1 //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/SymbolTable.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/OpImplementation.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include <optional> 17 18 using namespace mlir; 19 20 /// Return true if the given operation is unknown and may potentially define a 21 /// symbol table. 22 static bool isPotentiallyUnknownSymbolTable(Operation *op) { 23 return op->getNumRegions() == 1 && !op->getDialect(); 24 } 25 26 /// Returns the string name of the given symbol, or null if this is not a 27 /// symbol. 28 static StringAttr getNameIfSymbol(Operation *op) { 29 return op->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); 30 } 31 static StringAttr getNameIfSymbol(Operation *op, StringAttr symbolAttrNameId) { 32 return op->getAttrOfType<StringAttr>(symbolAttrNameId); 33 } 34 35 /// Computes the nested symbol reference attribute for the symbol 'symbolName' 36 /// that are usable within the symbol table operations from 'symbol' as far up 37 /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. 38 /// Returns success if all references up to 'within' could be computed. 39 static LogicalResult 40 collectValidReferencesFor(Operation *symbol, StringAttr symbolName, 41 Operation *within, 42 SmallVectorImpl<SymbolRefAttr> &results) { 43 assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); 44 MLIRContext *ctx = symbol->getContext(); 45 46 auto leafRef = FlatSymbolRefAttr::get(symbolName); 47 results.push_back(leafRef); 48 49 // Early exit for when 'within' is the parent of 'symbol'. 50 Operation *symbolTableOp = symbol->getParentOp(); 51 if (within == symbolTableOp) 52 return success(); 53 54 // Collect references until 'symbolTableOp' reaches 'within'. 55 SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); 56 StringAttr symbolNameId = 57 StringAttr::get(ctx, SymbolTable::getSymbolAttrName()); 58 do { 59 // Each parent of 'symbol' should define a symbol table. 60 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 61 return failure(); 62 // Each parent of 'symbol' should also be a symbol. 63 StringAttr symbolTableName = getNameIfSymbol(symbolTableOp, symbolNameId); 64 if (!symbolTableName) 65 return failure(); 66 results.push_back(SymbolRefAttr::get(symbolTableName, nestedRefs)); 67 68 symbolTableOp = symbolTableOp->getParentOp(); 69 if (symbolTableOp == within) 70 break; 71 nestedRefs.insert(nestedRefs.begin(), 72 FlatSymbolRefAttr::get(symbolTableName)); 73 } while (true); 74 return success(); 75 } 76 77 /// Walk all of the operations within the given set of regions, without 78 /// traversing into any nested symbol tables. Stops walking if the result of the 79 /// callback is anything other than `WalkResult::advance`. 80 static std::optional<WalkResult> 81 walkSymbolTable(MutableArrayRef<Region> regions, 82 function_ref<std::optional<WalkResult>(Operation *)> callback) { 83 SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); 84 while (!worklist.empty()) { 85 for (Operation &op : worklist.pop_back_val()->getOps()) { 86 std::optional<WalkResult> result = callback(&op); 87 if (result != WalkResult::advance()) 88 return result; 89 90 // If this op defines a new symbol table scope, we can't traverse. Any 91 // symbol references nested within 'op' are different semantically. 92 if (!op.hasTrait<OpTrait::SymbolTable>()) { 93 for (Region ®ion : op.getRegions()) 94 worklist.push_back(®ion); 95 } 96 } 97 } 98 return WalkResult::advance(); 99 } 100 101 /// Walk all of the operations nested under, and including, the given operation, 102 /// without traversing into any nested symbol tables. Stops walking if the 103 /// result of the callback is anything other than `WalkResult::advance`. 104 static std::optional<WalkResult> 105 walkSymbolTable(Operation *op, 106 function_ref<std::optional<WalkResult>(Operation *)> callback) { 107 std::optional<WalkResult> result = callback(op); 108 if (result != WalkResult::advance() || op->hasTrait<OpTrait::SymbolTable>()) 109 return result; 110 return walkSymbolTable(op->getRegions(), callback); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // SymbolTable 115 //===----------------------------------------------------------------------===// 116 117 /// Build a symbol table with the symbols within the given operation. 118 SymbolTable::SymbolTable(Operation *symbolTableOp) 119 : symbolTableOp(symbolTableOp) { 120 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && 121 "expected operation to have SymbolTable trait"); 122 assert(symbolTableOp->getNumRegions() == 1 && 123 "expected operation to have a single region"); 124 assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && 125 "expected operation to have a single block"); 126 127 StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), 128 SymbolTable::getSymbolAttrName()); 129 for (auto &op : symbolTableOp->getRegion(0).front()) { 130 StringAttr name = getNameIfSymbol(&op, symbolNameId); 131 if (!name) 132 continue; 133 134 auto inserted = symbolTable.insert({name, &op}); 135 (void)inserted; 136 assert(inserted.second && 137 "expected region to contain uniquely named symbol operations"); 138 } 139 } 140 141 /// Look up a symbol with the specified name, returning null if no such name 142 /// exists. Names never include the @ on them. 143 Operation *SymbolTable::lookup(StringRef name) const { 144 return lookup(StringAttr::get(symbolTableOp->getContext(), name)); 145 } 146 Operation *SymbolTable::lookup(StringAttr name) const { 147 return symbolTable.lookup(name); 148 } 149 150 void SymbolTable::remove(Operation *op) { 151 StringAttr name = getNameIfSymbol(op); 152 assert(name && "expected valid 'name' attribute"); 153 assert(op->getParentOp() == symbolTableOp && 154 "expected this operation to be inside of the operation with this " 155 "SymbolTable"); 156 157 auto it = symbolTable.find(name); 158 if (it != symbolTable.end() && it->second == op) 159 symbolTable.erase(it); 160 } 161 162 void SymbolTable::erase(Operation *symbol) { 163 remove(symbol); 164 symbol->erase(); 165 } 166 167 // TODO: Consider if this should be renamed to something like insertOrUpdate 168 /// Insert a new symbol into the table and associated operation if not already 169 /// there and rename it as necessary to avoid collisions. Return the name of 170 /// the symbol after insertion as attribute. 171 StringAttr SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { 172 // The symbol cannot be the child of another op and must be the child of the 173 // symbolTableOp after this. 174 // 175 // TODO: consider if SymbolTable's constructor should behave the same. 176 if (!symbol->getParentOp()) { 177 auto &body = symbolTableOp->getRegion(0).front(); 178 if (insertPt == Block::iterator()) { 179 insertPt = Block::iterator(body.end()); 180 } else { 181 assert((insertPt == body.end() || 182 insertPt->getParentOp() == symbolTableOp) && 183 "expected insertPt to be in the associated module operation"); 184 } 185 // Insert before the terminator, if any. 186 if (insertPt == Block::iterator(body.end()) && !body.empty() && 187 std::prev(body.end())->hasTrait<OpTrait::IsTerminator>()) 188 insertPt = std::prev(body.end()); 189 190 body.getOperations().insert(insertPt, symbol); 191 } 192 assert(symbol->getParentOp() == symbolTableOp && 193 "symbol is already inserted in another op"); 194 195 // Add this symbol to the symbol table, uniquing the name if a conflict is 196 // detected. 197 StringAttr name = getSymbolName(symbol); 198 if (symbolTable.insert({name, symbol}).second) 199 return name; 200 // If the symbol was already in the table, also return. 201 if (symbolTable.lookup(name) == symbol) 202 return name; 203 // If a conflict was detected, then the symbol will not have been added to 204 // the symbol table. Try suffixes until we get to a unique name that works. 205 SmallString<128> nameBuffer(name.getValue()); 206 unsigned originalLength = nameBuffer.size(); 207 208 MLIRContext *context = symbol->getContext(); 209 210 // Iteratively try suffixes until we find one that isn't used. 211 do { 212 nameBuffer.resize(originalLength); 213 nameBuffer += '_'; 214 nameBuffer += std::to_string(uniquingCounter++); 215 } while (!symbolTable.insert({StringAttr::get(context, nameBuffer), symbol}) 216 .second); 217 setSymbolName(symbol, nameBuffer); 218 return getSymbolName(symbol); 219 } 220 221 /// Returns the name of the given symbol operation. 222 StringAttr SymbolTable::getSymbolName(Operation *symbol) { 223 StringAttr name = getNameIfSymbol(symbol); 224 assert(name && "expected valid symbol name"); 225 return name; 226 } 227 228 /// Sets the name of the given symbol operation. 229 void SymbolTable::setSymbolName(Operation *symbol, StringAttr name) { 230 symbol->setAttr(getSymbolAttrName(), name); 231 } 232 233 /// Returns the visibility of the given symbol operation. 234 SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { 235 // If the attribute doesn't exist, assume public. 236 StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); 237 if (!vis) 238 return Visibility::Public; 239 240 // Otherwise, switch on the string value. 241 return StringSwitch<Visibility>(vis.getValue()) 242 .Case("private", Visibility::Private) 243 .Case("nested", Visibility::Nested) 244 .Case("public", Visibility::Public); 245 } 246 /// Sets the visibility of the given symbol operation. 247 void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { 248 MLIRContext *ctx = symbol->getContext(); 249 250 // If the visibility is public, just drop the attribute as this is the 251 // default. 252 if (vis == Visibility::Public) { 253 symbol->removeAttr(StringAttr::get(ctx, getVisibilityAttrName())); 254 return; 255 } 256 257 // Otherwise, update the attribute. 258 assert((vis == Visibility::Private || vis == Visibility::Nested) && 259 "unknown symbol visibility kind"); 260 261 StringRef visName = vis == Visibility::Private ? "private" : "nested"; 262 symbol->setAttr(getVisibilityAttrName(), StringAttr::get(ctx, visName)); 263 } 264 265 /// Returns the nearest symbol table from a given operation `from`. Returns 266 /// nullptr if no valid parent symbol table could be found. 267 Operation *SymbolTable::getNearestSymbolTable(Operation *from) { 268 assert(from && "expected valid operation"); 269 if (isPotentiallyUnknownSymbolTable(from)) 270 return nullptr; 271 272 while (!from->hasTrait<OpTrait::SymbolTable>()) { 273 from = from->getParentOp(); 274 275 // Check that this is a valid op and isn't an unknown symbol table. 276 if (!from || isPotentiallyUnknownSymbolTable(from)) 277 return nullptr; 278 } 279 return from; 280 } 281 282 /// Walks all symbol table operations nested within, and including, `op`. For 283 /// each symbol table operation, the provided callback is invoked with the op 284 /// and a boolean signifying if the symbols within that symbol table can be 285 /// treated as if all uses are visible. `allSymUsesVisible` identifies whether 286 /// all of the symbol uses of symbols within `op` are visible. 287 void SymbolTable::walkSymbolTables( 288 Operation *op, bool allSymUsesVisible, 289 function_ref<void(Operation *, bool)> callback) { 290 bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); 291 if (isSymbolTable) { 292 SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); 293 allSymUsesVisible |= !symbol || symbol.isPrivate(); 294 } else { 295 // Otherwise if 'op' is not a symbol table, any nested symbols are 296 // guaranteed to be hidden. 297 allSymUsesVisible = true; 298 } 299 300 for (Region ®ion : op->getRegions()) 301 for (Block &block : region) 302 for (Operation &nestedOp : block) 303 walkSymbolTables(&nestedOp, allSymUsesVisible, callback); 304 305 // If 'op' had the symbol table trait, visit it after any nested symbol 306 // tables. 307 if (isSymbolTable) 308 callback(op, allSymUsesVisible); 309 } 310 311 /// Returns the operation registered with the given symbol name with the 312 /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation 313 /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol 314 /// was found. 315 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 316 StringAttr symbol) { 317 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 318 Region ®ion = symbolTableOp->getRegion(0); 319 if (region.empty()) 320 return nullptr; 321 322 // Look for a symbol with the given name. 323 StringAttr symbolNameId = StringAttr::get(symbolTableOp->getContext(), 324 SymbolTable::getSymbolAttrName()); 325 for (auto &op : region.front()) 326 if (getNameIfSymbol(&op, symbolNameId) == symbol) 327 return &op; 328 return nullptr; 329 } 330 Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, 331 SymbolRefAttr symbol) { 332 SmallVector<Operation *, 4> resolvedSymbols; 333 if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) 334 return nullptr; 335 return resolvedSymbols.back(); 336 } 337 338 /// Internal implementation of `lookupSymbolIn` that allows for specialized 339 /// implementations of the lookup function. 340 static LogicalResult lookupSymbolInImpl( 341 Operation *symbolTableOp, SymbolRefAttr symbol, 342 SmallVectorImpl<Operation *> &symbols, 343 function_ref<Operation *(Operation *, StringAttr)> lookupSymbolFn) { 344 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 345 346 // Lookup the root reference for this symbol. 347 symbolTableOp = lookupSymbolFn(symbolTableOp, symbol.getRootReference()); 348 if (!symbolTableOp) 349 return failure(); 350 symbols.push_back(symbolTableOp); 351 352 // If there are no nested references, just return the root symbol directly. 353 ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); 354 if (nestedRefs.empty()) 355 return success(); 356 357 // Verify that the root is also a symbol table. 358 if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 359 return failure(); 360 361 // Otherwise, lookup each of the nested non-leaf references and ensure that 362 // each corresponds to a valid symbol table. 363 for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { 364 symbolTableOp = lookupSymbolFn(symbolTableOp, ref.getAttr()); 365 if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) 366 return failure(); 367 symbols.push_back(symbolTableOp); 368 } 369 symbols.push_back(lookupSymbolFn(symbolTableOp, symbol.getLeafReference())); 370 return success(symbols.back()); 371 } 372 373 LogicalResult 374 SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, 375 SmallVectorImpl<Operation *> &symbols) { 376 auto lookupFn = [](Operation *symbolTableOp, StringAttr symbol) { 377 return lookupSymbolIn(symbolTableOp, symbol); 378 }; 379 return lookupSymbolInImpl(symbolTableOp, symbol, symbols, lookupFn); 380 } 381 382 /// Returns the operation registered with the given symbol name within the 383 /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns 384 /// nullptr if no valid symbol was found. 385 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 386 StringAttr symbol) { 387 Operation *symbolTableOp = getNearestSymbolTable(from); 388 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 389 } 390 Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, 391 SymbolRefAttr symbol) { 392 Operation *symbolTableOp = getNearestSymbolTable(from); 393 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 394 } 395 396 raw_ostream &mlir::operator<<(raw_ostream &os, 397 SymbolTable::Visibility visibility) { 398 switch (visibility) { 399 case SymbolTable::Visibility::Public: 400 return os << "public"; 401 case SymbolTable::Visibility::Private: 402 return os << "private"; 403 case SymbolTable::Visibility::Nested: 404 return os << "nested"; 405 } 406 llvm_unreachable("Unexpected visibility"); 407 } 408 409 //===----------------------------------------------------------------------===// 410 // SymbolTable Trait Types 411 //===----------------------------------------------------------------------===// 412 413 LogicalResult detail::verifySymbolTable(Operation *op) { 414 if (op->getNumRegions() != 1) 415 return op->emitOpError() 416 << "Operations with a 'SymbolTable' must have exactly one region"; 417 if (!llvm::hasSingleElement(op->getRegion(0))) 418 return op->emitOpError() 419 << "Operations with a 'SymbolTable' must have exactly one block"; 420 421 // Check that all symbols are uniquely named within child regions. 422 DenseMap<Attribute, Location> nameToOrigLoc; 423 for (auto &block : op->getRegion(0)) { 424 for (auto &op : block) { 425 // Check for a symbol name attribute. 426 auto nameAttr = 427 op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); 428 if (!nameAttr) 429 continue; 430 431 // Try to insert this symbol into the table. 432 auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); 433 if (!it.second) 434 return op.emitError() 435 .append("redefinition of symbol named '", nameAttr.getValue(), "'") 436 .attachNote(it.first->second) 437 .append("see existing symbol definition here"); 438 } 439 } 440 441 // Verify any nested symbol user operations. 442 SymbolTableCollection symbolTable; 443 auto verifySymbolUserFn = [&](Operation *op) -> std::optional<WalkResult> { 444 if (SymbolUserOpInterface user = dyn_cast<SymbolUserOpInterface>(op)) 445 return WalkResult(user.verifySymbolUses(symbolTable)); 446 return WalkResult::advance(); 447 }; 448 449 std::optional<WalkResult> result = 450 walkSymbolTable(op->getRegions(), verifySymbolUserFn); 451 return success(result && !result->wasInterrupted()); 452 } 453 454 LogicalResult detail::verifySymbol(Operation *op) { 455 // Verify the name attribute. 456 if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) 457 return op->emitOpError() << "requires string attribute '" 458 << mlir::SymbolTable::getSymbolAttrName() << "'"; 459 460 // Verify the visibility attribute. 461 if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { 462 StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); 463 if (!visStrAttr) 464 return op->emitOpError() << "requires visibility attribute '" 465 << mlir::SymbolTable::getVisibilityAttrName() 466 << "' to be a string attribute, but got " << vis; 467 468 if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, 469 visStrAttr.getValue())) 470 return op->emitOpError() 471 << "visibility expected to be one of [\"public\", \"private\", " 472 "\"nested\"], but got " 473 << visStrAttr; 474 } 475 return success(); 476 } 477 478 //===----------------------------------------------------------------------===// 479 // Symbol Use Lists 480 //===----------------------------------------------------------------------===// 481 482 /// Walk all of the symbol references within the given operation, invoking the 483 /// provided callback for each found use. The callbacks takes the use of the 484 /// symbol. 485 static WalkResult 486 walkSymbolRefs(Operation *op, 487 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { 488 return op->getAttrDictionary().walk<WalkOrder::PreOrder>( 489 [&](SymbolRefAttr symbolRef) { 490 if (callback({op, symbolRef}).wasInterrupted()) 491 return WalkResult::interrupt(); 492 493 // Don't walk nested references. 494 return WalkResult::skip(); 495 }); 496 } 497 498 /// Walk all of the uses, for any symbol, that are nested within the given 499 /// regions, invoking the provided callback for each. This does not traverse 500 /// into any nested symbol tables. 501 static std::optional<WalkResult> 502 walkSymbolUses(MutableArrayRef<Region> regions, 503 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { 504 return walkSymbolTable(regions, 505 [&](Operation *op) -> std::optional<WalkResult> { 506 // Check that this isn't a potentially unknown symbol 507 // table. 508 if (isPotentiallyUnknownSymbolTable(op)) 509 return std::nullopt; 510 511 return walkSymbolRefs(op, callback); 512 }); 513 } 514 /// Walk all of the uses, for any symbol, that are nested within the given 515 /// operation 'from', invoking the provided callback for each. This does not 516 /// traverse into any nested symbol tables. 517 static std::optional<WalkResult> 518 walkSymbolUses(Operation *from, 519 function_ref<WalkResult(SymbolTable::SymbolUse)> callback) { 520 // If this operation has regions, and it, as well as its dialect, isn't 521 // registered then conservatively fail. The operation may define a 522 // symbol table, so we can't opaquely know if we should traverse to find 523 // nested uses. 524 if (isPotentiallyUnknownSymbolTable(from)) 525 return std::nullopt; 526 527 // Walk the uses on this operation. 528 if (walkSymbolRefs(from, callback).wasInterrupted()) 529 return WalkResult::interrupt(); 530 531 // Only recurse if this operation is not a symbol table. A symbol table 532 // defines a new scope, so we can't walk the attributes from within the symbol 533 // table op. 534 if (!from->hasTrait<OpTrait::SymbolTable>()) 535 return walkSymbolUses(from->getRegions(), callback); 536 return WalkResult::advance(); 537 } 538 539 namespace { 540 /// This class represents a single symbol scope. A symbol scope represents the 541 /// set of operations nested within a symbol table that may reference symbols 542 /// within that table. A symbol scope does not contain the symbol table 543 /// operation itself, just its contained operations. A scope ends at leaf 544 /// operations or another symbol table operation. 545 struct SymbolScope { 546 /// Walk the symbol uses within this scope, invoking the given callback. 547 /// This variant is used when the callback type matches that expected by 548 /// 'walkSymbolUses'. 549 template <typename CallbackT, 550 std::enable_if_t<!std::is_same< 551 typename llvm::function_traits<CallbackT>::result_t, 552 void>::value> * = nullptr> 553 std::optional<WalkResult> walk(CallbackT cback) { 554 if (Region *region = limit.dyn_cast<Region *>()) 555 return walkSymbolUses(*region, cback); 556 return walkSymbolUses(limit.get<Operation *>(), cback); 557 } 558 /// This variant is used when the callback type matches a stripped down type: 559 /// void(SymbolTable::SymbolUse use) 560 template <typename CallbackT, 561 std::enable_if_t<std::is_same< 562 typename llvm::function_traits<CallbackT>::result_t, 563 void>::value> * = nullptr> 564 std::optional<WalkResult> walk(CallbackT cback) { 565 return walk([=](SymbolTable::SymbolUse use) { 566 return cback(use), WalkResult::advance(); 567 }); 568 } 569 570 /// Walk all of the operations nested under the current scope without 571 /// traversing into any nested symbol tables. 572 template <typename CallbackT> 573 std::optional<WalkResult> walkSymbolTable(CallbackT &&cback) { 574 if (Region *region = limit.dyn_cast<Region *>()) 575 return ::walkSymbolTable(*region, cback); 576 return ::walkSymbolTable(limit.get<Operation *>(), cback); 577 } 578 579 /// The representation of the symbol within this scope. 580 SymbolRefAttr symbol; 581 582 /// The IR unit representing this scope. 583 llvm::PointerUnion<Operation *, Region *> limit; 584 }; 585 } // namespace 586 587 /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. 588 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 589 Operation *limit) { 590 StringAttr symName = SymbolTable::getSymbolName(symbol); 591 assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); 592 593 // Compute the ancestors of 'limit'. 594 SetVector<Operation *, SmallVector<Operation *, 4>, 595 SmallPtrSet<Operation *, 4>> 596 limitAncestors; 597 Operation *limitAncestor = limit; 598 do { 599 // Check to see if 'symbol' is an ancestor of 'limit'. 600 if (limitAncestor == symbol) { 601 // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr 602 // doesn't support parent references. 603 if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == 604 symbol->getParentOp()) 605 return {{SymbolRefAttr::get(symName), limit}}; 606 return {}; 607 } 608 609 limitAncestors.insert(limitAncestor); 610 } while ((limitAncestor = limitAncestor->getParentOp())); 611 612 // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. 613 Operation *commonAncestor = symbol->getParentOp(); 614 do { 615 if (limitAncestors.count(commonAncestor)) 616 break; 617 } while ((commonAncestor = commonAncestor->getParentOp())); 618 assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); 619 620 // Compute the set of valid nested references for 'symbol' as far up to the 621 // common ancestor as possible. 622 SmallVector<SymbolRefAttr, 2> references; 623 bool collectedAllReferences = succeeded( 624 collectValidReferencesFor(symbol, symName, commonAncestor, references)); 625 626 // Handle the case where the common ancestor is 'limit'. 627 if (commonAncestor == limit) { 628 SmallVector<SymbolScope, 2> scopes; 629 630 // Walk each of the ancestors of 'symbol', calling the compute function for 631 // each one. 632 Operation *limitIt = symbol->getParentOp(); 633 for (size_t i = 0, e = references.size(); i != e; 634 ++i, limitIt = limitIt->getParentOp()) { 635 assert(limitIt->hasTrait<OpTrait::SymbolTable>()); 636 scopes.push_back({references[i], &limitIt->getRegion(0)}); 637 } 638 return scopes; 639 } 640 641 // Otherwise, we just need the symbol reference for 'symbol' that will be 642 // used within 'limit'. This is the last reference in the list we computed 643 // above if we were able to collect all references. 644 if (!collectedAllReferences) 645 return {}; 646 return {{references.back(), limit}}; 647 } 648 static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, 649 Region *limit) { 650 auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); 651 652 // If we collected some scopes to walk, make sure to constrain the one for 653 // limit to the specific region requested. 654 if (!scopes.empty()) 655 scopes.back().limit = limit; 656 return scopes; 657 } 658 template <typename IRUnit> 659 static SmallVector<SymbolScope, 1> collectSymbolScopes(StringAttr symbol, 660 IRUnit *limit) { 661 return {{SymbolRefAttr::get(symbol), limit}}; 662 } 663 664 /// Returns true if the given reference 'SubRef' is a sub reference of the 665 /// reference 'ref', i.e. 'ref' is a further qualified reference. 666 static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { 667 if (ref == subRef) 668 return true; 669 670 // If the references are not pointer equal, check to see if `subRef` is a 671 // prefix of `ref`. 672 if (ref.isa<FlatSymbolRefAttr>() || 673 ref.getRootReference() != subRef.getRootReference()) 674 return false; 675 676 auto refLeafs = ref.getNestedReferences(); 677 auto subRefLeafs = subRef.getNestedReferences(); 678 return subRefLeafs.size() < refLeafs.size() && 679 subRefLeafs == refLeafs.take_front(subRefLeafs.size()); 680 } 681 682 //===----------------------------------------------------------------------===// 683 // SymbolTable::getSymbolUses 684 685 /// The implementation of SymbolTable::getSymbolUses below. 686 template <typename FromT> 687 static std::optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { 688 std::vector<SymbolTable::SymbolUse> uses; 689 auto walkFn = [&](SymbolTable::SymbolUse symbolUse) { 690 uses.push_back(symbolUse); 691 return WalkResult::advance(); 692 }; 693 auto result = walkSymbolUses(from, walkFn); 694 return result ? std::optional<SymbolTable::UseRange>(std::move(uses)) 695 : std::nullopt; 696 } 697 698 /// Get an iterator range for all of the uses, for any symbol, that are nested 699 /// within the given operation 'from'. This does not traverse into any nested 700 /// symbol tables, and will also only return uses on 'from' if it does not 701 /// also define a symbol table. This is because we treat the region as the 702 /// boundary of the symbol table, and not the op itself. This function returns 703 /// std::nullopt if there are any unknown operations that may potentially be 704 /// symbol tables. 705 auto SymbolTable::getSymbolUses(Operation *from) -> std::optional<UseRange> { 706 return getSymbolUsesImpl(from); 707 } 708 auto SymbolTable::getSymbolUses(Region *from) -> std::optional<UseRange> { 709 return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); 710 } 711 712 //===----------------------------------------------------------------------===// 713 // SymbolTable::getSymbolUses 714 715 /// The implementation of SymbolTable::getSymbolUses below. 716 template <typename SymbolT, typename IRUnitT> 717 static std::optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, 718 IRUnitT *limit) { 719 std::vector<SymbolTable::SymbolUse> uses; 720 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 721 if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { 722 if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) 723 uses.push_back(symbolUse); 724 })) 725 return std::nullopt; 726 } 727 return SymbolTable::UseRange(std::move(uses)); 728 } 729 730 /// Get all of the uses of the given symbol that are nested within the given 731 /// operation 'from', invoking the provided callback for each. This does not 732 /// traverse into any nested symbol tables. This function returns std::nullopt 733 /// if there are any unknown operations that may potentially be symbol tables. 734 auto SymbolTable::getSymbolUses(StringAttr symbol, Operation *from) 735 -> std::optional<UseRange> { 736 return getSymbolUsesImpl(symbol, from); 737 } 738 auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) 739 -> std::optional<UseRange> { 740 return getSymbolUsesImpl(symbol, from); 741 } 742 auto SymbolTable::getSymbolUses(StringAttr symbol, Region *from) 743 -> std::optional<UseRange> { 744 return getSymbolUsesImpl(symbol, from); 745 } 746 auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) 747 -> std::optional<UseRange> { 748 return getSymbolUsesImpl(symbol, from); 749 } 750 751 //===----------------------------------------------------------------------===// 752 // SymbolTable::symbolKnownUseEmpty 753 754 /// The implementation of SymbolTable::symbolKnownUseEmpty below. 755 template <typename SymbolT, typename IRUnitT> 756 static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { 757 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 758 // Walk all of the symbol uses looking for a reference to 'symbol'. 759 if (scope.walk([&](SymbolTable::SymbolUse symbolUse) { 760 return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) 761 ? WalkResult::interrupt() 762 : WalkResult::advance(); 763 }) != WalkResult::advance()) 764 return false; 765 } 766 return true; 767 } 768 769 /// Return if the given symbol is known to have no uses that are nested within 770 /// the given operation 'from'. This does not traverse into any nested symbol 771 /// tables. This function will also return false if there are any unknown 772 /// operations that may potentially be symbol tables. 773 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Operation *from) { 774 return symbolKnownUseEmptyImpl(symbol, from); 775 } 776 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { 777 return symbolKnownUseEmptyImpl(symbol, from); 778 } 779 bool SymbolTable::symbolKnownUseEmpty(StringAttr symbol, Region *from) { 780 return symbolKnownUseEmptyImpl(symbol, from); 781 } 782 bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { 783 return symbolKnownUseEmptyImpl(symbol, from); 784 } 785 786 //===----------------------------------------------------------------------===// 787 // SymbolTable::replaceAllSymbolUses 788 789 /// Generates a new symbol reference attribute with a new leaf reference. 790 static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, 791 FlatSymbolRefAttr newLeafAttr) { 792 if (oldAttr.isa<FlatSymbolRefAttr>()) 793 return newLeafAttr; 794 auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); 795 nestedRefs.back() = newLeafAttr; 796 return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs); 797 } 798 799 /// The implementation of SymbolTable::replaceAllSymbolUses below. 800 template <typename SymbolT, typename IRUnitT> 801 static LogicalResult 802 replaceAllSymbolUsesImpl(SymbolT symbol, StringAttr newSymbol, IRUnitT *limit) { 803 // Generate a new attribute to replace the given attribute. 804 FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol); 805 for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { 806 SymbolRefAttr oldAttr = scope.symbol; 807 SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); 808 AttrTypeReplacer replacer; 809 replacer.addReplacement( 810 [&](SymbolRefAttr attr) -> std::pair<Attribute, WalkResult> { 811 // Regardless of the match, don't walk nested SymbolRefAttrs, we don't 812 // want to accidentally replace an inner reference. 813 if (attr == oldAttr) 814 return {newAttr, WalkResult::skip()}; 815 // Handle prefix matches. 816 if (isReferencePrefixOf(oldAttr, attr)) { 817 auto oldNestedRefs = oldAttr.getNestedReferences(); 818 auto nestedRefs = attr.getNestedReferences(); 819 if (oldNestedRefs.empty()) 820 return {SymbolRefAttr::get(newSymbol, nestedRefs), 821 WalkResult::skip()}; 822 823 auto newNestedRefs = llvm::to_vector<4>(nestedRefs); 824 newNestedRefs[oldNestedRefs.size() - 1] = newLeafAttr; 825 return {SymbolRefAttr::get(attr.getRootReference(), newNestedRefs), 826 WalkResult::skip()}; 827 } 828 return {attr, WalkResult::skip()}; 829 }); 830 831 auto walkFn = [&](Operation *op) -> std::optional<WalkResult> { 832 replacer.replaceElementsIn(op); 833 return WalkResult::advance(); 834 }; 835 if (!scope.walkSymbolTable(walkFn)) 836 return failure(); 837 } 838 return success(); 839 } 840 841 /// Attempt to replace all uses of the given symbol 'oldSymbol' with the 842 /// provided symbol 'newSymbol' that are nested within the given operation 843 /// 'from'. This does not traverse into any nested symbol tables. If there are 844 /// any unknown operations that may potentially be symbol tables, no uses are 845 /// replaced and failure is returned. 846 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, 847 StringAttr newSymbol, 848 Operation *from) { 849 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 850 } 851 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 852 StringAttr newSymbol, 853 Operation *from) { 854 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 855 } 856 LogicalResult SymbolTable::replaceAllSymbolUses(StringAttr oldSymbol, 857 StringAttr newSymbol, 858 Region *from) { 859 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 860 } 861 LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, 862 StringAttr newSymbol, 863 Region *from) { 864 return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); 865 } 866 867 //===----------------------------------------------------------------------===// 868 // SymbolTableCollection 869 //===----------------------------------------------------------------------===// 870 871 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 872 StringAttr symbol) { 873 return getSymbolTable(symbolTableOp).lookup(symbol); 874 } 875 Operation *SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 876 SymbolRefAttr name) { 877 SmallVector<Operation *, 4> symbols; 878 if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) 879 return nullptr; 880 return symbols.back(); 881 } 882 /// A variant of 'lookupSymbolIn' that returns all of the symbols referenced by 883 /// a given SymbolRefAttr. Returns failure if any of the nested references could 884 /// not be resolved. 885 LogicalResult 886 SymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 887 SymbolRefAttr name, 888 SmallVectorImpl<Operation *> &symbols) { 889 auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { 890 return lookupSymbolIn(symbolTableOp, symbol); 891 }; 892 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); 893 } 894 895 /// Returns the operation registered with the given symbol name within the 896 /// closest parent operation of, or including, 'from' with the 897 /// 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol was 898 /// found. 899 Operation *SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 900 StringAttr symbol) { 901 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 902 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 903 } 904 Operation * 905 SymbolTableCollection::lookupNearestSymbolFrom(Operation *from, 906 SymbolRefAttr symbol) { 907 Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(from); 908 return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; 909 } 910 911 /// Lookup, or create, a symbol table for an operation. 912 SymbolTable &SymbolTableCollection::getSymbolTable(Operation *op) { 913 auto it = symbolTables.try_emplace(op, nullptr); 914 if (it.second) 915 it.first->second = std::make_unique<SymbolTable>(op); 916 return *it.first->second; 917 } 918 919 //===----------------------------------------------------------------------===// 920 // LockedSymbolTableCollection 921 //===----------------------------------------------------------------------===// 922 923 Operation *LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 924 StringAttr symbol) { 925 return getSymbolTable(symbolTableOp).lookup(symbol); 926 } 927 928 Operation * 929 LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 930 FlatSymbolRefAttr symbol) { 931 return lookupSymbolIn(symbolTableOp, symbol.getAttr()); 932 } 933 934 Operation *LockedSymbolTableCollection::lookupSymbolIn(Operation *symbolTableOp, 935 SymbolRefAttr name) { 936 SmallVector<Operation *> symbols; 937 if (failed(lookupSymbolIn(symbolTableOp, name, symbols))) 938 return nullptr; 939 return symbols.back(); 940 } 941 942 LogicalResult LockedSymbolTableCollection::lookupSymbolIn( 943 Operation *symbolTableOp, SymbolRefAttr name, 944 SmallVectorImpl<Operation *> &symbols) { 945 auto lookupFn = [this](Operation *symbolTableOp, StringAttr symbol) { 946 return lookupSymbolIn(symbolTableOp, symbol); 947 }; 948 return lookupSymbolInImpl(symbolTableOp, name, symbols, lookupFn); 949 } 950 951 SymbolTable & 952 LockedSymbolTableCollection::getSymbolTable(Operation *symbolTableOp) { 953 assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); 954 // Try to find an existing symbol table. 955 { 956 llvm::sys::SmartScopedReader<true> lock(mutex); 957 auto it = collection.symbolTables.find(symbolTableOp); 958 if (it != collection.symbolTables.end()) 959 return *it->second; 960 } 961 // Create a symbol table for the operation. Perform construction outside of 962 // the critical section. 963 auto symbolTable = std::make_unique<SymbolTable>(symbolTableOp); 964 // Insert the constructed symbol table. 965 llvm::sys::SmartScopedWriter<true> lock(mutex); 966 return *collection.symbolTables 967 .insert({symbolTableOp, std::move(symbolTable)}) 968 .first->second; 969 } 970 971 //===----------------------------------------------------------------------===// 972 // SymbolUserMap 973 //===----------------------------------------------------------------------===// 974 975 SymbolUserMap::SymbolUserMap(SymbolTableCollection &symbolTable, 976 Operation *symbolTableOp) 977 : symbolTable(symbolTable) { 978 // Walk each of the symbol tables looking for discardable callgraph nodes. 979 SmallVector<Operation *> symbols; 980 auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) { 981 for (Operation &nestedOp : symbolTableOp->getRegion(0).getOps()) { 982 auto symbolUses = SymbolTable::getSymbolUses(&nestedOp); 983 assert(symbolUses && "expected uses to be valid"); 984 985 for (const SymbolTable::SymbolUse &use : *symbolUses) { 986 symbols.clear(); 987 (void)symbolTable.lookupSymbolIn(symbolTableOp, use.getSymbolRef(), 988 symbols); 989 for (Operation *symbolOp : symbols) 990 symbolToUsers[symbolOp].insert(use.getUser()); 991 } 992 } 993 }; 994 // We just set `allSymUsesVisible` to false here because it isn't necessary 995 // for building the user map. 996 SymbolTable::walkSymbolTables(symbolTableOp, /*allSymUsesVisible=*/false, 997 walkFn); 998 } 999 1000 void SymbolUserMap::replaceAllUsesWith(Operation *symbol, 1001 StringAttr newSymbolName) { 1002 auto it = symbolToUsers.find(symbol); 1003 if (it == symbolToUsers.end()) 1004 return; 1005 1006 // Replace the uses within the users of `symbol`. 1007 for (Operation *user : it->second) 1008 (void)SymbolTable::replaceAllSymbolUses(symbol, newSymbolName, user); 1009 1010 // Move the current users of `symbol` to the new symbol if it is in the 1011 // symbol table. 1012 Operation *newSymbol = 1013 symbolTable.lookupSymbolIn(symbol->getParentOp(), newSymbolName); 1014 if (newSymbol != symbol) { 1015 // Transfer over the users to the new symbol. The reference to the old one 1016 // is fetched again as the iterator is invalidated during the insertion. 1017 auto newIt = symbolToUsers.try_emplace(newSymbol, SetVector<Operation *>{}); 1018 auto oldIt = symbolToUsers.find(symbol); 1019 assert(oldIt != symbolToUsers.end() && "missing old users list"); 1020 if (newIt.second) 1021 newIt.first->second = std::move(oldIt->second); 1022 else 1023 newIt.first->second.set_union(oldIt->second); 1024 symbolToUsers.erase(oldIt); 1025 } 1026 } 1027 1028 //===----------------------------------------------------------------------===// 1029 // Visibility parsing implementation. 1030 //===----------------------------------------------------------------------===// 1031 1032 ParseResult impl::parseOptionalVisibilityKeyword(OpAsmParser &parser, 1033 NamedAttrList &attrs) { 1034 StringRef visibility; 1035 if (parser.parseOptionalKeyword(&visibility, {"public", "private", "nested"})) 1036 return failure(); 1037 1038 StringAttr visibilityAttr = parser.getBuilder().getStringAttr(visibility); 1039 attrs.push_back(parser.getBuilder().getNamedAttr( 1040 SymbolTable::getVisibilityAttrName(), visibilityAttr)); 1041 return success(); 1042 } 1043 1044 //===----------------------------------------------------------------------===// 1045 // Symbol Interfaces 1046 //===----------------------------------------------------------------------===// 1047 1048 /// Include the generated symbol interfaces. 1049 #include "mlir/IR/SymbolInterfaces.cpp.inc" 1050