1 //===- Block.cpp - MLIR Block Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Block.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/Operation.h" 12 #include "llvm/ADT/BitVector.h" 13 using namespace mlir; 14 15 //===----------------------------------------------------------------------===// 16 // BlockArgument 17 //===----------------------------------------------------------------------===// 18 19 /// Returns the number of this argument. 20 unsigned BlockArgument::getArgNumber() const { 21 // Arguments are not stored in place, so we have to find it within the list. 22 auto argList = getOwner()->getArguments(); 23 return std::distance(argList.begin(), llvm::find(argList, *this)); 24 } 25 26 //===----------------------------------------------------------------------===// 27 // Block 28 //===----------------------------------------------------------------------===// 29 30 Block::~Block() { 31 assert(!verifyOpOrder() && "Expected valid operation ordering."); 32 clear(); 33 for (BlockArgument arg : arguments) 34 arg.destroy(); 35 } 36 37 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); } 38 39 /// Returns the closest surrounding operation that contains this block or 40 /// nullptr if this block is unlinked. 41 Operation *Block::getParentOp() { 42 return getParent() ? getParent()->getParentOp() : nullptr; 43 } 44 45 /// Return if this block is the entry block in the parent region. 46 bool Block::isEntryBlock() { return this == &getParent()->front(); } 47 48 /// Insert this block (which must not already be in a region) right before the 49 /// specified block. 50 void Block::insertBefore(Block *block) { 51 assert(!getParent() && "already inserted into a block!"); 52 assert(block->getParent() && "cannot insert before a block without a parent"); 53 block->getParent()->getBlocks().insert(block->getIterator(), this); 54 } 55 56 /// Unlink this block from its current region and insert it right before the 57 /// specific block. 58 void Block::moveBefore(Block *block) { 59 assert(block->getParent() && "cannot insert before a block without a parent"); 60 block->getParent()->getBlocks().splice( 61 block->getIterator(), getParent()->getBlocks(), getIterator()); 62 } 63 64 /// Unlink this Block from its parent Region and delete it. 65 void Block::erase() { 66 assert(getParent() && "Block has no parent"); 67 getParent()->getBlocks().erase(this); 68 } 69 70 /// Returns 'op' if 'op' lies in this block, or otherwise finds the 71 /// ancestor operation of 'op' that lies in this block. Returns nullptr if 72 /// the latter fails. 73 Operation *Block::findAncestorOpInBlock(Operation &op) { 74 // Traverse up the operation hierarchy starting from the owner of operand to 75 // find the ancestor operation that resides in the block of 'forOp'. 76 auto *currOp = &op; 77 while (currOp->getBlock() != this) { 78 currOp = currOp->getParentOp(); 79 if (!currOp) 80 return nullptr; 81 } 82 return currOp; 83 } 84 85 /// This drops all operand uses from operations within this block, which is 86 /// an essential step in breaking cyclic dependences between references when 87 /// they are to be deleted. 88 void Block::dropAllReferences() { 89 for (Operation &i : *this) 90 i.dropAllReferences(); 91 } 92 93 void Block::dropAllDefinedValueUses() { 94 for (auto arg : getArguments()) 95 arg.dropAllUses(); 96 for (auto &op : *this) 97 op.dropAllDefinedValueUses(); 98 dropAllUses(); 99 } 100 101 /// Returns true if the ordering of the child operations is valid, false 102 /// otherwise. 103 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); } 104 105 /// Invalidates the current ordering of operations. 106 void Block::invalidateOpOrder() { 107 // Validate the current ordering. 108 assert(!verifyOpOrder()); 109 parentValidOpOrderPair.setInt(false); 110 } 111 112 /// Verifies the current ordering of child operations. Returns false if the 113 /// order is valid, true otherwise. 114 bool Block::verifyOpOrder() { 115 // The order is already known to be invalid. 116 if (!isOpOrderValid()) 117 return false; 118 // The order is valid if there are less than 2 operations. 119 if (operations.empty() || std::next(operations.begin()) == operations.end()) 120 return false; 121 122 Operation *prev = nullptr; 123 for (auto &i : *this) { 124 // The previous operation must have a smaller order index than the next as 125 // it appears earlier in the list. 126 if (prev && prev->orderIndex != Operation::kInvalidOrderIdx && 127 prev->orderIndex >= i.orderIndex) 128 return true; 129 prev = &i; 130 } 131 return false; 132 } 133 134 /// Recomputes the ordering of child operations within the block. 135 void Block::recomputeOpOrder() { 136 parentValidOpOrderPair.setInt(true); 137 138 unsigned orderIndex = 0; 139 for (auto &op : *this) 140 op.orderIndex = (orderIndex += Operation::kOrderStride); 141 } 142 143 //===----------------------------------------------------------------------===// 144 // Argument list management. 145 //===----------------------------------------------------------------------===// 146 147 /// Return a range containing the types of the arguments for this block. 148 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> { 149 return ValueTypeRange<BlockArgListType>(getArguments()); 150 } 151 152 BlockArgument Block::addArgument(Type type) { 153 BlockArgument arg = BlockArgument::create(type, this); 154 arguments.push_back(arg); 155 return arg; 156 } 157 158 /// Add one argument to the argument list for each type specified in the list. 159 auto Block::addArguments(TypeRange types) -> iterator_range<args_iterator> { 160 size_t initialSize = arguments.size(); 161 arguments.reserve(initialSize + types.size()); 162 for (auto type : types) 163 addArgument(type); 164 return {arguments.data() + initialSize, arguments.data() + arguments.size()}; 165 } 166 167 BlockArgument Block::insertArgument(unsigned index, Type type) { 168 auto arg = BlockArgument::create(type, this); 169 assert(index <= arguments.size()); 170 arguments.insert(arguments.begin() + index, arg); 171 return arg; 172 } 173 174 void Block::eraseArgument(unsigned index) { 175 assert(index < arguments.size()); 176 arguments[index].destroy(); 177 arguments.erase(arguments.begin() + index); 178 } 179 180 void Block::eraseArguments(ArrayRef<unsigned> argIndices) { 181 llvm::BitVector eraseIndices(getNumArguments()); 182 for (unsigned i : argIndices) 183 eraseIndices.set(i); 184 eraseArguments(eraseIndices); 185 } 186 187 void Block::eraseArguments(llvm::BitVector eraseIndices) { 188 // We do this in reverse so that we erase later indices before earlier 189 // indices, to avoid shifting the later indices. 190 unsigned originalNumArgs = getNumArguments(); 191 for (unsigned i = 0; i < originalNumArgs; ++i) 192 if (eraseIndices.test(originalNumArgs - i - 1)) 193 eraseArgument(originalNumArgs - i - 1); 194 } 195 196 /// Insert one value to the given position of the argument list. The existing 197 /// arguments are shifted. The block is expected not to have predecessors. 198 BlockArgument Block::insertArgument(args_iterator it, Type type) { 199 assert(llvm::empty(getPredecessors()) && 200 "cannot insert arguments to blocks with predecessors"); 201 202 // Use the args_iterator (on the BlockArgListType) to compute the insertion 203 // iterator in the underlying argument storage. 204 size_t distance = std::distance(args_begin(), it); 205 auto arg = BlockArgument::create(type, this); 206 arguments.insert(std::next(arguments.begin(), distance), arg); 207 return arg; 208 } 209 210 //===----------------------------------------------------------------------===// 211 // Terminator management 212 //===----------------------------------------------------------------------===// 213 214 /// Get the terminator operation of this block. This function asserts that 215 /// the block has a valid terminator operation. 216 Operation *Block::getTerminator() { 217 assert(!empty() && back().mightHaveTrait<OpTrait::IsTerminator>()); 218 return &back(); 219 } 220 221 // Indexed successor access. 222 unsigned Block::getNumSuccessors() { 223 return empty() ? 0 : back().getNumSuccessors(); 224 } 225 226 Block *Block::getSuccessor(unsigned i) { 227 assert(i < getNumSuccessors()); 228 return getTerminator()->getSuccessor(i); 229 } 230 231 /// If this block has exactly one predecessor, return it. Otherwise, return 232 /// null. 233 /// 234 /// Note that multiple edges from a single block (e.g. if you have a cond 235 /// branch with the same block as the true/false destinations) is not 236 /// considered to be a single predecessor. 237 Block *Block::getSinglePredecessor() { 238 auto it = pred_begin(); 239 if (it == pred_end()) 240 return nullptr; 241 auto *firstPred = *it; 242 ++it; 243 return it == pred_end() ? firstPred : nullptr; 244 } 245 246 /// If this block has a unique predecessor, i.e., all incoming edges originate 247 /// from one block, return it. Otherwise, return null. 248 Block *Block::getUniquePredecessor() { 249 auto it = pred_begin(), e = pred_end(); 250 if (it == e) 251 return nullptr; 252 253 // Check for any conflicting predecessors. 254 auto *firstPred = *it; 255 for (++it; it != e; ++it) 256 if (*it != firstPred) 257 return nullptr; 258 return firstPred; 259 } 260 261 //===----------------------------------------------------------------------===// 262 // Other 263 //===----------------------------------------------------------------------===// 264 265 /// Split the block into two blocks before the specified operation or 266 /// iterator. 267 /// 268 /// Note that all operations BEFORE the specified iterator stay as part of 269 /// the original basic block, and the rest of the operations in the original 270 /// block are moved to the new block, including the old terminator. The 271 /// original block is left without a terminator. 272 /// 273 /// The newly formed Block is returned, and the specified iterator is 274 /// invalidated. 275 Block *Block::splitBlock(iterator splitBefore) { 276 // Start by creating a new basic block, and insert it immediate after this 277 // one in the containing region. 278 auto newBB = new Block(); 279 getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB); 280 281 // Move all of the operations from the split point to the end of the region 282 // into the new block. 283 newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore, 284 end()); 285 return newBB; 286 } 287 288 //===----------------------------------------------------------------------===// 289 // Predecessors 290 //===----------------------------------------------------------------------===// 291 292 Block *PredecessorIterator::unwrap(BlockOperand &value) { 293 return value.getOwner()->getBlock(); 294 } 295 296 /// Get the successor number in the predecessor terminator. 297 unsigned PredecessorIterator::getSuccessorIndex() const { 298 return I->getOperandNumber(); 299 } 300 301 //===----------------------------------------------------------------------===// 302 // SuccessorRange 303 //===----------------------------------------------------------------------===// 304 305 SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {} 306 307 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() { 308 if (Operation *term = block->getTerminator()) 309 if ((count = term->getNumSuccessors())) 310 base = term->getBlockOperands().data(); 311 } 312 313 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() { 314 if ((count = term->getNumSuccessors())) 315 base = term->getBlockOperands().data(); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // BlockRange 320 //===----------------------------------------------------------------------===// 321 322 BlockRange::BlockRange(ArrayRef<Block *> blocks) : BlockRange(nullptr, 0) { 323 if ((count = blocks.size())) 324 base = blocks.data(); 325 } 326 327 BlockRange::BlockRange(SuccessorRange successors) 328 : BlockRange(successors.begin().getBase(), successors.size()) {} 329 330 /// See `llvm::detail::indexed_accessor_range_base` for details. 331 BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) { 332 if (auto *operand = object.dyn_cast<BlockOperand *>()) 333 return {operand + index}; 334 return {object.dyn_cast<Block *const *>() + index}; 335 } 336 337 /// See `llvm::detail::indexed_accessor_range_base` for details. 338 Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) { 339 if (const auto *operand = object.dyn_cast<BlockOperand *>()) 340 return operand[index].get(); 341 return object.dyn_cast<Block *const *>()[index]; 342 } 343