xref: /llvm-project/mlir/lib/IR/Block.cpp (revision 804d3c4ce192391ef7ba8724c6b9eff456b5c4b2)
1 //===- Block.cpp - MLIR Block Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/Block.h"
10 
11 #include "mlir/IR/Builders.h"
12 #include "mlir/IR/Operation.h"
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 
16 using namespace mlir;
17 
18 //===----------------------------------------------------------------------===//
19 // Block
20 //===----------------------------------------------------------------------===//
21 
22 Block::~Block() {
23   assert(!verifyOpOrder() && "Expected valid operation ordering.");
24   clear();
25   for (BlockArgument arg : arguments)
26     arg.destroy();
27 }
28 
29 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); }
30 
31 /// Returns the closest surrounding operation that contains this block or
32 /// nullptr if this block is unlinked.
33 Operation *Block::getParentOp() {
34   return getParent() ? getParent()->getParentOp() : nullptr;
35 }
36 
37 /// Return if this block is the entry block in the parent region.
38 bool Block::isEntryBlock() { return this == &getParent()->front(); }
39 
40 /// Insert this block (which must not already be in a region) right before the
41 /// specified block.
42 void Block::insertBefore(Block *block) {
43   assert(!getParent() && "already inserted into a block!");
44   assert(block->getParent() && "cannot insert before a block without a parent");
45   block->getParent()->getBlocks().insert(block->getIterator(), this);
46 }
47 
48 void Block::insertAfter(Block *block) {
49   assert(!getParent() && "already inserted into a block!");
50   assert(block->getParent() && "cannot insert before a block without a parent");
51   block->getParent()->getBlocks().insertAfter(block->getIterator(), this);
52 }
53 
54 /// Unlink this block from its current region and insert it right before the
55 /// specific block.
56 void Block::moveBefore(Block *block) {
57   assert(block->getParent() && "cannot insert before a block without a parent");
58   moveBefore(block->getParent(), block->getIterator());
59 }
60 
61 /// Unlink this block from its current region and insert it right before the
62 /// block that the given iterator points to in the region region.
63 void Block::moveBefore(Region *region, llvm::iplist<Block>::iterator iterator) {
64   region->getBlocks().splice(iterator, getParent()->getBlocks(), getIterator());
65 }
66 
67 /// Unlink this Block from its parent Region and delete it.
68 void Block::erase() {
69   assert(getParent() && "Block has no parent");
70   getParent()->getBlocks().erase(this);
71 }
72 
73 /// Returns 'op' if 'op' lies in this block, or otherwise finds the
74 /// ancestor operation of 'op' that lies in this block. Returns nullptr if
75 /// the latter fails.
76 Operation *Block::findAncestorOpInBlock(Operation &op) {
77   // Traverse up the operation hierarchy starting from the owner of operand to
78   // find the ancestor operation that resides in the block of 'forOp'.
79   auto *currOp = &op;
80   while (currOp->getBlock() != this) {
81     currOp = currOp->getParentOp();
82     if (!currOp)
83       return nullptr;
84   }
85   return currOp;
86 }
87 
88 /// This drops all operand uses from operations within this block, which is
89 /// an essential step in breaking cyclic dependences between references when
90 /// they are to be deleted.
91 void Block::dropAllReferences() {
92   for (Operation &i : *this)
93     i.dropAllReferences();
94 }
95 
96 void Block::dropAllDefinedValueUses() {
97   for (auto arg : getArguments())
98     arg.dropAllUses();
99   for (auto &op : *this)
100     op.dropAllDefinedValueUses();
101   dropAllUses();
102 }
103 
104 /// Returns true if the ordering of the child operations is valid, false
105 /// otherwise.
106 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); }
107 
108 /// Invalidates the current ordering of operations.
109 void Block::invalidateOpOrder() {
110   // Validate the current ordering.
111   assert(!verifyOpOrder());
112   parentValidOpOrderPair.setInt(false);
113 }
114 
115 /// Verifies the current ordering of child operations. Returns false if the
116 /// order is valid, true otherwise.
117 bool Block::verifyOpOrder() {
118   // The order is already known to be invalid.
119   if (!isOpOrderValid())
120     return false;
121   // The order is valid if there are less than 2 operations.
122   if (operations.empty() || std::next(operations.begin()) == operations.end())
123     return false;
124 
125   Operation *prev = nullptr;
126   for (auto &i : *this) {
127     // The previous operation must have a smaller order index than the next as
128     // it appears earlier in the list.
129     if (prev && prev->orderIndex != Operation::kInvalidOrderIdx &&
130         prev->orderIndex >= i.orderIndex)
131       return true;
132     prev = &i;
133   }
134   return false;
135 }
136 
137 /// Recomputes the ordering of child operations within the block.
138 void Block::recomputeOpOrder() {
139   parentValidOpOrderPair.setInt(true);
140 
141   unsigned orderIndex = 0;
142   for (auto &op : *this)
143     op.orderIndex = (orderIndex += Operation::kOrderStride);
144 }
145 
146 //===----------------------------------------------------------------------===//
147 // Argument list management.
148 //===----------------------------------------------------------------------===//
149 
150 /// Return a range containing the types of the arguments for this block.
151 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> {
152   return ValueTypeRange<BlockArgListType>(getArguments());
153 }
154 
155 BlockArgument Block::addArgument(Type type, Location loc) {
156   BlockArgument arg = BlockArgument::create(type, this, arguments.size(), loc);
157   arguments.push_back(arg);
158   return arg;
159 }
160 
161 /// Add one argument to the argument list for each type specified in the list.
162 auto Block::addArguments(TypeRange types, ArrayRef<Location> locs)
163     -> iterator_range<args_iterator> {
164   assert(types.size() == locs.size() &&
165          "incorrect number of block argument locations");
166   size_t initialSize = arguments.size();
167   arguments.reserve(initialSize + types.size());
168 
169   for (auto typeAndLoc : llvm::zip(types, locs))
170     addArgument(std::get<0>(typeAndLoc), std::get<1>(typeAndLoc));
171   return {arguments.data() + initialSize, arguments.data() + arguments.size()};
172 }
173 
174 BlockArgument Block::insertArgument(unsigned index, Type type, Location loc) {
175   assert(index <= arguments.size() && "invalid insertion index");
176 
177   auto arg = BlockArgument::create(type, this, index, loc);
178   arguments.insert(arguments.begin() + index, arg);
179   // Update the cached position for all the arguments after the newly inserted
180   // one.
181   ++index;
182   for (BlockArgument arg : llvm::drop_begin(arguments, index))
183     arg.setArgNumber(index++);
184   return arg;
185 }
186 
187 /// Insert one value to the given position of the argument list. The existing
188 /// arguments are shifted. The block is expected not to have predecessors.
189 BlockArgument Block::insertArgument(args_iterator it, Type type, Location loc) {
190   assert(getPredecessors().empty() &&
191          "cannot insert arguments to blocks with predecessors");
192   return insertArgument(it->getArgNumber(), type, loc);
193 }
194 
195 void Block::eraseArgument(unsigned index) {
196   assert(index < arguments.size());
197   arguments[index].destroy();
198   arguments.erase(arguments.begin() + index);
199   for (BlockArgument arg : llvm::drop_begin(arguments, index))
200     arg.setArgNumber(index++);
201 }
202 
203 void Block::eraseArguments(unsigned start, unsigned num) {
204   assert(start + num <= arguments.size());
205   for (unsigned i = 0; i < num; ++i)
206     arguments[start + i].destroy();
207   arguments.erase(arguments.begin() + start, arguments.begin() + start + num);
208   for (BlockArgument arg : llvm::drop_begin(arguments, start))
209     arg.setArgNumber(start++);
210 }
211 
212 void Block::eraseArguments(const BitVector &eraseIndices) {
213   eraseArguments(
214       [&](BlockArgument arg) { return eraseIndices.test(arg.getArgNumber()); });
215 }
216 
217 void Block::eraseArguments(function_ref<bool(BlockArgument)> shouldEraseFn) {
218   auto firstDead = llvm::find_if(arguments, shouldEraseFn);
219   if (firstDead == arguments.end())
220     return;
221 
222   // Destroy the first dead argument, this avoids reapplying the predicate to
223   // it.
224   unsigned index = firstDead->getArgNumber();
225   firstDead->destroy();
226 
227   // Iterate the remaining arguments to remove any that are now dead.
228   for (auto it = std::next(firstDead), e = arguments.end(); it != e; ++it) {
229     // Destroy dead arguments, and shift those that are still live.
230     if (shouldEraseFn(*it)) {
231       it->destroy();
232     } else {
233       it->setArgNumber(index++);
234       *firstDead++ = *it;
235     }
236   }
237   arguments.erase(firstDead, arguments.end());
238 }
239 
240 //===----------------------------------------------------------------------===//
241 // Terminator management
242 //===----------------------------------------------------------------------===//
243 
244 /// Get the terminator operation of this block. This function asserts that
245 /// the block might have a valid terminator operation.
246 Operation *Block::getTerminator() {
247   assert(mightHaveTerminator());
248   return &back();
249 }
250 
251 /// Check whether this block might have a terminator.
252 bool Block::mightHaveTerminator() {
253   return !empty() && back().mightHaveTrait<OpTrait::IsTerminator>();
254 }
255 
256 // Indexed successor access.
257 unsigned Block::getNumSuccessors() {
258   return empty() ? 0 : back().getNumSuccessors();
259 }
260 
261 Block *Block::getSuccessor(unsigned i) {
262   assert(i < getNumSuccessors());
263   return getTerminator()->getSuccessor(i);
264 }
265 
266 /// If this block has exactly one predecessor, return it.  Otherwise, return
267 /// null.
268 ///
269 /// Note that multiple edges from a single block (e.g. if you have a cond
270 /// branch with the same block as the true/false destinations) is not
271 /// considered to be a single predecessor.
272 Block *Block::getSinglePredecessor() {
273   auto it = pred_begin();
274   if (it == pred_end())
275     return nullptr;
276   auto *firstPred = *it;
277   ++it;
278   return it == pred_end() ? firstPred : nullptr;
279 }
280 
281 /// If this block has a unique predecessor, i.e., all incoming edges originate
282 /// from one block, return it. Otherwise, return null.
283 Block *Block::getUniquePredecessor() {
284   auto it = pred_begin(), e = pred_end();
285   if (it == e)
286     return nullptr;
287 
288   // Check for any conflicting predecessors.
289   auto *firstPred = *it;
290   for (++it; it != e; ++it)
291     if (*it != firstPred)
292       return nullptr;
293   return firstPred;
294 }
295 
296 //===----------------------------------------------------------------------===//
297 // Other
298 //===----------------------------------------------------------------------===//
299 
300 /// Split the block into two blocks before the specified operation or
301 /// iterator.
302 ///
303 /// Note that all operations BEFORE the specified iterator stay as part of
304 /// the original basic block, and the rest of the operations in the original
305 /// block are moved to the new block, including the old terminator.  The
306 /// original block is left without a terminator.
307 ///
308 /// The newly formed Block is returned, and the specified iterator is
309 /// invalidated.
310 Block *Block::splitBlock(iterator splitBefore) {
311   // Start by creating a new basic block, and insert it immediate after this
312   // one in the containing region.
313   auto *newBB = new Block();
314   getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB);
315 
316   // Move all of the operations from the split point to the end of the region
317   // into the new block.
318   newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore,
319                                 end());
320   return newBB;
321 }
322 
323 //===----------------------------------------------------------------------===//
324 // Predecessors
325 //===----------------------------------------------------------------------===//
326 
327 Block *PredecessorIterator::unwrap(BlockOperand &value) {
328   return value.getOwner()->getBlock();
329 }
330 
331 /// Get the successor number in the predecessor terminator.
332 unsigned PredecessorIterator::getSuccessorIndex() const {
333   return I->getOperandNumber();
334 }
335 
336 //===----------------------------------------------------------------------===//
337 // Successors
338 //===----------------------------------------------------------------------===//
339 
340 SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {}
341 
342 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() {
343   if (block->empty() || llvm::hasSingleElement(*block->getParent()))
344     return;
345   Operation *term = &block->back();
346   if ((count = term->getNumSuccessors()))
347     base = term->getBlockOperands().data();
348 }
349 
350 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() {
351   if ((count = term->getNumSuccessors()))
352     base = term->getBlockOperands().data();
353 }
354 
355 bool Block::isReachable(Block *other, SmallPtrSet<Block *, 16> &&except) {
356   assert(getParent() == other->getParent() && "expected same region");
357   if (except.contains(other)) {
358     // Fast path: If `other` is in the `except` set, there can be no path from
359     // "this" to `other` (that does not pass through an excluded block).
360     return false;
361   }
362   SmallVector<Block *> worklist(succ_begin(), succ_end());
363   while (!worklist.empty()) {
364     Block *next = worklist.pop_back_val();
365     if (next == other)
366       return true;
367     // Note: `except` keeps track of already visited blocks.
368     if (!except.insert(next).second)
369       continue;
370     worklist.append(next->succ_begin(), next->succ_end());
371   }
372   return false;
373 }
374 
375 //===----------------------------------------------------------------------===//
376 // BlockRange
377 //===----------------------------------------------------------------------===//
378 
379 BlockRange::BlockRange(ArrayRef<Block *> blocks) : BlockRange(nullptr, 0) {
380   if ((count = blocks.size()))
381     base = blocks.data();
382 }
383 
384 BlockRange::BlockRange(SuccessorRange successors)
385     : BlockRange(successors.begin().getBase(), successors.size()) {}
386 
387 /// See `llvm::detail::indexed_accessor_range_base` for details.
388 BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) {
389   if (auto *operand = llvm::dyn_cast_if_present<BlockOperand *>(object))
390     return {operand + index};
391   return {llvm::dyn_cast_if_present<Block *const *>(object) + index};
392 }
393 
394 /// See `llvm::detail::indexed_accessor_range_base` for details.
395 Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) {
396   if (const auto *operand = llvm::dyn_cast_if_present<BlockOperand *>(object))
397     return operand[index].get();
398   return llvm::dyn_cast_if_present<Block *const *>(object)[index];
399 }
400