1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/SymbolTable.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/OpImplementation.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/StringSwitch.h" 16 17 using namespace mlir; 18 19 /// Return true if the given operation is unknown and may potentially define a 20 /// symbol table. 21 static bool isPotentiallyUnknownSymbolTable(Operation *op) { 22 return op->getNumRegions() == 1 && !op->getDialect(); 23 } 24 25 /// Returns the string name of the given symbol, or null if this is not a 26 /// symbol. 27 static StringAttr getNameIfSymbol(Operation *op) { 28 return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); 29 } 30 static StringAttr getNameIfSymbol(Operation *op, StringAttr symbolAttrNameId) { 31 return op->getAttrOfType<StringAttr>(symbolAttrNameId); 32 } 33 34 /// Computes the nested symbol reference attribute for the symbol 'symbolName' 35 /// that are usable within the symbol table operations from 'symbol' as far up 36 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. 37 /// Returns success if all references up to 'within' could be computed. 38 static LogicalResult 39 collectValidReferencesFor(Operation *symbol, StringAttr symbolName, 40 Operation *within, 41 SmallVectorImpl<SymbolRefAttr> &results) { 42 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); 43 MLIRContext *ctx = symbol->getContext(); 44 45 auto leafRef = FlatSymbolRefAttr::get(symbolName); 46 results.push_back(leafRef); 47 48 // Early exit for when 'within' is the parent of 'symbol'. 49 Operation *symbolTableOp = symbol->getParentOp(); 50 if (within == symbolTableOp) 51 return success(); 52 53 // Collect references until 'symbolTableOp' reaches 'within'. 54 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); 55 StringAttr symbolNameId = 56 StringAttr::get(ctx, SymbolTable::getSymbolAttrName()); 57 do { 58 // Each parent of 'symbol' should define a symbol table. 59 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 60 return failure(); 61 // Each parent of 'symbol' should also be a symbol. 62 StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId); 63 if (!symbolTableName) 64 return failure(); 65 results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs)); 66 67 symbolTableOp = symbolTableOp->getParentOp(); 68 if (symbolTableOp == within) 69 break; 70 nestedRefs.insert(nestedRefs.begin(), 71 FlatSymbolRefAttr::get(symbolTableName)); 72 } while (true); 73 return success(); 74 } 75 76 /// Walk all of the operations within the given set of regions, without 77 /// traversing into any nested symbol tables. Stops walking if the result of the 78 /// callback is anything other than `WalkResult::advance`. 79 static Optional<WalkResult> 80 walkSymbolTable(MutableArrayRef<Region> regions, 81 function_ref<Optional<WalkResult>(Operation *)> callback) { 82 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); 83 while (!worklist.empty()) { 84 for (Operation &op : worklist.pop_back_val()->getOps()) { 85 Optional<WalkResult> result = callback(&op); 86 if (result != WalkResult::advance()) 87 return result; 88 89 // If this op defines a new symbol table scope, we can't traverse. Any 90 // symbol references nested within 'op' are different semantically. 91 if (!op.hasTrait<OpTrait::SymbolTable>()) { 92 for (Region ®ion : op.getRegions()) 93 worklist.push_back(®ion); 94 } 95 } 96 } 97 return WalkResult::advance(); 98 } 99 100 /// Walk all of the operations nested under, and including, the given operation, 101 /// without traversing into any nested symbol tables. Stops walking if the 102 /// result of the callback is anything other than `WalkResult::advance`. 103 static Optional<WalkResult> 104 walkSymbolTable(Operation *op, 105 function_ref<Optional<WalkResult>(Operation *)> callback) { 106 Optional<WalkResult> result = callback(op); 107 if (result != WalkResult::advance() || op->hasTrait<OpTrait::SymbolTable>()) 108 return result; 109 return walkSymbolTable(op->getRegions(), callback); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // SymbolTable 114 //===----------------------------------------------------------------------===// 115 116 /// Build a symbol table with the symbols within the given operation. 117 SymbolTable::SymbolTable(Operation *symbolTableOp) 118 : symbolTableOp(symbolTableOp) { 119 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && 120 "expected operation to have SymbolTable trait"); 121 assert(symbolTableOp->getNumRegions() == 1 && 122 "expected operation to have a single region"); 123 assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && 124 "expected operation to have a single block"); 125 126 StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), 127 SymbolTable::getSymbolAttrName()); 128 for (auto &op : symbolTableOp->getRegion(0).front()) { 129 StringAttr name = getNameIfSymbol(&op, symbolNameId); 130 if (!name) 131 continue; 132 133 auto inserted = symbolTable.insert({name, &op}); 134 (void)inserted; 135 assert(inserted.second && 136 "expected region to contain uniquely named symbol operations"); 137 } 138 } 139 140 /// Look up a symbol with the specified name, returning null if no such name 141 /// exists. Names never include the @ on them. 142 Operation *SymbolTable::lookup(StringRef name) const { 143 return lookup(StringAttr::get(symbolTableOp->getContext(), name)); 144 } 145 Operation *SymbolTable::lookup(StringAttr name) const { 146 return symbolTable.lookup(name); 147 } 148 149 void SymbolTable::remove(Operation *op) { 150 StringAttr name = getNameIfSymbol(op); 151 assert(name && "expected valid 'name' attribute"); 152 assert(op->getParentOp() == symbolTableOp && 153 "expected this operation to be inside of the operation with this " 154 "SymbolTable"); 155 156 auto it = symbolTable.find(name); 157 if (it != symbolTable.end() && it->second == op) 158 symbolTable.erase(it); 159 } 160 161 void SymbolTable::erase(Operation *symbol) { 162 remove(symbol); 163 symbol->erase(); 164 } 165 166 // TODO: Consider if this should be renamed to something like insertOrUpdate 167 /// Insert a new symbol into the table and associated operation if not already 168 /// there and rename it as necessary to avoid collisions. Return the name of 169 /// the symbol after insertion as attribute. 170 StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { 171 // The symbol cannot be the child of another op and must be the child of the 172 // symbolTableOp after this. 173 // 174 // TODO: consider if SymbolTable's constructor should behave the same. 175 if (!symbol->getParentOp()) { 176 auto &body = symbolTableOp->getRegion(0).front(); 177 if (insertPt == Block::iterator()) { 178 insertPt = Block::iterator(body.end()); 179 } else { 180 assert((insertPt == body.end() || 181 insertPt->getParentOp() == symbolTableOp) && 182 "expected insertPt to be in the associated module operation"); 183 } 184 // Insert before the terminator, if any. 185 if (insertPt == Block::iterator(body.end()) && !body.empty() && 186 std::prev(body.end())->hasTrait<OpTrait::IsTerminator>()) 187 insertPt = std::prev(body.end()); 188 189 body.getOperations().insert(insertPt, symbol); 190 } 191 assert(symbol->getParentOp() == symbolTableOp && 192 "symbol is already inserted in another op"); 193 194 // Add this symbol to the symbol table, uniquing the name if a conflict is 195 // detected. 196 StringAttr name = getSymbolName(symbol); 197 if (symbolTable.insert({name, symbol}).second) 198 return name; 199 // If the symbol was already in the table, also return. 200 if (symbolTable.lookup(name) == symbol) 201 return name; 202 // If a conflict was detected, then the symbol will not have been added to 203 // the symbol table. Try suffixes until we get to a unique name that works. 204 SmallString<128> nameBuffer(name.getValue()); 205 unsigned originalLength = nameBuffer.size(); 206 207 MLIRContext *context = symbol->getContext(); 208 209 // Iteratively try suffixes until we find one that isn't used. 210 do { 211 nameBuffer.resize(originalLength); 212 nameBuffer += '_'; 213 nameBuffer += std::to_string(uniquingCounter++); 214 } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol}) 215 .second); 216 setSymbolName(symbol, nameBuffer); 217 return getSymbolName(symbol); 218 } 219 220 /// Returns the name of the given symbol operation. 221 StringAttr SymbolTable::getSymbolName(Operation *symbol) { 222 StringAttr name = getNameIfSymbol(symbol); 223 assert(name && "expected valid symbol name"); 224 return name; 225 } 226 227 /// Sets the name of the given symbol operation. 228 void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) { 229 symbol->setAttr(getSymbolAttrName(), name); 230 } 231 232 /// Returns the visibility of the given symbol operation. 233 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { 234 // If the attribute doesn't exist, assume public. 235 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); 236 if (!vis) 237 return Visibility::Public; 238 239 // Otherwise, switch on the string value. 240 return StringSwitch<Visibility>(vis.getValue()) 241 .Case("private", Visibility::Private) 242 .Case("nested", Visibility::Nested) 243 .Case("public", Visibility::Public); 244 } 245 /// Sets the visibility of the given symbol operation. 246 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { 247 MLIRContext *ctx = symbol->getContext(); 248 249 // If the visibility is public, just drop the attribute as this is the 250 // default. 251 if (vis == Visibility::Public) { 252 symbol->removeAttr(StringAttr::get(ctx, getVisibilityAttrName())); 253 return; 254 } 255 256 // Otherwise, update the attribute. 257 assert((vis == Visibility::Private || vis == Visibility::Nested) && 258 "unknown symbol visibility kind"); 259 260 StringRef visName = vis == Visibility::Private ? "private" : "nested"; 261 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); 262 } 263 264 /// Returns the nearest symbol table from a given operation `from`. Returns 265 /// nullptr if no valid parent symbol table could be found. 266 Operation *SymbolTable::getNearestSymbolTable(Operation *from) { 267 assert(from && "expected valid operation"); 268 if (isPotentiallyUnknownSymbolTable(from)) 269 return nullptr; 270 271 while (!from->hasTrait<OpTrait::SymbolTable>()) { 272 from = from->getParentOp(); 273 274 // Check that this is a valid op and isn't an unknown symbol table. 275 if (!from || isPotentiallyUnknownSymbolTable(from)) 276 return nullptr; 277 } 278 return from; 279 } 280 281 /// Walks all symbol table operations nested within, and including, `op`. For 282 /// each symbol table operation, the provided callback is invoked with the op 283 /// and a boolean signifying if the symbols within that symbol table can be 284 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether 285 /// all of the symbol uses of symbols within `op` are visible. 286 void SymbolTable::walkSymbolTables( 287 Operation *op, bool allSymUsesVisible, 288 function_ref<void(Operation *, bool)> callback) { 289 bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); 290 if (isSymbolTable) { 291 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); 292 allSymUsesVisible |= !symbol || symbol.isPrivate(); 293 } else { 294 // Otherwise if 'op' is not a symbol table, any nested symbols are 295 // guaranteed to be hidden. 296 allSymUsesVisible = true; 297 } 298 299 for (Region ®ion : op->getRegions()) 300 for (Block &block : region) 301 for (Operation &nestedOp : block) 302 walkSymbolTables(&nestedOp, allSymUsesVisible, callback); 303 304 // If 'op' had the symbol table trait, visit it after any nested symbol 305 // tables. 306 if (isSymbolTable) 307 callback(op, allSymUsesVisible); 308 } 309 310 /// Returns the operation registered with the given symbol name with the 311 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation 312 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol 313 /// was found. 314 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 315 StringAttr symbol) { 316 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 317 Region ®ion = symbolTableOp->getRegion(0); 318 if (region.empty()) 319 return nullptr; 320 321 // Look for a symbol with the given name. 322 StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), 323 SymbolTable::getSymbolAttrName()); 324 for (auto &op : region.front()) 325 if (getNameIfSymbol(&op, symbolNameId) == symbol) 326 return &op; 327 return nullptr; 328 } 329 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 330 SymbolRefAttr symbol) { 331 SmallVector<Operation *, 4> resolvedSymbols; 332 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) 333 return nullptr; 334 return resolvedSymbols.back(); 335 } 336 337 /// Internal implementation of `lookupSymbolIn` that allows for specialized 338 /// implementations of the lookup function. 339 static LogicalResult lookupSymbolInImpl( 340 Operation *symbolTableOp, SymbolRefAttr symbol, 341 SmallVectorImpl<Operation *> &symbols, 342 function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) { 343 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 344 345 // Lookup the root reference for this symbol. 346 symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); 347 if (!symbolTableOp) 348 return failure(); 349 symbols.push_back(symbolTableOp); 350 351 // If there are no nested references, just return the root symbol directly. 352 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); 353 if (nestedRefs.empty()) 354 return success(); 355 356 // Verify that the root is also a symbol table. 357 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 358 return failure(); 359 360 // Otherwise, lookup each of the nested non-leaf references and ensure that 361 // each corresponds to a valid symbol table. 362 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { 363 symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr()); 364 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 365 return failure(); 366 symbols.push_back(symbolTableOp); 367 } 368 symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); 369 return success(symbols.back()); 370 } 371 372 LogicalResult 373 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, 374 SmallVectorImpl<Operation *> &symbols) { 375 auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) { 376 return lookupSymbolIn(symbolTableOp, symbol); 377 }; 378 return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); 379 } 380 381 /// Returns the operation registered with the given symbol name within the 382 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns 383 /// nullptr if no valid symbol was found. 384 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 385 StringAttr symbol) { 386 Operation *symbolTableOp = getNearestSymbolTable(from); 387 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 388 } 389 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 390 SymbolRefAttr symbol) { 391 Operation *symbolTableOp = getNearestSymbolTable(from); 392 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 393 } 394 395 raw_ostream &mlir::operator<<(raw_ostream &os, 396 SymbolTable::Visibility visibility) { 397 switch (visibility) { 398 case SymbolTable::Visibility::Public: 399 return os << "public"; 400 case SymbolTable::Visibility::Private: 401 return os << "private"; 402 case SymbolTable::Visibility::Nested: 403 return os << "nested"; 404 } 405 llvm_unreachable("Unexpected visibility"); 406 } 407 408 //===----------------------------------------------------------------------===// 409 // SymbolTable Trait Types 410 //===----------------------------------------------------------------------===// 411 412 LogicalResult detail::verifySymbolTable(Operation *op) { 413 if (op->getNumRegions() != 1) 414 return op->emitOpError() 415 << "Operations with a 'SymbolTable' must have exactly one region"; 416 if (!llvm::hasSingleElement(op->getRegion(0))) 417 return op->emitOpError() 418 << "Operations with a 'SymbolTable' must have exactly one block"; 419 420 // Check that all symbols are uniquely named within child regions. 421 DenseMap<Attribute, Location> nameToOrigLoc; 422 for (auto &block : op->getRegion(0)) { 423 for (auto &op : block) { 424 // Check for a symbol name attribute. 425 auto nameAttr = 426 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); 427 if (!nameAttr) 428 continue; 429 430 // Try to insert this symbol into the table. 431 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); 432 if (!it.second) 433 return op.emitError() 434 .append("redefinition of symbol named '", nameAttr.getValue(), "'") 435 .attachNote(it.first->second) 436 .append("see existing symbol definition here"); 437 } 438 } 439 440 // Verify any nested symbol user operations. 441 SymbolTableCollection symbolTable; 442 auto verifySymbolUserFn = [&](Operation *op) -> Optional<WalkResult> { 443 if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op)) 444 return WalkResult(user.verifySymbolUses(symbolTable)); 445 return WalkResult::advance(); 446 }; 447 448 Optional<WalkResult> result = 449 walkSymbolTable(op->getRegions(), verifySymbolUserFn); 450 return success(result && !result->wasInterrupted()); 451 } 452 453 LogicalResult detail::verifySymbol(Operation *op) { 454 // Verify the name attribute. 455 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) 456 return op->emitOpError() << "requires string attribute '" 457 << mlir::SymbolTable::getSymbolAttrName() << "'"; 458 459 // Verify the visibility attribute. 460 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { 461 StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); 462 if (!visStrAttr) 463 return op->emitOpError() << "requires visibility attribute '" 464 << mlir::SymbolTable::getVisibilityAttrName() 465 << "' to be a string attribute, but got " << vis; 466 467 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, 468 visStrAttr.getValue())) 469 return op->emitOpError() 470 << "visibility expected to be one of [\"public\", \"private\", " 471 "\"nested\"], but got " 472 << visStrAttr; 473 } 474 return success(); 475 } 476 477 //===----------------------------------------------------------------------===// 478 // Symbol Use Lists 479 //===----------------------------------------------------------------------===// 480 481 /// Walk all of the symbol references within the given operation, invoking the 482 /// provided callback for each found use. The callbacks takes the use of the 483 /// symbol. 484 static WalkResult 485 walkSymbolRefs(Operation *op, 486 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { 487 // Check to see if the operation has any attributes. 488 DictionaryAttr attrDict = op->getAttrDictionary(); 489 if (attrDict.empty()) 490 return WalkResult::advance(); 491 492 // A worklist of a container attribute and the current index into the held 493 // attribute list. 494 struct WorklistItem { 495 SubElementAttrInterface container; 496 SmallVector<Attribute> immediateSubElements; 497 498 explicit WorklistItem(SubElementAttrInterface container) { 499 SmallVector<Attribute> subElements; 500 container.walkImmediateSubElements( 501 [&](Attribute attr) { subElements.push_back(attr); }, [](Type) {}); 502 immediateSubElements = std::move(subElements); 503 } 504 }; 505 506 SmallVector<WorklistItem, 1> attrWorklist(1, WorklistItem(attrDict)); 507 SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); 508 509 // Process the symbol references within the given nested attribute range. 510 auto processAttrs = [&](int &index, 511 WorklistItem &worklistItem) -> WalkResult { 512 for (Attribute attr : 513 llvm::drop_begin(worklistItem.immediateSubElements, index)) { 514 // Invoke the provided callback if we find a symbol use and check for a 515 // requested interrupt. 516 if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) { 517 if (callback({op, symbolRef}).wasInterrupted()) 518 return WalkResult::interrupt(); 519 520 /// Check for a nested container attribute, these will also need to be 521 /// walked. 522 } else if (auto interface = attr.dyn_cast<SubElementAttrInterface>()) { 523 attrWorklist.emplace_back(interface); 524 curAccessChain.push_back(-1); 525 return WalkResult::advance(); 526 } 527 // Make sure to keep the index counter in sync. 528 ++index; 529 } 530 531 // Pop this container attribute from the worklist. 532 attrWorklist.pop_back(); 533 curAccessChain.pop_back(); 534 return WalkResult::advance(); 535 }; 536 537 WalkResult result = WalkResult::advance(); 538 do { 539 WorklistItem &item = attrWorklist.back(); 540 int &index = curAccessChain.back(); 541 ++index; 542 543 // Process the given attribute, which is guaranteed to be a container. 544 result = processAttrs(index, item); 545 } while (!attrWorklist.empty() && !result.wasInterrupted()); 546 return result; 547 } 548 549 /// Walk all of the uses, for any symbol, that are nested within the given 550 /// regions, invoking the provided callback for each. This does not traverse 551 /// into any nested symbol tables. 552 static Optional<WalkResult> 553 walkSymbolUses(MutableArrayRef<Region> regions, 554 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { 555 return walkSymbolTable(regions, [&](Operation *op) -> Optional<WalkResult> { 556 // Check that this isn't a potentially unknown symbol table. 557 if (isPotentiallyUnknownSymbolTable(op)) 558 return llvm::None; 559 560 return walkSymbolRefs(op, callback); 561 }); 562 } 563 /// Walk all of the uses, for any symbol, that are nested within the given 564 /// operation 'from', invoking the provided callback for each. This does not 565 /// traverse into any nested symbol tables. 566 static Optional<WalkResult> 567 walkSymbolUses(Operation *from, 568 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { 569 // If this operation has regions, and it, as well as its dialect, isn't 570 // registered then conservatively fail. The operation may define a 571 // symbol table, so we can't opaquely know if we should traverse to find 572 // nested uses. 573 if (isPotentiallyUnknownSymbolTable(from)) 574 return llvm::None; 575 576 // Walk the uses on this operation. 577 if (walkSymbolRefs(from, callback).wasInterrupted()) 578 return WalkResult::interrupt(); 579 580 // Only recurse if this operation is not a symbol table. A symbol table 581 // defines a new scope, so we can't walk the attributes from within the symbol 582 // table op. 583 if (!from->hasTrait<OpTrait::SymbolTable>()) 584 return walkSymbolUses(from->getRegions(), callback); 585 return WalkResult::advance(); 586 } 587 588 namespace { 589 /// This class represents a single symbol scope. A symbol scope represents the 590 /// set of operations nested within a symbol table that may reference symbols 591 /// within that table. A symbol scope does not contain the symbol table 592 /// operation itself, just its contained operations. A scope ends at leaf 593 /// operations or another symbol table operation. 594 struct SymbolScope { 595 /// Walk the symbol uses within this scope, invoking the given callback. 596 /// This variant is used when the callback type matches that expected by 597 /// 'walkSymbolUses'. 598 template <typename CallbackT, 599 std::enable_if_t<!std::is_same< 600 typename llvm::function_traits<CallbackT>::result_t, 601 void>::value> * = nullptr> 602 Optional<WalkResult> walk(CallbackT cback) { 603 if (Region *region = limit.dyn_cast<Region *>()) 604 return walkSymbolUses(*region, cback); 605 return walkSymbolUses(limit.get<Operation *>(), cback); 606 } 607 /// This variant is used when the callback type matches a stripped down type: 608 /// void(SymbolTable::SymbolUse use) 609 template <typename CallbackT, 610 std::enable_if_t<std::is_same< 611 typename llvm::function_traits<CallbackT>::result_t, 612 void>::value> * = nullptr> 613 Optional<WalkResult> walk(CallbackT cback) { 614 return walk([=](SymbolTable::SymbolUse use) { 615 return cback(use), WalkResult::advance(); 616 }); 617 } 618 619 /// Walk all of the operations nested under the current scope without 620 /// traversing into any nested symbol tables. 621 template <typename CallbackT> 622 Optional<WalkResult> walkSymbolTable(CallbackT &&cback) { 623 if (Region *region = limit.dyn_cast<Region *>()) 624 return ::walkSymbolTable(*region, cback); 625 return ::walkSymbolTable(limit.get<Operation *>(), cback); 626 } 627 628 /// The representation of the symbol within this scope. 629 SymbolRefAttr symbol; 630 631 /// The IR unit representing this scope. 632 llvm::PointerUnion<Operation *, Region *> limit; 633 }; 634 } // namespace 635 636 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. 637 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 638 Operation *limit) { 639 StringAttr symName = SymbolTable::getSymbolName(symbol); 640 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); 641 642 // Compute the ancestors of 'limit'. 643 SetVector<Operation *, SmallVector<Operation *, 4>, 644 SmallPtrSet<Operation *, 4>> 645 limitAncestors; 646 Operation *limitAncestor = limit; 647 do { 648 // Check to see if 'symbol' is an ancestor of 'limit'. 649 if (limitAncestor == symbol) { 650 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr 651 // doesn't support parent references. 652 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == 653 symbol->getParentOp()) 654 return {{SymbolRefAttr::get(symName), limit}}; 655 return {}; 656 } 657 658 limitAncestors.insert(limitAncestor); 659 } while ((limitAncestor = limitAncestor->getParentOp())); 660 661 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. 662 Operation *commonAncestor = symbol->getParentOp(); 663 do { 664 if (limitAncestors.count(commonAncestor)) 665 break; 666 } while ((commonAncestor = commonAncestor->getParentOp())); 667 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); 668 669 // Compute the set of valid nested references for 'symbol' as far up to the 670 // common ancestor as possible. 671 SmallVector<SymbolRefAttr, 2> references; 672 bool collectedAllReferences = succeeded( 673 collectValidReferencesFor(symbol, symName, commonAncestor, references)); 674 675 // Handle the case where the common ancestor is 'limit'. 676 if (commonAncestor == limit) { 677 SmallVector<SymbolScope, 2> scopes; 678 679 // Walk each of the ancestors of 'symbol', calling the compute function for 680 // each one. 681 Operation *limitIt = symbol->getParentOp(); 682 for (size_t i = 0, e = references.size(); i != e; 683 ++i, limitIt = limitIt->getParentOp()) { 684 assert(limitIt->hasTrait<OpTrait::SymbolTable>()); 685 scopes.push_back({references[i], &limitIt->getRegion(0)}); 686 } 687 return scopes; 688 } 689 690 // Otherwise, we just need the symbol reference for 'symbol' that will be 691 // used within 'limit'. This is the last reference in the list we computed 692 // above if we were able to collect all references. 693 if (!collectedAllReferences) 694 return {}; 695 return {{references.back(), limit}}; 696 } 697 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 698 Region *limit) { 699 auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); 700 701 // If we collected some scopes to walk, make sure to constrain the one for 702 // limit to the specific region requested. 703 if (!scopes.empty()) 704 scopes.back().limit = limit; 705 return scopes; 706 } 707 template <typename IRUnit> 708 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol, 709 IRUnit *limit) { 710 return {{SymbolRefAttr::get(symbol), limit}}; 711 } 712 713 /// Returns true if the given reference 'SubRef' is a sub reference of the 714 /// reference 'ref', i.e. 'ref' is a further qualified reference. 715 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { 716 if (ref == subRef) 717 return true; 718 719 // If the references are not pointer equal, check to see if `subRef` is a 720 // prefix of `ref`. 721 if (ref.isa<FlatSymbolRefAttr>() || 722 ref.getRootReference() != subRef.getRootReference()) 723 return false; 724 725 auto refLeafs = ref.getNestedReferences(); 726 auto subRefLeafs = subRef.getNestedReferences(); 727 return subRefLeafs.size() < refLeafs.size() && 728 subRefLeafs == refLeafs.take_front(subRefLeafs.size()); 729 } 730 731 //===----------------------------------------------------------------------===// 732 // SymbolTable::getSymbolUses 733 734 /// The implementation of SymbolTable::getSymbolUses below. 735 template <typename FromT> 736 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { 737 std::vector<SymbolTable::SymbolUse> uses; 738 auto walkFn = [&](SymbolTable::SymbolUse symbolUse) { 739 uses.push_back(symbolUse); 740 return WalkResult::advance(); 741 }; 742 auto result = walkSymbolUses(from, walkFn); 743 return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None; 744 } 745 746 /// Get an iterator range for all of the uses, for any symbol, that are nested 747 /// within the given operation 'from'. This does not traverse into any nested 748 /// symbol tables, and will also only return uses on 'from' if it does not 749 /// also define a symbol table. This is because we treat the region as the 750 /// boundary of the symbol table, and not the op itself. This function returns 751 /// None if there are any unknown operations that may potentially be symbol 752 /// tables. 753 auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { 754 return getSymbolUsesImpl(from); 755 } 756 auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> { 757 return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); 758 } 759 760 //===----------------------------------------------------------------------===// 761 // SymbolTable::getSymbolUses 762 763 /// The implementation of SymbolTable::getSymbolUses below. 764 template <typename SymbolT, typename IRUnitT> 765 static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, 766 IRUnitT *limit) { 767 std::vector<SymbolTable::SymbolUse> uses; 768 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 769 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { 770 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) 771 uses.push_back(symbolUse); 772 })) 773 return llvm::None; 774 } 775 return SymbolTable::UseRange(std::move(uses)); 776 } 777 778 /// Get all of the uses of the given symbol that are nested within the given 779 /// operation 'from', invoking the provided callback for each. This does not 780 /// traverse into any nested symbol tables. This function returns None if there 781 /// are any unknown operations that may potentially be symbol tables. 782 auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from) 783 -> Optional<UseRange> { 784 return getSymbolUsesImpl(symbol, from); 785 } 786 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) 787 -> Optional<UseRange> { 788 return getSymbolUsesImpl(symbol, from); 789 } 790 auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from) 791 -> Optional<UseRange> { 792 return getSymbolUsesImpl(symbol, from); 793 } 794 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) 795 -> Optional<UseRange> { 796 return getSymbolUsesImpl(symbol, from); 797 } 798 799 //===----------------------------------------------------------------------===// 800 // SymbolTable::symbolKnownUseEmpty 801 802 /// The implementation of SymbolTable::symbolKnownUseEmpty below. 803 template <typename SymbolT, typename IRUnitT> 804 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { 805 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 806 // Walk all of the symbol uses looking for a reference to 'symbol'. 807 if (scope.walk([&](SymbolTable::SymbolUse symbolUse) { 808 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) 809 ? WalkResult::interrupt() 810 : WalkResult::advance(); 811 }) != WalkResult::advance()) 812 return false; 813 } 814 return true; 815 } 816 817 /// Return if the given symbol is known to have no uses that are nested within 818 /// the given operation 'from'. This does not traverse into any nested symbol 819 /// tables. This function will also return false if there are any unknown 820 /// operations that may potentially be symbol tables. 821 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) { 822 return symbolKnownUseEmptyImpl(symbol, from); 823 } 824 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { 825 return symbolKnownUseEmptyImpl(symbol, from); 826 } 827 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) { 828 return symbolKnownUseEmptyImpl(symbol, from); 829 } 830 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { 831 return symbolKnownUseEmptyImpl(symbol, from); 832 } 833 834 //===----------------------------------------------------------------------===// 835 // SymbolTable::replaceAllSymbolUses 836 837 /// Generates a new symbol reference attribute with a new leaf reference. 838 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, 839 FlatSymbolRefAttr newLeafAttr) { 840 if (oldAttr.isa<FlatSymbolRefAttr>()) 841 return newLeafAttr; 842 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); 843 nestedRefs.back() = newLeafAttr; 844 return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs); 845 } 846 847 /// The implementation of SymbolTable::replaceAllSymbolUses below. 848 template <typename SymbolT, typename IRUnitT> 849 static LogicalResult 850 replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) { 851 // Generate a new attribute to replace the given attribute. 852 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol); 853 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 854 SymbolRefAttr oldAttr = scope.symbol; 855 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); 856 857 auto walkFn = [&](Operation *op) -> Optional<WalkResult> { 858 auto remapAttrFn = 859 [&](Attribute attr) -> std::pair<Attribute, WalkResult> { 860 // Regardless of the match, don't walk nested SymbolRefAttrs, we don't 861 // want to accidentally replace an inner reference. 862 if (attr == oldAttr) 863 return {newAttr, WalkResult::skip()}; 864 // Handle prefix matches. 865 if (SymbolRefAttr symRef = attr.dyn_cast<SymbolRefAttr>()) { 866 if (isReferencePrefixOf(oldAttr, symRef)) { 867 auto oldNestedRefs = oldAttr.getNestedReferences(); 868 auto nestedRefs = symRef.getNestedReferences(); 869 if (oldNestedRefs.empty()) 870 return {SymbolRefAttr::get(newSymbol, nestedRefs), 871 WalkResult::skip()}; 872 873 auto newNestedRefs = llvm::to_vector<4>(nestedRefs); 874 newNestedRefs[oldNestedRefs.size() - 1] = newLeafAttr; 875 return { 876 SymbolRefAttr::get(symRef.getRootReference(), newNestedRefs), 877 WalkResult::skip()}; 878 } 879 return {attr, WalkResult::skip()}; 880 } 881 return {attr, WalkResult::advance()}; 882 }; 883 // Generate a new attribute dictionary by replacing references to the old 884 // symbol. 885 auto newDict = op->getAttrDictionary().replaceSubElements(remapAttrFn); 886 if (!newDict) 887 return WalkResult::interrupt(); 888 889 op->setAttrs(newDict.template cast<DictionaryAttr>()); 890 return WalkResult::advance(); 891 }; 892 if (!scope.walkSymbolTable(walkFn)) 893 return failure(); 894 } 895 return success(); 896 } 897 898 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the 899 /// provided symbol 'newSymbol' that are nested within the given operation 900 /// 'from'. This does not traverse into any nested symbol tables. If there are 901 /// any unknown operations that may potentially be symbol tables, no uses are 902 /// replaced and failure is returned. 903 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, 904 StringAttr newSymbol, 905 Operation *from) { 906 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 907 } 908 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 909 StringAttr newSymbol, 910 Operation *from) { 911 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 912 } 913 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, 914 StringAttr newSymbol, 915 Region *from) { 916 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 917 } 918 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 919 StringAttr newSymbol, 920 Region *from) { 921 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 922 } 923 924 //===----------------------------------------------------------------------===// 925 // SymbolTableCollection 926 //===----------------------------------------------------------------------===// 927 928 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 929 StringAttr symbol) { 930 return getSymbolTable(symbolTableOp).lookup(symbol); 931 } 932 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 933 SymbolRefAttr name) { 934 SmallVector<Operation *, 4> symbols; 935 if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) 936 return nullptr; 937 return symbols.back(); 938 } 939 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by 940 /// a given SymbolRefAttr. Returns failure if any of the nested references could 941 /// not be resolved. 942 LogicalResult 943 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 944 SymbolRefAttr name, 945 SmallVectorImpl<Operation *> &symbols) { 946 auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { 947 return lookupSymbolIn(symbolTableOp, symbol); 948 }; 949 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); 950 } 951 952 /// Returns the operation registered with the given symbol name within the 953 /// closest parent operation of, or including, 'from' with the 954 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was 955 /// found. 956 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 957 StringAttr symbol) { 958 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 959 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 960 } 961 Operation * 962 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 963 SymbolRefAttr symbol) { 964 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 965 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 966 } 967 968 /// Lookup, or create, a symbol table for an operation. 969 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { 970 auto it = symbolTables.try_emplace(op, nullptr); 971 if (it.second) 972 it.first->second = std::make_unique<SymbolTable>(op); 973 return *it.first->second; 974 } 975 976 //===----------------------------------------------------------------------===// 977 // SymbolUserMap 978 //===----------------------------------------------------------------------===// 979 980 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, 981 Operation *symbolTableOp) 982 : symbolTable(symbolTable) { 983 // Walk each of the symbol tables looking for discardable callgraph nodes. 984 SmallVector<Operation *> symbols; 985 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { 986 for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { 987 auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); 988 assert(symbolUses && "expected uses to be valid"); 989 990 for (const SymbolTable::SymbolUse &use : *symbolUses) { 991 symbols.clear(); 992 (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), 993 symbols); 994 for (Operation *symbolOp : symbols) 995 symbolToUsers[symbolOp].insert(use.getUser()); 996 } 997 } 998 }; 999 // We just set `allSymUsesVisible` to false here because it isn't necessary 1000 // for building the user map. 1001 SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, 1002 walkFn); 1003 } 1004 1005 void SymbolUserMap::replaceAllUsesWith(Operation *symbol, 1006 StringAttr newSymbolName) { 1007 auto it = symbolToUsers.find(symbol); 1008 if (it == symbolToUsers.end()) 1009 return; 1010 1011 // Replace the uses within the users of `symbol`. 1012 for (Operation *user : it->second) 1013 (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); 1014 1015 // Move the current users of `symbol` to the new symbol if it is in the 1016 // symbol table. 1017 Operation *newSymbol = 1018 symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); 1019 if (newSymbol != symbol) { 1020 // Transfer over the users to the new symbol. The reference to the old one 1021 // is fetched again as the iterator is invalidated during the insertion. 1022 auto newIt = symbolToUsers.try_emplace(newSymbol, SetVector<Operation *>{}); 1023 auto oldIt = symbolToUsers.find(symbol); 1024 assert(oldIt != symbolToUsers.end() && "missing old users list"); 1025 if (newIt.second) 1026 newIt.first->second = std::move(oldIt->second); 1027 else 1028 newIt.first->second.set_union(oldIt->second); 1029 symbolToUsers.erase(oldIt); 1030 } 1031 } 1032 1033 //===----------------------------------------------------------------------===// 1034 // Visibility parsing implementation. 1035 //===----------------------------------------------------------------------===// 1036 1037 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, 1038 NamedAttrList &attrs) { 1039 StringRef visibility; 1040 if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) 1041 return failure(); 1042 1043 StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); 1044 attrs.push_back(parser.getBuilder().getNamedAttr( 1045 SymbolTable::getVisibilityAttrName(), visibilityAttr)); 1046 return success(); 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // Symbol Interfaces 1051 //===----------------------------------------------------------------------===// 1052 1053 /// Include the generated symbol interfaces. 1054 #include "mlir/IR/SymbolInterfaces.cpp.inc" 1055