xref: /llvm-project/mlir/lib/ExecutionEngine/Float16bits.cpp (revision 9a3ece232ced907f87ed0d5846a57f6d9cbc9832)
1 //===--- Float16bits.cpp - supports 2-byte floats  ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements f16 and bf16 to support the compilation and execution
10 // of programs using these types.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/ExecutionEngine/Float16bits.h"
15 
16 #ifdef MLIR_FLOAT16_DEFINE_FUNCTIONS // We are building this library
17 
18 #include <cmath>
19 #include <cstring>
20 
21 namespace {
22 
23 // Union used to make the int/float aliasing explicit so we can access the raw
24 // bits.
25 union Float32Bits {
26   uint32_t u;
27   float f;
28 };
29 
30 const uint32_t kF32MantiBits = 23;
31 const uint32_t kF32HalfMantiBitDiff = 13;
32 const uint32_t kF32HalfBitDiff = 16;
33 const Float32Bits kF32Magic = {113 << kF32MantiBits};
34 const uint32_t kF32HalfExpAdjust = (127 - 15) << kF32MantiBits;
35 
36 // Constructs the 16 bit representation for a half precision value from a float
37 // value. This implementation is adapted from Eigen.
float2half(float floatValue)38 uint16_t float2half(float floatValue) {
39   const Float32Bits inf = {255 << kF32MantiBits};
40   const Float32Bits f16max = {(127 + 16) << kF32MantiBits};
41   const Float32Bits denormMagic = {((127 - 15) + (kF32MantiBits - 10) + 1)
42                                    << kF32MantiBits};
43   uint32_t signMask = 0x80000000u;
44   uint16_t halfValue = static_cast<uint16_t>(0x0u);
45   Float32Bits f;
46   f.f = floatValue;
47   uint32_t sign = f.u & signMask;
48   f.u ^= sign;
49 
50   if (f.u >= f16max.u) {
51     const uint32_t halfQnan = 0x7e00;
52     const uint32_t halfInf = 0x7c00;
53     // Inf or NaN (all exponent bits set).
54     halfValue = (f.u > inf.u) ? halfQnan : halfInf; // NaN->qNaN and Inf->Inf
55   } else {
56     // (De)normalized number or zero.
57     if (f.u < kF32Magic.u) {
58       // The resulting FP16 is subnormal or zero.
59       //
60       // Use a magic value to align our 10 mantissa bits at the bottom of the
61       // float. As long as FP addition is round-to-nearest-even this works.
62       f.f += denormMagic.f;
63 
64       halfValue = static_cast<uint16_t>(f.u - denormMagic.u);
65     } else {
66       uint32_t mantOdd =
67           (f.u >> kF32HalfMantiBitDiff) & 1; // Resulting mantissa is odd.
68 
69       // Update exponent, rounding bias part 1. The following expressions are
70       // equivalent to `f.u += ((unsigned int)(15 - 127) << kF32MantiBits) +
71       // 0xfff`, but without arithmetic overflow.
72       f.u += 0xc8000fffU;
73       // Rounding bias part 2.
74       f.u += mantOdd;
75       halfValue = static_cast<uint16_t>(f.u >> kF32HalfMantiBitDiff);
76     }
77   }
78 
79   halfValue |= static_cast<uint16_t>(sign >> kF32HalfBitDiff);
80   return halfValue;
81 }
82 
83 // Converts the 16 bit representation of a half precision value to a float
84 // value. This implementation is adapted from Eigen.
half2float(uint16_t halfValue)85 float half2float(uint16_t halfValue) {
86   const uint32_t shiftedExp =
87       0x7c00 << kF32HalfMantiBitDiff; // Exponent mask after shift.
88 
89   // Initialize the float representation with the exponent/mantissa bits.
90   Float32Bits f = {
91       static_cast<uint32_t>((halfValue & 0x7fff) << kF32HalfMantiBitDiff)};
92   const uint32_t exp = shiftedExp & f.u;
93   f.u += kF32HalfExpAdjust; // Adjust the exponent
94 
95   // Handle exponent special cases.
96   if (exp == shiftedExp) {
97     // Inf/NaN
98     f.u += kF32HalfExpAdjust;
99   } else if (exp == 0) {
100     // Zero/Denormal?
101     f.u += 1 << kF32MantiBits;
102     f.f -= kF32Magic.f;
103   }
104 
105   f.u |= (halfValue & 0x8000) << kF32HalfBitDiff; // Sign bit.
106   return f.f;
107 }
108 
109 const uint32_t kF32BfMantiBitDiff = 16;
110 
111 // Constructs the 16 bit representation for a bfloat value from a float value.
112 // This implementation is adapted from Eigen.
float2bfloat(float floatValue)113 uint16_t float2bfloat(float floatValue) {
114   if (std::isnan(floatValue))
115     return std::signbit(floatValue) ? 0xFFC0 : 0x7FC0;
116 
117   Float32Bits floatBits;
118   floatBits.f = floatValue;
119   uint16_t bfloatBits;
120 
121   // Least significant bit of resulting bfloat.
122   uint32_t lsb = (floatBits.u >> kF32BfMantiBitDiff) & 1;
123   uint32_t roundingBias = 0x7fff + lsb;
124   floatBits.u += roundingBias;
125   bfloatBits = static_cast<uint16_t>(floatBits.u >> kF32BfMantiBitDiff);
126   return bfloatBits;
127 }
128 
129 // Converts the 16 bit representation of a bfloat value to a float value. This
130 // implementation is adapted from Eigen.
bfloat2float(uint16_t bfloatBits)131 float bfloat2float(uint16_t bfloatBits) {
132   Float32Bits floatBits;
133   floatBits.u = static_cast<uint32_t>(bfloatBits) << kF32BfMantiBitDiff;
134   return floatBits.f;
135 }
136 
137 } // namespace
138 
f16(float f)139 f16::f16(float f) : bits(float2half(f)) {}
140 
bf16(float f)141 bf16::bf16(float f) : bits(float2bfloat(f)) {}
142 
operator <<(std::ostream & os,const f16 & f)143 std::ostream &operator<<(std::ostream &os, const f16 &f) {
144   os << half2float(f.bits);
145   return os;
146 }
147 
operator <<(std::ostream & os,const bf16 & d)148 std::ostream &operator<<(std::ostream &os, const bf16 &d) {
149   os << bfloat2float(d.bits);
150   return os;
151 }
152 
operator ==(const f16 & f1,const f16 & f2)153 bool operator==(const f16 &f1, const f16 &f2) { return f1.bits == f2.bits; }
154 
operator ==(const bf16 & f1,const bf16 & f2)155 bool operator==(const bf16 &f1, const bf16 &f2) { return f1.bits == f2.bits; }
156 
157 // Mark these symbols as weak so they don't conflict when compiler-rt also
158 // defines them.
159 #define ATTR_WEAK
160 #ifdef __has_attribute
161 #if __has_attribute(weak) && !defined(__MINGW32__) && !defined(__CYGWIN__) &&  \
162     !defined(_WIN32)
163 #undef ATTR_WEAK
164 #define ATTR_WEAK __attribute__((__weak__))
165 #endif
166 #endif
167 
168 #if defined(__x86_64__) || defined(_M_X64)
169 // On x86 bfloat16 is passed in SSE registers. Since both float and __bf16
170 // are passed in the same register we can use the wider type and careful casting
171 // to conform to x86_64 psABI. This only works with the assumption that we're
172 // dealing with little-endian values passed in wider registers.
173 // Ideally this would directly use __bf16, but that type isn't supported by all
174 // compilers.
175 using BF16ABIType = float;
176 #else
177 // Default to uint16_t if we have nothing else.
178 using BF16ABIType = uint16_t;
179 #endif
180 
181 // Provide a float->bfloat conversion routine in case the runtime doesn't have
182 // one.
__truncsfbf2(float f)183 extern "C" BF16ABIType ATTR_WEAK __truncsfbf2(float f) {
184   uint16_t bf = float2bfloat(f);
185   // The output can be a float type, bitcast it from uint16_t.
186   BF16ABIType ret = 0;
187   std::memcpy(&ret, &bf, sizeof(bf));
188   return ret;
189 }
190 
191 // Provide a double->bfloat conversion routine in case the runtime doesn't have
192 // one.
__truncdfbf2(double d)193 extern "C" BF16ABIType ATTR_WEAK __truncdfbf2(double d) {
194   // This does a double rounding step, but it's precise enough for our use
195   // cases.
196   return __truncsfbf2(static_cast<float>(d));
197 }
198 
199 // Provide these to the CRunner with the local float16 knowledge.
printF16(uint16_t bits)200 extern "C" void printF16(uint16_t bits) {
201   f16 f;
202   std::memcpy(&f, &bits, sizeof(f16));
203   std::cout << f;
204 }
printBF16(uint16_t bits)205 extern "C" void printBF16(uint16_t bits) {
206   bf16 f;
207   std::memcpy(&f, &bits, sizeof(bf16));
208   std::cout << f;
209 }
210 
211 #endif // MLIR_FLOAT16_DEFINE_FUNCTIONS
212