection symbolTable;
513   auto verifySymbolUserFn = [&](Operation *op) -> std::optional<WalkResult> {
514     if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op))
515       return WalkResult(user.verifySymbolUses(symbolTable));
516     return WalkResult::advance();
517   };
518 
519   std::optional<WalkResult> result =
520       walkSymbolTable(op->getRegions(), verifySymbolUserFn);
521   return success(result && !result->wasInterrupted());
522 }
523 
524 LogicalResult detail::verifySymbol(Operation *op) {
525   // Verify the name attribute.
526   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
527     return op->emitOpError() << "requires string attribute '"
528                              << mlir::SymbolTable::getSymbolAttrName() << "'";
529 
530   // Verify the visibility attribute.
531   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
532     StringAttr visStrAttr = llvm::dyn_cast<StringAttr>(vis);
533     if (!visStrAttr)
534       return op->emitOpError() << "requires visibility attribute '"
535                                << mlir::SymbolTable::getVisibilityAttrName()
536                                << "' to be a string attribute, but got " << vis;
537 
538     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
539                             visStrAttr.getValue()))
540       return op->emitOpError()
541              << "visibility expected to be one of [\"public\", \"private\", "
542                 "\"nested\"], but got "
543              << visStrAttr;
544   }
545   return success();
546 }
547 
548 //===----------------------------------------------------------------------===//
549 // Symbol Use Lists
550 //===----------------------------------------------------------------------===//
551 
552 /// Walk all of the symbol references within the given operation, invoking the
553 /// provided callback for each found use. The callbacks takes the use of the
554 /// symbol.
555 static WalkResult
556 walkSymbolRefs(Operation *op,
557                function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
558   return op->getAttrDictionary().walk<WalkOrder::PreOrder>(
559       [&](SymbolRefAttr symbolRef) {
560         if (callback({op, symbolRef}).wasInterrupted())
561           return WalkResult::interrupt();
562 
563         // Don't walk nested references.
564         return WalkResult::skip();
565       });
566 }
567 
568 /// Walk all of the uses, for any symbol, that are nested within the given
569 /// regions, invoking the provided callback for each. This does not traverse
570 /// into any nested symbol tables.
571 static std::optional<WalkResult>
572 walkSymbolUses(MutableArrayRef<Region> regions,
573                function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
574   return walkSymbolTable(regions,
575                          [&](Operation *op) -> std::optional<WalkResult> {
576                            // Check that this isn't a potentially unknown symbol
577                            // table.
578                            if (isPotentiallyUnknownSymbolTable(op))
579                              return std::nullopt;
580 
581                            return walkSymbolRefs(op, callback);
582                          });
583 }
584 /// Walk all of the uses, for any symbol, that are nested within the given
585 /// operation 'from', invoking the provided callback for each. This does not
586 /// traverse into any nested symbol tables.
587 static std::optional<WalkResult>
588 walkSymbolUses(Operation *from,
589                function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
590   // If this operation has regions, and it, as well as its dialect, isn't
591   // registered then conservatively fail. The operation may define a
592   // symbol table, so we can't opaquely know if we should traverse to find
593   // nested uses.
594   if (isPotentiallyUnknownSymbolTable(from))
595     return std::nullopt;
596 
597   // Walk the uses on this operation.
598   if (walkSymbolRefs(from, callback).wasInterrupted())
599     return WalkResult::interrupt();
600 
601   // Only recurse if this operation is not a symbol table. A symbol table
602   // defines a new scope, so we can't walk the attributes from within the symbol
603   // table op.
604   if (!from->hasTrait<OpTrait::SymbolTable>())
605     return walkSymbolUses(from->getRegions(), callback);
606   return WalkResult::advance();
607 }
608 
609 namespace {
610 /// This class represents a single symbol scope. A symbol scope represents the
611 /// set of operations nested within a symbol table that may reference symbols
612 /// within that table. A symbol scope does not contain the symbol table
613 /// operation itself, just its contained operations. A scope ends at leaf
614 /// operations or another symbol table operation.
615 struct SymbolScope {
616   /// Walk the symbol uses within this scope, invoking the given callback.
617   /// This variant is used when the callback type matches that expected by
618   /// 'walkSymbolUses'.
619   template <typename CallbackT,
620             std::enable_if_t<!std::is_same<
621                 typename llvm::function_traits<CallbackT>::result_t,
622                 void>::value> * = nullptr>
623   std::optional<WalkResult> walk(CallbackT cback) {
624     if (Region *region = llvm::dyn_cast_if_present<Region *>(limit))
625       return walkSymbolUses(*region, cback);
626     return walkSymbolUses(cast<Operation *>(limit), cback);
627   }
628   /// This variant is used when the callback type matches a stripped down type:
629   /// void(SymbolTable::SymbolUse use)
630   template <typename CallbackT,
631             std::enable_if_t<std::is_same<
632                 typename llvm::function_traits<CallbackT>::result_t,
633                 void>::value> * = nullptr>
634   std::optional<WalkResult> walk(CallbackT cback) {
635     return walk([=](SymbolTable::SymbolUse use) {
636       return cback(use), WalkResult::advance();
637     });
638   }
639 
640   /// Walk all of the operations nested under the current scope without
641   /// traversing into any nested symbol tables.
642   template <typename CallbackT>
643   std::optional<WalkResult> walkSymbolTable(CallbackT &&cback) {
644     if (Region *region = llvm::dyn_cast_if_present<Region *>(limit))
645       return ::walkSymbolTable(*region, cback);
646     return ::walkSymbolTable(cast<Operation *>(limit), cback);
647   }
648 
649   /// The representation of the symbol within this scope.
650   SymbolRefAttr symbol;
651 
652   /// The IR unit representing this scope.
653   llvm::PointerUnion<Operation *, Region *> limit;
654 };
655 } // namespace
656 
657 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
658 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
659                                                        Operation *limit) {
660   StringAttr symName = SymbolTable::getSymbolName(symbol);
661   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
662 
663   // Compute the ancestors of 'limit'.
664   SetVector<Operation *, SmallVector<Operation *, 4>,
665             SmallPtrSet<Operation *, 4>>
666       limitAncestors;
667   Operation *limitAncestor = limit;
668   do {
669     // Check to see if 'symbol' is an ancestor of 'limit'.
670     if (limitAncestor == symbol) {
671       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
672       // doesn't support parent references.
673       if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
674           symbol->getParentOp())
675         return {{SymbolRefAttr::get(symName), limit}};
676       return {};
677     }
678 
679     limitAncestors.insert(limitAncestor);
680   } while ((limitAncestor = limitAncestor->getParentOp()));
681 
682   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
683   Operation *commonAncestor = symbol->getParentOp();
684   do {
685     if (limitAncestors.count(commonAncestor))
686       break;
687   } while ((commonAncestor = commonAncestor->getParentOp()));
688   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
689 
690   // Compute the set of valid nested references for 'symbol' as far up to the
691   // common ancestor as possible.
692   SmallVector<SymbolRefAttr, 2> references;
693   bool collectedAllReferences = succeeded(
694       collectValidReferencesFor(symbol, symName, commonAncestor, references));
695 
696   // Handle the case where the common ancestor is 'limit'.
697   if (commonAncestor == limit) {
698     SmallVector<SymbolScope, 2> scopes;
699 
700     // Walk each of the ancestors of 'symbol', calling the compute function for
701     // each one.
702     Operation *limitIt = symbol->getParentOp();
703     for (size_t i = 0, e = references.size(); i != e;
704          ++i, limitIt = limitIt->getParentOp()) {
705       assert(limitIt->hasTrait<OpTrait::SymbolTable>());
706       scopes.push_back({references[i], &limitIt->getRegion(0)});
707     }
708     return scopes;
709   }
710 
711   // Otherwise, we just need the symbol reference for 'symbol' that will be
712   // used within 'limit'. This is the last reference in the list we computed
713   // above if we were able to collect all references.
714   if (!collectedAllReferences)
715     return {};
716   return {{references.back(), limit}};
717 }
718 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
719                                                        Region *limit) {
720   auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
721 
722   // If we collected some scopes to walk, make sure to constrain the one for
723   // limit to the specific region requested.
724   if (!scopes.empty())
725     scopes.back().limit = limit;
726   return scopes;
727 }
728 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol,
729                                                        Region *limit) {
730   return {{SymbolRefAttr::get(symbol), limit}};
731 }
732 
733 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol,
734                                                        Operation *limit) {
735   SmallVector<SymbolScope, 1> scopes;
736   auto symbolRef = SymbolRefAttr::get(symbol);
737   for (auto &region : limit->getRegions())
738     scopes.push_back({symbolRef, &region});
739   return scopes;
740 }
741 
742 /// Returns true if the given reference 'SubRef' is a sub reference of the
743 /// reference 'ref', i.e. 'ref' is a further qualified reference.
744 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
745   if (ref == subRef)
746     return true;
747 
748   // If the references are not pointer equal, check to see if `subRef` is a
749   // prefix of `ref`.
750   if (llvm::isa<FlatSymbolRefAttr>(ref) ||
751       ref.getRootReference() != subRef.getRootReference())
752     return false;
753 
754   auto refLeafs = ref.getNestedReferences();
755   auto subRefLeafs = subRef.getNestedReferences();
756   return subRefLeafs.size() < refLeafs.size() &&
757          subRefLeafs == refLeafs.take_front(subRefLeafs.size());
758 }
759 
760 //===----------------------------------------------------------------------===//
761 // SymbolTable::getSymbolUses
762 
763 /// The implementation of SymbolTable::getSymbolUses below.
764 template <typename FromT>
765 static std::optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
766   std::vector<SymbolTable::SymbolUse> uses;
767   auto walkFn = [&](SymbolTable::SymbolUse symbolUse) {
768     uses.push_back(symbolUse);
769     return WalkResult::advance();
770   };
771   auto result = walkSymbolUses(from, walkFn);
772   return result ? std::optional<SymbolTable::UseRange>(std::move(uses))
773                 : std::nullopt;
774 }
775 
776 /// Get an iterator range for all of the uses, for any symbol, that are nested
777 /// within the given operation 'from'. This does not traverse into any nested
778 /// symbol tables, and will also only return uses on 'from' if it does not
779 /// also define a symbol table. This is because we treat the region as the
780 /// boundary of the symbol table, and not the op itself. This function returns
781 /// std::nullopt if there are any unknown operations that may potentially be
782 /// symbol tables.
783 auto SymbolTable::getSymbolUses(Operation *from) -> std::optional<UseRange> {
784   return getSymbolUsesImpl(from);
785 }
786 auto SymbolTable::getSymbolUses(Region *from) -> std::optional<UseRange> {
787   return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
788 }
789 
790 //===----------------------------------------------------------------------===//
791 // SymbolTable::getSymbolUses
792 
793 /// The implementation of SymbolTable::getSymbolUses below.
794 template <typename SymbolT, typename IRUnitT>
795 static std::optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
796                                                               IRUnitT *limit) {
797   std::vector<SymbolTable::SymbolUse> uses;
798   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
799     if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
800           if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
801             uses.push_back(symbolUse);
802         }))
803       return std::nullopt;
804   }
805   return SymbolTable::UseRange(std::move(uses));
806 }
807 
808 /// Get all of the uses of the given symbol that are nested within the given
809 /// operation 'from', invoking the provided callback for each. This does not
810 /// traverse into any nested symbol tables. This function returns std::nullopt
811 /// if there are any unknown operations that may potentially be symbol tables.
812 auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from)
813     -> std::optional<UseRange> {
814   return getSymbolUsesImpl(symbol, from);
815 }
816 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
817     -> std::optional<UseRange> {
818   return getSymbolUsesImpl(symbol, from);
819 }
820 auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from)
821     -> std::optional<UseRange> {
822   return getSymbolUsesImpl(symbol, from);
823 }
824 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
825     -> std::optional<UseRange> {
826   return getSymbolUsesImpl(symbol, from);
827 }
828 
829 //===----------------------------------------------------------------------===//
830 // SymbolTable::symbolKnownUseEmpty
831 
832 /// The implementation of SymbolTable::symbolKnownUseEmpty below.
833 template <typename SymbolT, typename IRUnitT>
834 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
835   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
836     // Walk all of the symbol uses looking for a reference to 'symbol'.
837     if (scope.walk([&](SymbolTable::SymbolUse symbolUse) {
838           return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
839                      ? WalkResult::interrupt()
840                      : WalkResult::advance();
841         }) != WalkResult::advance())
842       return false;
843   }
844   return true;
845 }
846 
847 /// Return if the given symbol is known to have no uses that are nested within
848 /// the given operation 'from'. This does not traverse into any nested symbol
849 /// tables. This function will also return false if there are any unknown
850 /// operations that may potentially be symbol tables.
851 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) {
852   return symbolKnownUseEmptyImpl(symbol, from);
853 }
854 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
855   return symbolKnownUseEmptyImpl(symbol, from);
856 }
857 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) {
858   return symbolKnownUseEmptyImpl(symbol, from);
859 }
860 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
861   return symbolKnownUseEmptyImpl(symbol, from);
862 }
863 
864 //===----------------------------------------------------------------------===//
865 // SymbolTable::replaceAllSymbolUses
866 
867 /// Generates a new symbol reference attribute with a new leaf reference.
868 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
869                                         FlatSymbolRefAttr newLeafAttr) {
870   if (llvm::isa<FlatSymbolRefAttr>(oldAttr))
871     return newLeafAttr;
872   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
873   nestedRefs.back() = newLeafAttr;
874   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs);
875 }
876 
877 /// The implementation of SymbolTable::replaceAllSymbolUses below.
878 template <typename SymbolT, typename IRUnitT>
879 static LogicalResult
880 replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) {
881   // Generate a new attribute to replace the given attribute.
882   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol);
883   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
884     SymbolRefAttr oldAttr = scope.symbol;
885     SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
886     AttrTypeReplacer replacer;
887     replacer.addReplacement(
888         [&](SymbolRefAttr attr) -> std::pair<Attribute, WalkResult> {
889           // Regardless of the match, don't walk nested SymbolRefAttrs, we don't
890           // want to accidentally replace an inner reference.
891           if (attr == oldAttr)
892             return {newAttr, WalkResult::skip()};
893           // Handle prefix matches.
894           if (isReferencePrefixOf(oldAttr, attr)) {
895             auto oldNestedRefs = oldAttr.getNestedReferences();
896             auto nestedRefs = attr.getNestedReferences();
897             if (oldNestedRefs.empty())
898               return {SymbolRefAttr::get(newSymbol, nestedRefs),
899                       WalkResult::skip()};
900 
901             auto newNestedRefs = llvm::to_vector<4>(nestedRefs);
902             newNestedRefs[oldNestedRefs.size() - 1] = newLeafAttr;
903             return {SymbolRefAttr::get(attr.getRootReference(), newNestedRefs),
904                     WalkResult::skip()};
905           }
906           return {attr, WalkResult::skip()};
907         });
908 
909     auto walkFn = [&](Operation *op) -> std::optional<WalkResult> {
910       replacer.replaceElementsIn(op);
911       return WalkResult::advance();
912     };
913     if (!scope.walkSymbolTable(walkFn))
914       return failure();
915   }
916   return success();
917 }
918 
919 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the
920 /// provided symbol 'newSymbol' that are nested within the given operation
921 /// 'from'. This does not traverse into any nested symbol tables. If there are
922 /// any unknown operations that may potentially be symbol tables, no uses are
923 /// replaced and failure is returned.
924 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
925                                                 StringAttr newSymbol,
926                                                 Operation *from) {
927   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
928 }
929 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
930                                                 StringAttr newSymbol,
931                                                 Operation *from) {
932   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
933 }
934 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol,
935                                                 StringAttr newSymbol,
936                                                 Region *from) {
937   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
938 }
939 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
940                                                 StringAttr newSymbol,
941                                                 Region *from) {
942   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
943 }
944 
945 //===----------------------------------------------------------------------===//
946 // SymbolTableCollection
947 //===----------------------------------------------------------------------===//
948 
949 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
950                                                  StringAttr symbol) {
951   return getSymbolTable(symbolTableOp).lookup(symbol);
952 }
953 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
954                                                  SymbolRefAttr name) {
955   SmallVector<Operation *, 4> symbols;
956   if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
957     return nullptr;
958   return symbols.back();
959 }
960 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by
961 /// a given SymbolRefAttr. Returns failure if any of the nested references could
962 /// not be resolved.
963 LogicalResult
964 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
965                                       SymbolRefAttr name,
966                                       SmallVectorImpl<Operation *> &symbols) {
967   auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) {
968     return lookupSymbolIn(symbolTableOp, symbol);
969   };
970   return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
971 }
972 
973 /// Returns the operation registered with the given symbol name within the
974 /// closest parent operation of, or including, 'from' with the
975 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was
976 /// found.
977 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
978                                                           StringAttr symbol) {
979   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
980   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
981 }
982 Operation *
983 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from,
984                                                SymbolRefAttr symbol) {
985   Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from);
986   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
987 }
988 
989 /// Lookup, or create, a symbol table for an operation.
990 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) {
991   auto it = symbolTables.try_emplace(op, nullptr);
992   if (it.second)
993     it.first->second = std::make_unique<SymbolTable>(op);
994   return *it.first->second;
995 }
996 
997 //===----------------------------------------------------------------------===//
998 // LockedSymbolTableCollection
999 //===----------------------------------------------------------------------===//
1000 
1001 Operation *LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
1002                                                        StringAttr symbol) {
1003   return getSymbolTable(symbolTableOp).lookup(symbol);
1004 }
1005 
1006 Operation *
1007 LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
1008                                             FlatSymbolRefAttr symbol) {
1009   return lookupSymbolIn(symbolTableOp, symbol.getAttr());
1010 }
1011 
1012 Operation *LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp,
1013                                                        SymbolRefAttr name) {
1014   SmallVector<Operation *> symbols;
1015   if (failed(lookupSymbolIn(symbolTableOp, name, symbols)))
1016     return nullptr;
1017   return symbols.back();
1018 }
1019 
1020 LogicalResult LockedSymbolTableCollection::lookupSymbolIn(
1021     Operation *symbolTableOp, SymbolRefAttr name,
1022     SmallVectorImpl<Operation *> &symbols) {
1023   auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) {
1024     return lookupSymbolIn(symbolTableOp, symbol);
1025   };
1026   return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn);
1027 }
1028 
1029 SymbolTable &
1030 LockedSymbolTableCollection::getSymbolTable(Operation *symbolTableOp) {
1031   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
1032   // Try to find an existing symbol table.
1033   {
1034     llvm::sys::SmartScopedReader<true> lock(mutex);
1035     auto it = collection.symbolTables.find(symbolTableOp);
1036     if (it != collection.symbolTables.end())
1037       return *it->second;
1038   }
1039   // Create a symbol table for the operation. Perform construction outside of
1040   // the critical section.
1041   auto symbolTable = std::make_unique<SymbolTable>(symbolTableOp);
1042   // Insert the constructed symbol table.
1043   llvm::sys::SmartScopedWriter<true> lock(mutex);
1044   return *collection.symbolTables
1045               .insert({symbolTableOp, std::move(symbolTable)})
1046               .first->second;
1047 }
1048 
1049 //===----------------------------------------------------------------------===//
1050 // SymbolUserMap
1051 //===----------------------------------------------------------------------===//
1052 
1053 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable,
1054                              Operation *symbolTableOp)
1055     : symbolTable(symbolTable) {
1056   // Walk each of the symbol tables looking for discardable callgraph nodes.
1057   SmallVector<Operation *> symbols;
1058   auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
1059     for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) {
1060       auto symbolUses = SymbolTable::getSymbolUses(&nestedOp);
1061       assert(symbolUses && "expected uses to be valid");
1062 
1063       for (const SymbolTable::SymbolUse &use : *symbolUses) {
1064         symbols.clear();
1065         (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(),
1066                                          symbols);
1067         for (Operation *symbolOp : symbols)
1068           symbolToUsers[symbolOp].insert(use.getUser());
1069       }
1070     }
1071   };
1072   // We just set `allSymUsesVisible` to false here because it isn't necessary
1073   // for building the user map.
1074   SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false,
1075                                 walkFn);
1076 }
1077 
1078 void SymbolUserMap::replaceAllUsesWith(Operation *symbol,
1079                                        StringAttr newSymbolName) {
1080   auto it = symbolToUsers.find(symbol);
1081   if (it == symbolToUsers.end())
1082     return;
1083 
1084   // Replace the uses within the users of `symbol`.
1085   for (Operation *user : it->second)
1086     (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user);
1087 
1088   // Move the current users of `symbol` to the new symbol if it is in the
1089   // symbol table.
1090   Operation *newSymbol =
1091       symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName);
1092   if (newSymbol != symbol) {
1093     // Transfer over the users to the new symbol.  The reference to the old one
1094     // is fetched again as the iterator is invalidated during the insertion.
1095     auto newIt = symbolToUsers.try_emplace(newSymbol, SetVector<Operation *>{});
1096     auto oldIt = symbolToUsers.find(symbol);
1097     assert(oldIt != symbolToUsers.end() && "missing old users list");
1098     if (newIt.second)
1099       newIt.first->second = std::move(oldIt->second);
1100     else
1101       newIt.first->second.set_union(oldIt->second);
1102     symbolToUsers.erase(oldIt);
1103   }
1104 }
1105 
1106 //===----------------------------------------------------------------------===//
1107 // Visibility parsing implementation.
1108 //===----------------------------------------------------------------------===//
1109 
1110 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser,
1111                                                  NamedAttrList &attrs) {
1112   StringRef visibility;
1113   if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"}))
1114     return failure();
1115 
1116   StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility);
1117   attrs.push_back(parser.getBuilder().getNamedAttr(
1118       SymbolTable::getVisibilityAttrName(), visibilityAttr));
1119   return success();
1120 }
1121 
1122 //===----------------------------------------------------------------------===//
1123 // Symbol Interfaces
1124 //===----------------------------------------------------------------------===//
1125 
1126 /// Include the generated symbol interfaces.
1127 #include "mlir/IR/SymbolInterfaces.cpp.inc"
1128