xref: /llvm-project/mlir/lib/IR/Block.cpp (revision 27e8ee208cb2142514ee2e3ab342dafaf6374f9e)
1 //===- Block.cpp - MLIR Block Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/Block.h"
10 #include "mlir/IR/Builders.h"
11 #include "mlir/IR/Operation.h"
12 #include "llvm/ADT/BitVector.h"
13 using namespace mlir;
14 
15 //===----------------------------------------------------------------------===//
16 // Block
17 //===----------------------------------------------------------------------===//
18 
19 Block::~Block() {
20   assert(!verifyOpOrder() && "Expected valid operation ordering.");
21   clear();
22   for (BlockArgument arg : arguments)
23     arg.destroy();
24 }
25 
26 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); }
27 
28 /// Returns the closest surrounding operation that contains this block or
29 /// nullptr if this block is unlinked.
30 Operation *Block::getParentOp() {
31   return getParent() ? getParent()->getParentOp() : nullptr;
32 }
33 
34 /// Return if this block is the entry block in the parent region.
35 bool Block::isEntryBlock() { return this == &getParent()->front(); }
36 
37 /// Insert this block (which must not already be in a region) right before the
38 /// specified block.
39 void Block::insertBefore(Block *block) {
40   assert(!getParent() && "already inserted into a block!");
41   assert(block->getParent() && "cannot insert before a block without a parent");
42   block->getParent()->getBlocks().insert(block->getIterator(), this);
43 }
44 
45 /// Unlink this block from its current region and insert it right before the
46 /// specific block.
47 void Block::moveBefore(Block *block) {
48   assert(block->getParent() && "cannot insert before a block without a parent");
49   block->getParent()->getBlocks().splice(
50       block->getIterator(), getParent()->getBlocks(), getIterator());
51 }
52 
53 /// Unlink this Block from its parent Region and delete it.
54 void Block::erase() {
55   assert(getParent() && "Block has no parent");
56   getParent()->getBlocks().erase(this);
57 }
58 
59 /// Returns 'op' if 'op' lies in this block, or otherwise finds the
60 /// ancestor operation of 'op' that lies in this block. Returns nullptr if
61 /// the latter fails.
62 Operation *Block::findAncestorOpInBlock(Operation &op) {
63   // Traverse up the operation hierarchy starting from the owner of operand to
64   // find the ancestor operation that resides in the block of 'forOp'.
65   auto *currOp = &op;
66   while (currOp->getBlock() != this) {
67     currOp = currOp->getParentOp();
68     if (!currOp)
69       return nullptr;
70   }
71   return currOp;
72 }
73 
74 /// This drops all operand uses from operations within this block, which is
75 /// an essential step in breaking cyclic dependences between references when
76 /// they are to be deleted.
77 void Block::dropAllReferences() {
78   for (Operation &i : *this)
79     i.dropAllReferences();
80 }
81 
82 void Block::dropAllDefinedValueUses() {
83   for (auto arg : getArguments())
84     arg.dropAllUses();
85   for (auto &op : *this)
86     op.dropAllDefinedValueUses();
87   dropAllUses();
88 }
89 
90 /// Returns true if the ordering of the child operations is valid, false
91 /// otherwise.
92 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); }
93 
94 /// Invalidates the current ordering of operations.
95 void Block::invalidateOpOrder() {
96   // Validate the current ordering.
97   assert(!verifyOpOrder());
98   parentValidOpOrderPair.setInt(false);
99 }
100 
101 /// Verifies the current ordering of child operations. Returns false if the
102 /// order is valid, true otherwise.
103 bool Block::verifyOpOrder() {
104   // The order is already known to be invalid.
105   if (!isOpOrderValid())
106     return false;
107   // The order is valid if there are less than 2 operations.
108   if (operations.empty() || std::next(operations.begin()) == operations.end())
109     return false;
110 
111   Operation *prev = nullptr;
112   for (auto &i : *this) {
113     // The previous operation must have a smaller order index than the next as
114     // it appears earlier in the list.
115     if (prev && prev->orderIndex != Operation::kInvalidOrderIdx &&
116         prev->orderIndex >= i.orderIndex)
117       return true;
118     prev = &i;
119   }
120   return false;
121 }
122 
123 /// Recomputes the ordering of child operations within the block.
124 void Block::recomputeOpOrder() {
125   parentValidOpOrderPair.setInt(true);
126 
127   unsigned orderIndex = 0;
128   for (auto &op : *this)
129     op.orderIndex = (orderIndex += Operation::kOrderStride);
130 }
131 
132 //===----------------------------------------------------------------------===//
133 // Argument list management.
134 //===----------------------------------------------------------------------===//
135 
136 /// Return a range containing the types of the arguments for this block.
137 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> {
138   return ValueTypeRange<BlockArgListType>(getArguments());
139 }
140 
141 BlockArgument Block::addArgument(Type type, Location loc) {
142   BlockArgument arg = BlockArgument::create(type, this, arguments.size(), loc);
143   arguments.push_back(arg);
144   return arg;
145 }
146 
147 /// Add one argument to the argument list for each type specified in the list.
148 auto Block::addArguments(TypeRange types, ArrayRef<Location> locs)
149     -> iterator_range<args_iterator> {
150   assert(types.size() == locs.size() &&
151          "incorrect number of block argument locations");
152   size_t initialSize = arguments.size();
153   arguments.reserve(initialSize + types.size());
154 
155   for (auto typeAndLoc : llvm::zip(types, locs))
156     addArgument(std::get<0>(typeAndLoc), std::get<1>(typeAndLoc));
157   return {arguments.data() + initialSize, arguments.data() + arguments.size()};
158 }
159 
160 BlockArgument Block::insertArgument(unsigned index, Type type, Location loc) {
161   assert(index <= arguments.size() && "invalid insertion index");
162 
163   auto arg = BlockArgument::create(type, this, index, loc);
164   arguments.insert(arguments.begin() + index, arg);
165   // Update the cached position for all the arguments after the newly inserted
166   // one.
167   ++index;
168   for (BlockArgument arg : llvm::drop_begin(arguments, index))
169     arg.setArgNumber(index++);
170   return arg;
171 }
172 
173 /// Insert one value to the given position of the argument list. The existing
174 /// arguments are shifted. The block is expected not to have predecessors.
175 BlockArgument Block::insertArgument(args_iterator it, Type type, Location loc) {
176   assert(llvm::empty(getPredecessors()) &&
177          "cannot insert arguments to blocks with predecessors");
178   return insertArgument(it->getArgNumber(), type, loc);
179 }
180 
181 void Block::eraseArgument(unsigned index) {
182   assert(index < arguments.size());
183   arguments[index].destroy();
184   arguments.erase(arguments.begin() + index);
185   for (BlockArgument arg : llvm::drop_begin(arguments, index))
186     arg.setArgNumber(index++);
187 }
188 
189 void Block::eraseArguments(unsigned start, unsigned num) {
190   assert(start + num <= arguments.size());
191   for (unsigned i = 0; i < num; ++i)
192     arguments[start + i].destroy();
193   arguments.erase(arguments.begin() + start, arguments.begin() + start + num);
194   for (BlockArgument arg : llvm::drop_begin(arguments, start))
195     arg.setArgNumber(start++);
196 }
197 
198 void Block::eraseArguments(const BitVector &eraseIndices) {
199   eraseArguments(
200       [&](BlockArgument arg) { return eraseIndices.test(arg.getArgNumber()); });
201 }
202 
203 void Block::eraseArguments(function_ref<bool(BlockArgument)> shouldEraseFn) {
204   auto firstDead = llvm::find_if(arguments, shouldEraseFn);
205   if (firstDead == arguments.end())
206     return;
207 
208   // Destroy the first dead argument, this avoids reapplying the predicate to
209   // it.
210   unsigned index = firstDead->getArgNumber();
211   firstDead->destroy();
212 
213   // Iterate the remaining arguments to remove any that are now dead.
214   for (auto it = std::next(firstDead), e = arguments.end(); it != e; ++it) {
215     // Destroy dead arguments, and shift those that are still live.
216     if (shouldEraseFn(*it)) {
217       it->destroy();
218     } else {
219       it->setArgNumber(index++);
220       *firstDead++ = *it;
221     }
222   }
223   arguments.erase(firstDead, arguments.end());
224 }
225 
226 //===----------------------------------------------------------------------===//
227 // Terminator management
228 //===----------------------------------------------------------------------===//
229 
230 /// Get the terminator operation of this block. This function asserts that
231 /// the block has a valid terminator operation.
232 Operation *Block::getTerminator() {
233   assert(!empty() && back().mightHaveTrait<OpTrait::IsTerminator>());
234   return &back();
235 }
236 
237 // Indexed successor access.
238 unsigned Block::getNumSuccessors() {
239   return empty() ? 0 : back().getNumSuccessors();
240 }
241 
242 Block *Block::getSuccessor(unsigned i) {
243   assert(i < getNumSuccessors());
244   return getTerminator()->getSuccessor(i);
245 }
246 
247 /// If this block has exactly one predecessor, return it.  Otherwise, return
248 /// null.
249 ///
250 /// Note that multiple edges from a single block (e.g. if you have a cond
251 /// branch with the same block as the true/false destinations) is not
252 /// considered to be a single predecessor.
253 Block *Block::getSinglePredecessor() {
254   auto it = pred_begin();
255   if (it == pred_end())
256     return nullptr;
257   auto *firstPred = *it;
258   ++it;
259   return it == pred_end() ? firstPred : nullptr;
260 }
261 
262 /// If this block has a unique predecessor, i.e., all incoming edges originate
263 /// from one block, return it. Otherwise, return null.
264 Block *Block::getUniquePredecessor() {
265   auto it = pred_begin(), e = pred_end();
266   if (it == e)
267     return nullptr;
268 
269   // Check for any conflicting predecessors.
270   auto *firstPred = *it;
271   for (++it; it != e; ++it)
272     if (*it != firstPred)
273       return nullptr;
274   return firstPred;
275 }
276 
277 //===----------------------------------------------------------------------===//
278 // Other
279 //===----------------------------------------------------------------------===//
280 
281 /// Split the block into two blocks before the specified operation or
282 /// iterator.
283 ///
284 /// Note that all operations BEFORE the specified iterator stay as part of
285 /// the original basic block, and the rest of the operations in the original
286 /// block are moved to the new block, including the old terminator.  The
287 /// original block is left without a terminator.
288 ///
289 /// The newly formed Block is returned, and the specified iterator is
290 /// invalidated.
291 Block *Block::splitBlock(iterator splitBefore) {
292   // Start by creating a new basic block, and insert it immediate after this
293   // one in the containing region.
294   auto *newBB = new Block();
295   getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB);
296 
297   // Move all of the operations from the split point to the end of the region
298   // into the new block.
299   newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore,
300                                 end());
301   return newBB;
302 }
303 
304 //===----------------------------------------------------------------------===//
305 // Predecessors
306 //===----------------------------------------------------------------------===//
307 
308 Block *PredecessorIterator::unwrap(BlockOperand &value) {
309   return value.getOwner()->getBlock();
310 }
311 
312 /// Get the successor number in the predecessor terminator.
313 unsigned PredecessorIterator::getSuccessorIndex() const {
314   return I->getOperandNumber();
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // SuccessorRange
319 //===----------------------------------------------------------------------===//
320 
321 SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {}
322 
323 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() {
324   if (block->empty() || llvm::hasSingleElement(*block->getParent()))
325     return;
326   Operation *term = &block->back();
327   if ((count = term->getNumSuccessors()))
328     base = term->getBlockOperands().data();
329 }
330 
331 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() {
332   if ((count = term->getNumSuccessors()))
333     base = term->getBlockOperands().data();
334 }
335 
336 //===----------------------------------------------------------------------===//
337 // BlockRange
338 //===----------------------------------------------------------------------===//
339 
340 BlockRange::BlockRange(ArrayRef<Block *> blocks) : BlockRange(nullptr, 0) {
341   if ((count = blocks.size()))
342     base = blocks.data();
343 }
344 
345 BlockRange::BlockRange(SuccessorRange successors)
346     : BlockRange(successors.begin().getBase(), successors.size()) {}
347 
348 /// See `llvm::detail::indexed_accessor_range_base` for details.
349 BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) {
350   if (auto *operand = object.dyn_cast<BlockOperand *>())
351     return {operand + index};
352   return {object.dyn_cast<Block *const *>() + index};
353 }
354 
355 /// See `llvm::detail::indexed_accessor_range_base` for details.
356 Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) {
357   if (const auto *operand = object.dyn_cast<BlockOperand *>())
358     return operand[index].get();
359   return object.dyn_cast<Block *const *>()[index];
360 }
361