1 //===- Block.cpp - MLIR Block Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Block.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/Operation.h" 12 #include "llvm/ADT/BitVector.h" 13 using namespace mlir; 14 15 //===----------------------------------------------------------------------===// 16 // Block 17 //===----------------------------------------------------------------------===// 18 19 Block::~Block() { 20 assert(!verifyOpOrder() && "Expected valid operation ordering."); 21 clear(); 22 for (BlockArgument arg : arguments) 23 arg.destroy(); 24 } 25 26 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); } 27 28 /// Returns the closest surrounding operation that contains this block or 29 /// nullptr if this block is unlinked. 30 Operation *Block::getParentOp() { 31 return getParent() ? getParent()->getParentOp() : nullptr; 32 } 33 34 /// Return if this block is the entry block in the parent region. 35 bool Block::isEntryBlock() { return this == &getParent()->front(); } 36 37 /// Insert this block (which must not already be in a region) right before the 38 /// specified block. 39 void Block::insertBefore(Block *block) { 40 assert(!getParent() && "already inserted into a block!"); 41 assert(block->getParent() && "cannot insert before a block without a parent"); 42 block->getParent()->getBlocks().insert(block->getIterator(), this); 43 } 44 45 /// Unlink this block from its current region and insert it right before the 46 /// specific block. 47 void Block::moveBefore(Block *block) { 48 assert(block->getParent() && "cannot insert before a block without a parent"); 49 block->getParent()->getBlocks().splice( 50 block->getIterator(), getParent()->getBlocks(), getIterator()); 51 } 52 53 /// Unlink this Block from its parent Region and delete it. 54 void Block::erase() { 55 assert(getParent() && "Block has no parent"); 56 getParent()->getBlocks().erase(this); 57 } 58 59 /// Returns 'op' if 'op' lies in this block, or otherwise finds the 60 /// ancestor operation of 'op' that lies in this block. Returns nullptr if 61 /// the latter fails. 62 Operation *Block::findAncestorOpInBlock(Operation &op) { 63 // Traverse up the operation hierarchy starting from the owner of operand to 64 // find the ancestor operation that resides in the block of 'forOp'. 65 auto *currOp = &op; 66 while (currOp->getBlock() != this) { 67 currOp = currOp->getParentOp(); 68 if (!currOp) 69 return nullptr; 70 } 71 return currOp; 72 } 73 74 /// This drops all operand uses from operations within this block, which is 75 /// an essential step in breaking cyclic dependences between references when 76 /// they are to be deleted. 77 void Block::dropAllReferences() { 78 for (Operation &i : *this) 79 i.dropAllReferences(); 80 } 81 82 void Block::dropAllDefinedValueUses() { 83 for (auto arg : getArguments()) 84 arg.dropAllUses(); 85 for (auto &op : *this) 86 op.dropAllDefinedValueUses(); 87 dropAllUses(); 88 } 89 90 /// Returns true if the ordering of the child operations is valid, false 91 /// otherwise. 92 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); } 93 94 /// Invalidates the current ordering of operations. 95 void Block::invalidateOpOrder() { 96 // Validate the current ordering. 97 assert(!verifyOpOrder()); 98 parentValidOpOrderPair.setInt(false); 99 } 100 101 /// Verifies the current ordering of child operations. Returns false if the 102 /// order is valid, true otherwise. 103 bool Block::verifyOpOrder() { 104 // The order is already known to be invalid. 105 if (!isOpOrderValid()) 106 return false; 107 // The order is valid if there are less than 2 operations. 108 if (operations.empty() || std::next(operations.begin()) == operations.end()) 109 return false; 110 111 Operation *prev = nullptr; 112 for (auto &i : *this) { 113 // The previous operation must have a smaller order index than the next as 114 // it appears earlier in the list. 115 if (prev && prev->orderIndex != Operation::kInvalidOrderIdx && 116 prev->orderIndex >= i.orderIndex) 117 return true; 118 prev = &i; 119 } 120 return false; 121 } 122 123 /// Recomputes the ordering of child operations within the block. 124 void Block::recomputeOpOrder() { 125 parentValidOpOrderPair.setInt(true); 126 127 unsigned orderIndex = 0; 128 for (auto &op : *this) 129 op.orderIndex = (orderIndex += Operation::kOrderStride); 130 } 131 132 //===----------------------------------------------------------------------===// 133 // Argument list management. 134 //===----------------------------------------------------------------------===// 135 136 /// Return a range containing the types of the arguments for this block. 137 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> { 138 return ValueTypeRange<BlockArgListType>(getArguments()); 139 } 140 141 BlockArgument Block::addArgument(Type type, Location loc) { 142 BlockArgument arg = BlockArgument::create(type, this, arguments.size(), loc); 143 arguments.push_back(arg); 144 return arg; 145 } 146 147 /// Add one argument to the argument list for each type specified in the list. 148 auto Block::addArguments(TypeRange types, ArrayRef<Location> locs) 149 -> iterator_range<args_iterator> { 150 assert(types.size() == locs.size() && 151 "incorrect number of block argument locations"); 152 size_t initialSize = arguments.size(); 153 arguments.reserve(initialSize + types.size()); 154 155 for (auto typeAndLoc : llvm::zip(types, locs)) 156 addArgument(std::get<0>(typeAndLoc), std::get<1>(typeAndLoc)); 157 return {arguments.data() + initialSize, arguments.data() + arguments.size()}; 158 } 159 160 BlockArgument Block::insertArgument(unsigned index, Type type, Location loc) { 161 assert(index <= arguments.size() && "invalid insertion index"); 162 163 auto arg = BlockArgument::create(type, this, index, loc); 164 arguments.insert(arguments.begin() + index, arg); 165 // Update the cached position for all the arguments after the newly inserted 166 // one. 167 ++index; 168 for (BlockArgument arg : llvm::drop_begin(arguments, index)) 169 arg.setArgNumber(index++); 170 return arg; 171 } 172 173 /// Insert one value to the given position of the argument list. The existing 174 /// arguments are shifted. The block is expected not to have predecessors. 175 BlockArgument Block::insertArgument(args_iterator it, Type type, Location loc) { 176 assert(llvm::empty(getPredecessors()) && 177 "cannot insert arguments to blocks with predecessors"); 178 return insertArgument(it->getArgNumber(), type, loc); 179 } 180 181 void Block::eraseArgument(unsigned index) { 182 assert(index < arguments.size()); 183 arguments[index].destroy(); 184 arguments.erase(arguments.begin() + index); 185 for (BlockArgument arg : llvm::drop_begin(arguments, index)) 186 arg.setArgNumber(index++); 187 } 188 189 void Block::eraseArguments(unsigned start, unsigned num) { 190 assert(start + num <= arguments.size()); 191 for (unsigned i = 0; i < num; ++i) 192 arguments[start + i].destroy(); 193 arguments.erase(arguments.begin() + start, arguments.begin() + start + num); 194 for (BlockArgument arg : llvm::drop_begin(arguments, start)) 195 arg.setArgNumber(start++); 196 } 197 198 void Block::eraseArguments(ArrayRef<unsigned> argIndices) { 199 BitVector eraseIndices(getNumArguments()); 200 for (unsigned i : argIndices) 201 eraseIndices.set(i); 202 eraseArguments(eraseIndices); 203 } 204 205 void Block::eraseArguments(const BitVector &eraseIndices) { 206 eraseArguments( 207 [&](BlockArgument arg) { return eraseIndices.test(arg.getArgNumber()); }); 208 } 209 210 void Block::eraseArguments(function_ref<bool(BlockArgument)> shouldEraseFn) { 211 auto firstDead = llvm::find_if(arguments, shouldEraseFn); 212 if (firstDead == arguments.end()) 213 return; 214 215 // Destroy the first dead argument, this avoids reapplying the predicate to 216 // it. 217 unsigned index = firstDead->getArgNumber(); 218 firstDead->destroy(); 219 220 // Iterate the remaining arguments to remove any that are now dead. 221 for (auto it = std::next(firstDead), e = arguments.end(); it != e; ++it) { 222 // Destroy dead arguments, and shift those that are still live. 223 if (shouldEraseFn(*it)) { 224 it->destroy(); 225 } else { 226 it->setArgNumber(index++); 227 *firstDead++ = *it; 228 } 229 } 230 arguments.erase(firstDead, arguments.end()); 231 } 232 233 //===----------------------------------------------------------------------===// 234 // Terminator management 235 //===----------------------------------------------------------------------===// 236 237 /// Get the terminator operation of this block. This function asserts that 238 /// the block has a valid terminator operation. 239 Operation *Block::getTerminator() { 240 assert(!empty() && back().mightHaveTrait<OpTrait::IsTerminator>()); 241 return &back(); 242 } 243 244 // Indexed successor access. 245 unsigned Block::getNumSuccessors() { 246 return empty() ? 0 : back().getNumSuccessors(); 247 } 248 249 Block *Block::getSuccessor(unsigned i) { 250 assert(i < getNumSuccessors()); 251 return getTerminator()->getSuccessor(i); 252 } 253 254 /// If this block has exactly one predecessor, return it. Otherwise, return 255 /// null. 256 /// 257 /// Note that multiple edges from a single block (e.g. if you have a cond 258 /// branch with the same block as the true/false destinations) is not 259 /// considered to be a single predecessor. 260 Block *Block::getSinglePredecessor() { 261 auto it = pred_begin(); 262 if (it == pred_end()) 263 return nullptr; 264 auto *firstPred = *it; 265 ++it; 266 return it == pred_end() ? firstPred : nullptr; 267 } 268 269 /// If this block has a unique predecessor, i.e., all incoming edges originate 270 /// from one block, return it. Otherwise, return null. 271 Block *Block::getUniquePredecessor() { 272 auto it = pred_begin(), e = pred_end(); 273 if (it == e) 274 return nullptr; 275 276 // Check for any conflicting predecessors. 277 auto *firstPred = *it; 278 for (++it; it != e; ++it) 279 if (*it != firstPred) 280 return nullptr; 281 return firstPred; 282 } 283 284 //===----------------------------------------------------------------------===// 285 // Other 286 //===----------------------------------------------------------------------===// 287 288 /// Split the block into two blocks before the specified operation or 289 /// iterator. 290 /// 291 /// Note that all operations BEFORE the specified iterator stay as part of 292 /// the original basic block, and the rest of the operations in the original 293 /// block are moved to the new block, including the old terminator. The 294 /// original block is left without a terminator. 295 /// 296 /// The newly formed Block is returned, and the specified iterator is 297 /// invalidated. 298 Block *Block::splitBlock(iterator splitBefore) { 299 // Start by creating a new basic block, and insert it immediate after this 300 // one in the containing region. 301 auto *newBB = new Block(); 302 getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB); 303 304 // Move all of the operations from the split point to the end of the region 305 // into the new block. 306 newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore, 307 end()); 308 return newBB; 309 } 310 311 //===----------------------------------------------------------------------===// 312 // Predecessors 313 //===----------------------------------------------------------------------===// 314 315 Block *PredecessorIterator::unwrap(BlockOperand &value) { 316 return value.getOwner()->getBlock(); 317 } 318 319 /// Get the successor number in the predecessor terminator. 320 unsigned PredecessorIterator::getSuccessorIndex() const { 321 return I->getOperandNumber(); 322 } 323 324 //===----------------------------------------------------------------------===// 325 // SuccessorRange 326 //===----------------------------------------------------------------------===// 327 328 SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {} 329 330 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() { 331 if (block->empty() || llvm::hasSingleElement(*block->getParent())) 332 return; 333 Operation *term = &block->back(); 334 if ((count = term->getNumSuccessors())) 335 base = term->getBlockOperands().data(); 336 } 337 338 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() { 339 if ((count = term->getNumSuccessors())) 340 base = term->getBlockOperands().data(); 341 } 342 343 //===----------------------------------------------------------------------===// 344 // BlockRange 345 //===----------------------------------------------------------------------===// 346 347 BlockRange::BlockRange(ArrayRef<Block *> blocks) : BlockRange(nullptr, 0) { 348 if ((count = blocks.size())) 349 base = blocks.data(); 350 } 351 352 BlockRange::BlockRange(SuccessorRange successors) 353 : BlockRange(successors.begin().getBase(), successors.size()) {} 354 355 /// See `llvm::detail::indexed_accessor_range_base` for details. 356 BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) { 357 if (auto *operand = object.dyn_cast<BlockOperand *>()) 358 return {operand + index}; 359 return {object.dyn_cast<Block *const *>() + index}; 360 } 361 362 /// See `llvm::detail::indexed_accessor_range_base` for details. 363 Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) { 364 if (const auto *operand = object.dyn_cast<BlockOperand *>()) 365 return operand[index].get(); 366 return object.dyn_cast<Block *const *>()[index]; 367 } 368