1 //===- Block.cpp - MLIR Block Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/IR/Block.h" 10 #include "mlir/IR/Builders.h" 11 #include "mlir/IR/Operation.h" 12 #include "llvm/ADT/BitVector.h" 13 using namespace mlir; 14 15 //===----------------------------------------------------------------------===// 16 // Block 17 //===----------------------------------------------------------------------===// 18 19 Block::~Block() { 20 assert(!verifyOpOrder() && "Expected valid operation ordering."); 21 clear(); 22 for (BlockArgument arg : arguments) 23 arg.destroy(); 24 } 25 26 Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); } 27 28 /// Returns the closest surrounding operation that contains this block or 29 /// nullptr if this block is unlinked. 30 Operation *Block::getParentOp() { 31 return getParent() ? getParent()->getParentOp() : nullptr; 32 } 33 34 /// Return if this block is the entry block in the parent region. 35 bool Block::isEntryBlock() { return this == &getParent()->front(); } 36 37 /// Insert this block (which must not already be in a region) right before the 38 /// specified block. 39 void Block::insertBefore(Block *block) { 40 assert(!getParent() && "already inserted into a block!"); 41 assert(block->getParent() && "cannot insert before a block without a parent"); 42 block->getParent()->getBlocks().insert(block->getIterator(), this); 43 } 44 45 void Block::insertAfter(Block *block) { 46 assert(!getParent() && "already inserted into a block!"); 47 assert(block->getParent() && "cannot insert before a block without a parent"); 48 block->getParent()->getBlocks().insertAfter(block->getIterator(), this); 49 } 50 51 /// Unlink this block from its current region and insert it right before the 52 /// specific block. 53 void Block::moveBefore(Block *block) { 54 assert(block->getParent() && "cannot insert before a block without a parent"); 55 block->getParent()->getBlocks().splice( 56 block->getIterator(), getParent()->getBlocks(), getIterator()); 57 } 58 59 /// Unlink this Block from its parent Region and delete it. 60 void Block::erase() { 61 assert(getParent() && "Block has no parent"); 62 getParent()->getBlocks().erase(this); 63 } 64 65 /// Returns 'op' if 'op' lies in this block, or otherwise finds the 66 /// ancestor operation of 'op' that lies in this block. Returns nullptr if 67 /// the latter fails. 68 Operation *Block::findAncestorOpInBlock(Operation &op) { 69 // Traverse up the operation hierarchy starting from the owner of operand to 70 // find the ancestor operation that resides in the block of 'forOp'. 71 auto *currOp = &op; 72 while (currOp->getBlock() != this) { 73 currOp = currOp->getParentOp(); 74 if (!currOp) 75 return nullptr; 76 } 77 return currOp; 78 } 79 80 /// This drops all operand uses from operations within this block, which is 81 /// an essential step in breaking cyclic dependences between references when 82 /// they are to be deleted. 83 void Block::dropAllReferences() { 84 for (Operation &i : *this) 85 i.dropAllReferences(); 86 } 87 88 void Block::dropAllDefinedValueUses() { 89 for (auto arg : getArguments()) 90 arg.dropAllUses(); 91 for (auto &op : *this) 92 op.dropAllDefinedValueUses(); 93 dropAllUses(); 94 } 95 96 /// Returns true if the ordering of the child operations is valid, false 97 /// otherwise. 98 bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); } 99 100 /// Invalidates the current ordering of operations. 101 void Block::invalidateOpOrder() { 102 // Validate the current ordering. 103 assert(!verifyOpOrder()); 104 parentValidOpOrderPair.setInt(false); 105 } 106 107 /// Verifies the current ordering of child operations. Returns false if the 108 /// order is valid, true otherwise. 109 bool Block::verifyOpOrder() { 110 // The order is already known to be invalid. 111 if (!isOpOrderValid()) 112 return false; 113 // The order is valid if there are less than 2 operations. 114 if (operations.empty() || std::next(operations.begin()) == operations.end()) 115 return false; 116 117 Operation *prev = nullptr; 118 for (auto &i : *this) { 119 // The previous operation must have a smaller order index than the next as 120 // it appears earlier in the list. 121 if (prev && prev->orderIndex != Operation::kInvalidOrderIdx && 122 prev->orderIndex >= i.orderIndex) 123 return true; 124 prev = &i; 125 } 126 return false; 127 } 128 129 /// Recomputes the ordering of child operations within the block. 130 void Block::recomputeOpOrder() { 131 parentValidOpOrderPair.setInt(true); 132 133 unsigned orderIndex = 0; 134 for (auto &op : *this) 135 op.orderIndex = (orderIndex += Operation::kOrderStride); 136 } 137 138 //===----------------------------------------------------------------------===// 139 // Argument list management. 140 //===----------------------------------------------------------------------===// 141 142 /// Return a range containing the types of the arguments for this block. 143 auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> { 144 return ValueTypeRange<BlockArgListType>(getArguments()); 145 } 146 147 BlockArgument Block::addArgument(Type type, Location loc) { 148 BlockArgument arg = BlockArgument::create(type, this, arguments.size(), loc); 149 arguments.push_back(arg); 150 return arg; 151 } 152 153 /// Add one argument to the argument list for each type specified in the list. 154 auto Block::addArguments(TypeRange types, ArrayRef<Location> locs) 155 -> iterator_range<args_iterator> { 156 assert(types.size() == locs.size() && 157 "incorrect number of block argument locations"); 158 size_t initialSize = arguments.size(); 159 arguments.reserve(initialSize + types.size()); 160 161 for (auto typeAndLoc : llvm::zip(types, locs)) 162 addArgument(std::get<0>(typeAndLoc), std::get<1>(typeAndLoc)); 163 return {arguments.data() + initialSize, arguments.data() + arguments.size()}; 164 } 165 166 BlockArgument Block::insertArgument(unsigned index, Type type, Location loc) { 167 assert(index <= arguments.size() && "invalid insertion index"); 168 169 auto arg = BlockArgument::create(type, this, index, loc); 170 arguments.insert(arguments.begin() + index, arg); 171 // Update the cached position for all the arguments after the newly inserted 172 // one. 173 ++index; 174 for (BlockArgument arg : llvm::drop_begin(arguments, index)) 175 arg.setArgNumber(index++); 176 return arg; 177 } 178 179 /// Insert one value to the given position of the argument list. The existing 180 /// arguments are shifted. The block is expected not to have predecessors. 181 BlockArgument Block::insertArgument(args_iterator it, Type type, Location loc) { 182 assert(getPredecessors().empty() && 183 "cannot insert arguments to blocks with predecessors"); 184 return insertArgument(it->getArgNumber(), type, loc); 185 } 186 187 void Block::eraseArgument(unsigned index) { 188 assert(index < arguments.size()); 189 arguments[index].destroy(); 190 arguments.erase(arguments.begin() + index); 191 for (BlockArgument arg : llvm::drop_begin(arguments, index)) 192 arg.setArgNumber(index++); 193 } 194 195 void Block::eraseArguments(unsigned start, unsigned num) { 196 assert(start + num <= arguments.size()); 197 for (unsigned i = 0; i < num; ++i) 198 arguments[start + i].destroy(); 199 arguments.erase(arguments.begin() + start, arguments.begin() + start + num); 200 for (BlockArgument arg : llvm::drop_begin(arguments, start)) 201 arg.setArgNumber(start++); 202 } 203 204 void Block::eraseArguments(const BitVector &eraseIndices) { 205 eraseArguments( 206 [&](BlockArgument arg) { return eraseIndices.test(arg.getArgNumber()); }); 207 } 208 209 void Block::eraseArguments(function_ref<bool(BlockArgument)> shouldEraseFn) { 210 auto firstDead = llvm::find_if(arguments, shouldEraseFn); 211 if (firstDead == arguments.end()) 212 return; 213 214 // Destroy the first dead argument, this avoids reapplying the predicate to 215 // it. 216 unsigned index = firstDead->getArgNumber(); 217 firstDead->destroy(); 218 219 // Iterate the remaining arguments to remove any that are now dead. 220 for (auto it = std::next(firstDead), e = arguments.end(); it != e; ++it) { 221 // Destroy dead arguments, and shift those that are still live. 222 if (shouldEraseFn(*it)) { 223 it->destroy(); 224 } else { 225 it->setArgNumber(index++); 226 *firstDead++ = *it; 227 } 228 } 229 arguments.erase(firstDead, arguments.end()); 230 } 231 232 //===----------------------------------------------------------------------===// 233 // Terminator management 234 //===----------------------------------------------------------------------===// 235 236 /// Get the terminator operation of this block. This function asserts that 237 /// the block might have a valid terminator operation. 238 Operation *Block::getTerminator() { 239 assert(mightHaveTerminator()); 240 return &back(); 241 } 242 243 /// Check whether this block might have a terminator. 244 bool Block::mightHaveTerminator() { 245 return !empty() && back().mightHaveTrait<OpTrait::IsTerminator>(); 246 } 247 248 // Indexed successor access. 249 unsigned Block::getNumSuccessors() { 250 return empty() ? 0 : back().getNumSuccessors(); 251 } 252 253 Block *Block::getSuccessor(unsigned i) { 254 assert(i < getNumSuccessors()); 255 return getTerminator()->getSuccessor(i); 256 } 257 258 /// If this block has exactly one predecessor, return it. Otherwise, return 259 /// null. 260 /// 261 /// Note that multiple edges from a single block (e.g. if you have a cond 262 /// branch with the same block as the true/false destinations) is not 263 /// considered to be a single predecessor. 264 Block *Block::getSinglePredecessor() { 265 auto it = pred_begin(); 266 if (it == pred_end()) 267 return nullptr; 268 auto *firstPred = *it; 269 ++it; 270 return it == pred_end() ? firstPred : nullptr; 271 } 272 273 /// If this block has a unique predecessor, i.e., all incoming edges originate 274 /// from one block, return it. Otherwise, return null. 275 Block *Block::getUniquePredecessor() { 276 auto it = pred_begin(), e = pred_end(); 277 if (it == e) 278 return nullptr; 279 280 // Check for any conflicting predecessors. 281 auto *firstPred = *it; 282 for (++it; it != e; ++it) 283 if (*it != firstPred) 284 return nullptr; 285 return firstPred; 286 } 287 288 //===----------------------------------------------------------------------===// 289 // Other 290 //===----------------------------------------------------------------------===// 291 292 /// Split the block into two blocks before the specified operation or 293 /// iterator. 294 /// 295 /// Note that all operations BEFORE the specified iterator stay as part of 296 /// the original basic block, and the rest of the operations in the original 297 /// block are moved to the new block, including the old terminator. The 298 /// original block is left without a terminator. 299 /// 300 /// The newly formed Block is returned, and the specified iterator is 301 /// invalidated. 302 Block *Block::splitBlock(iterator splitBefore) { 303 // Start by creating a new basic block, and insert it immediate after this 304 // one in the containing region. 305 auto *newBB = new Block(); 306 getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB); 307 308 // Move all of the operations from the split point to the end of the region 309 // into the new block. 310 newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore, 311 end()); 312 return newBB; 313 } 314 315 //===----------------------------------------------------------------------===// 316 // Predecessors 317 //===----------------------------------------------------------------------===// 318 319 Block *PredecessorIterator::unwrap(BlockOperand &value) { 320 return value.getOwner()->getBlock(); 321 } 322 323 /// Get the successor number in the predecessor terminator. 324 unsigned PredecessorIterator::getSuccessorIndex() const { 325 return I->getOperandNumber(); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // SuccessorRange 330 //===----------------------------------------------------------------------===// 331 332 SuccessorRange::SuccessorRange() : SuccessorRange(nullptr, 0) {} 333 334 SuccessorRange::SuccessorRange(Block *block) : SuccessorRange() { 335 if (block->empty() || llvm::hasSingleElement(*block->getParent())) 336 return; 337 Operation *term = &block->back(); 338 if ((count = term->getNumSuccessors())) 339 base = term->getBlockOperands().data(); 340 } 341 342 SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange() { 343 if ((count = term->getNumSuccessors())) 344 base = term->getBlockOperands().data(); 345 } 346 347 //===----------------------------------------------------------------------===// 348 // BlockRange 349 //===----------------------------------------------------------------------===// 350 351 BlockRange::BlockRange(ArrayRef<Block *> blocks) : BlockRange(nullptr, 0) { 352 if ((count = blocks.size())) 353 base = blocks.data(); 354 } 355 356 BlockRange::BlockRange(SuccessorRange successors) 357 : BlockRange(successors.begin().getBase(), successors.size()) {} 358 359 /// See `llvm::detail::indexed_accessor_range_base` for details. 360 BlockRange::OwnerT BlockRange::offset_base(OwnerT object, ptrdiff_t index) { 361 if (auto *operand = llvm::dyn_cast_if_present<BlockOperand *>(object)) 362 return {operand + index}; 363 return {llvm::dyn_cast_if_present<Block *const *>(object) + index}; 364 } 365 366 /// See `llvm::detail::indexed_accessor_range_base` for details. 367 Block *BlockRange::dereference_iterator(OwnerT object, ptrdiff_t index) { 368 if (const auto *operand = llvm::dyn_cast_if_present<BlockOperand *>(object)) 369 return operand[index].get(); 370 return llvm::dyn_cast_if_present<Block *const *>(object)[index]; 371 } 372