1 //===- Padding.cpp - Padding of Linalg ops --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 10 11 #include "mlir/Dialect/Bufferization/IR/Bufferization.h" 12 #include "mlir/Dialect/Complex/IR/Complex.h" 13 #include "mlir/Dialect/Linalg/IR/Linalg.h" 14 #include "mlir/Dialect/Tensor/IR/Tensor.h" 15 #include "mlir/Interfaces/ValueBoundsOpInterface.h" 16 17 #define DEBUG_TYPE "linalg-padding" 18 19 using namespace mlir; 20 using namespace mlir::linalg; 21 22 #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") 23 #define DBGSNL() (llvm::dbgs() << "\n") 24 25 /// Compute the padded shape of the given operand. The operand is padded to a 26 /// static bounding box according to the specified padding options. 27 static LogicalResult computePaddedShape(linalg::LinalgOp opToPad, 28 OpOperand *opOperand, 29 const LinalgPaddingOptions &options, 30 SmallVector<int64_t> &paddedShape, 31 bool &alreadyHasRequestedShape) { 32 AffineMap indexingMap = opToPad.getMatchingIndexingMap(opOperand); 33 ArrayRef<int64_t> shape = opToPad.getShape(opOperand); 34 35 // Collect the shape dimensions that are a function of "paddingDimensions", 36 // along with the multiple that they should be padded to ("1" if none). 37 alreadyHasRequestedShape = true; 38 DenseMap<int64_t, int64_t> shapeDimToMultiple; 39 for (const auto &dimEn : enumerate(options.paddingDimensions)) { 40 for (const auto &en : enumerate(indexingMap.getResults())) { 41 if (en.value().isFunctionOfDim(dimEn.value())) { 42 int64_t dimSize = shape[en.index()]; 43 if (options.padToMultipleOf.has_value()) { 44 shapeDimToMultiple[en.index()] = 45 (*options.padToMultipleOf)[dimEn.index()]; 46 } else { 47 shapeDimToMultiple[en.index()] = 1; 48 } 49 if (ShapedType::isDynamic(dimSize)) { 50 alreadyHasRequestedShape = false; 51 } else if (dimSize % shapeDimToMultiple[en.index()] != 0) { 52 alreadyHasRequestedShape = false; 53 } 54 } 55 } 56 } 57 58 // Helper function to round a number up to a given multiple. 59 auto ceil = [](int64_t val, int64_t multiple) { 60 return ((val + multiple - 1) / multiple) * multiple; 61 }; 62 63 // Upper bound the sizes to obtain a static bounding box. 64 paddedShape.assign(shape.begin(), shape.end()); 65 for (int64_t i = 0, e = shape.size(); i < e; ++i) { 66 LLVM_DEBUG(DBGS() << "--compute padded size for dim " << i << "\n"); 67 // Skip dimensions that do not require padding. 68 if (!shapeDimToMultiple.contains(i)) { 69 LLVM_DEBUG(DBGS() << "----dim does not require padding, SKIP\n"); 70 continue; 71 } 72 // Otherwise, try to compute a constant upper bound for the size value. 73 FailureOr<int64_t> upperBound = 74 ValueBoundsConstraintSet::computeConstantBound( 75 presburger::BoundType::UB, 76 {opOperand->get(), 77 /*dim=*/i}, 78 /*stopCondition=*/nullptr, /*closedUB=*/true); 79 if (failed(upperBound)) { 80 LLVM_DEBUG(DBGS() << "----could not compute a bounding box for padding"); 81 return failure(); 82 } 83 paddedShape[i] = ceil(*upperBound, shapeDimToMultiple[i]); 84 LLVM_DEBUG(DBGS() << "----new dim size: " << paddedShape[i] << "\n"); 85 } 86 87 return success(); 88 } 89 90 /// Pad the `opOperand` in the "paddingDimensions" using the padding value and 91 /// the nofold flag found in "paddingValues" and "nofoldFlags", respectively. 92 /// 93 /// Exit early and return the `opOperand` value if it already has the requested 94 /// shape. i.e.: 95 /// - static shape 96 /// - nofold is not set 97 /// - dim sizes are multiples of "padToMultipleOf" 98 /// 99 /// Otherwise, try to pad the shape dimensions that match the iterator 100 /// dimensions "paddingDimensions" and return the tensor::PadOp result if 101 /// padding succeeds or failure otherwise. 102 static FailureOr<Value> padOperandToSmallestStaticBoundingBox( 103 RewriterBase &rewriter, linalg::LinalgOp opToPad, OpOperand *opOperand, 104 const LinalgPaddingOptions &options) { 105 assert( 106 (!options.padToMultipleOf.has_value() || 107 options.padToMultipleOf->size() == options.paddingDimensions.size()) && 108 "invalid number of elements in padToMultipleOf"); 109 110 // Compute padded shape. 111 SmallVector<int64_t> paddedShape; 112 bool alreadyHasRequestedShape = false; 113 if (failed(computePaddedShape(opToPad, opOperand, options, paddedShape, 114 alreadyHasRequestedShape))) 115 return rewriter.notifyMatchFailure(opToPad, 116 "--failed to compute padded shape"); 117 118 // Return the unpadded operand if padding to a static shape is not needed and 119 // if the nofold flag is not set. 120 bool nofold = opOperand->getOperandNumber() < options.nofoldFlags.size() 121 ? bool(options.nofoldFlags[opOperand->getOperandNumber()]) 122 : false; 123 if (!nofold && alreadyHasRequestedShape) 124 return opOperand->get(); 125 126 // Fail if `paddingValues` specifies no padding value. 127 if (opOperand->getOperandNumber() >= options.paddingValues.size()) { 128 return rewriter.notifyMatchFailure(opToPad, "--no padding value specified"); 129 } 130 Attribute paddingAttr = options.paddingValues[opOperand->getOperandNumber()]; 131 132 Value paddingValue; 133 if (auto complexTy = dyn_cast<ComplexType>( 134 getElementTypeOrSelf(opOperand->get().getType()))) { 135 auto complexAttr = cast<ArrayAttr>(paddingAttr); 136 paddingValue = rewriter.create<complex::ConstantOp>(opToPad.getLoc(), 137 complexTy, complexAttr); 138 } else { 139 paddingValue = rewriter.create<arith::ConstantOp>( 140 opToPad.getLoc(), cast<TypedAttr>(paddingAttr)); 141 } 142 143 // Pad the operand to the bounding box defined by `paddedShape`. 144 auto paddedTensorType = RankedTensorType::get( 145 paddedShape, getElementTypeOrSelf(opOperand->get())); 146 LLVM_DEBUG(DBGS() << "--SUCCESS, makeComposedPadHighOp with type: " 147 << paddedTensorType); 148 return makeComposedPadHighOp(rewriter, opToPad->getLoc(), paddedTensorType, 149 opOperand->get(), paddingValue, nofold); 150 } 151 152 LogicalResult 153 linalg::rewriteAsPaddedOp(RewriterBase &rewriter, LinalgOp opToPad, 154 const LinalgPaddingOptions &constOptions, 155 LinalgOp &paddedOp, SmallVector<Value> &replacements, 156 SmallVector<tensor::PadOp> &padOps) { 157 LLVM_DEBUG(DBGS() << "Start rewriteAsPaddedOp : " << opToPad << "\n"); 158 Location loc = opToPad->getLoc(); 159 160 LinalgPaddingOptions options(constOptions); 161 // Allow inference of pad values if they are not explicitly specified. 162 // TODO: be mindful about the value depending on the actual operation. 163 if (options.paddingValues.empty()) { 164 SmallVector<Type> types(opToPad->getOperandTypes()); 165 llvm::append_range(types, opToPad->getResultTypes()); 166 for (Type t : types) { 167 options.paddingValues.push_back( 168 rewriter.getZeroAttr(getElementTypeOrSelf(t))); 169 } 170 } 171 172 // TODO: there are cases where we may still want to pad to larger sizes. 173 if (!opToPad.hasPureTensorSemantics()) 174 return rewriter.notifyMatchFailure(opToPad, 175 "expected operation on tensors"); 176 177 OpBuilder::InsertionGuard g(rewriter); 178 // Set IP after op because we also take the dims of the original output. 179 rewriter.setInsertionPointAfter(opToPad); 180 181 // Make a copy of the shaped operands and update it. 182 SmallVector<Value> newOperands; 183 newOperands.reserve(opToPad->getNumOperands()); 184 for (OpOperand &opOperand : opToPad->getOpOperands()) { 185 FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox( 186 rewriter, opToPad, &opOperand, options); 187 // Exit if `paddingDimensions` cannot be bounded statically. 188 if (failed(paddedOperand)) { 189 LLVM_DEBUG(DBGS() << "--operand cannot be bound statically : " 190 << opOperand.get() << " -> FAIL\n"); 191 return rewriter.notifyMatchFailure(opToPad, 192 "operand cannot be bound statically"); 193 } 194 newOperands.push_back(*paddedOperand); 195 if (auto padOp = paddedOperand->getDefiningOp<tensor::PadOp>()) 196 padOps.push_back(padOp); 197 } 198 199 ReifiedRankedShapedTypeDims reifiedResultShapes; 200 if (failed(reifyResultShapes(rewriter, opToPad, reifiedResultShapes))) { 201 LLVM_DEBUG(DBGS() << "--failed to reify result shapes -> FAIL\n"); 202 return rewriter.notifyMatchFailure(opToPad, 203 "failed to reify result shapes"); 204 } 205 assert(reifiedResultShapes.size() == opToPad->getNumResults() && 206 "expected same number of results"); 207 208 // Clone `opToPad` to operate on the statically padded shapes. 209 auto resultTensorTypes = 210 ValueRange(newOperands).take_back(opToPad.getNumDpsInits()).getTypes(); 211 // clone **should** properly notify the rewriter. 212 paddedOp = clone(rewriter, opToPad, resultTensorTypes, newOperands); 213 LLVM_DEBUG(DBGS() << "--cloned padded op: " << paddedOp << "\n"); 214 215 // Recover the slice out of the new static results. This keeps the original 216 // linalg op around because it uses the dims of the original results. 217 SmallVector<Value> paddedSubtensorResults; 218 paddedSubtensorResults.reserve(opToPad->getNumResults()); 219 for (const auto &en : llvm::enumerate(paddedOp->getResults())) { 220 Value paddedResult = en.value(); 221 int64_t resultNumber = en.index(); 222 int64_t rank = cast<RankedTensorType>(paddedResult.getType()).getRank(); 223 SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0)); 224 SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1)); 225 paddedSubtensorResults.push_back(rewriter.create<tensor::ExtractSliceOp>( 226 loc, paddedResult, offsets, reifiedResultShapes[resultNumber], 227 strides)); 228 } 229 230 if (options.copyBackOp == LinalgPaddingOptions::CopyBackOp::None) { 231 replacements = std::move(paddedSubtensorResults); 232 return success(); 233 } 234 235 // Copy back unpadded results to the original destination (i.e., inits of the 236 // linalg op), so that the destination buffer of the computation does not 237 // change. If the padding folds away, this will materialize as a memcpy 238 // between two identical buffers, which will then also fold away. 239 assert(static_cast<int64_t>(paddedSubtensorResults.size()) == 240 opToPad.getNumDpsInits() && 241 "expected matching number of results"); 242 for (auto it : 243 llvm::zip(paddedSubtensorResults, opToPad.getDpsInitsMutable())) { 244 if (options.copyBackOp == LinalgPaddingOptions::CopyBackOp::LinalgCopy) { 245 replacements.push_back(rewriter 246 .create<linalg::CopyOp>(loc, std::get<0>(it), 247 std::get<1>(it).get()) 248 .getResult(0)); 249 } else if (options.copyBackOp == 250 LinalgPaddingOptions::CopyBackOp:: 251 BufferizationMaterializeInDestination) { 252 replacements.push_back( 253 rewriter 254 .create<bufferization::MaterializeInDestinationOp>( 255 loc, std::get<0>(it), std::get<1>(it).get()) 256 ->getResult(0)); 257 } else { 258 llvm_unreachable("unsupported copy back op"); 259 } 260 } 261 return success(); 262 } 263 264 FailureOr<LinalgOp> 265 mlir::linalg::padAndHoistLinalgOp(RewriterBase &rewriter, LinalgOp linalgOp, 266 const LinalgPaddingOptions &options) { 267 assert(options.copyBackOp == LinalgPaddingOptions::CopyBackOp::None && 268 "invalid options"); 269 270 if (!linalgOp.hasPureTensorSemantics()) 271 return rewriter.notifyMatchFailure( 272 linalgOp, "only applies to Linalg ops with tensor semantics"); 273 274 // Pad the operation. 275 LinalgOp paddedOp; 276 SmallVector<Value> newResults; 277 SmallVector<tensor::PadOp> padOps; 278 if (failed(rewriteAsPaddedOp(rewriter, linalgOp, options, paddedOp, 279 newResults, padOps))) 280 return rewriter.notifyMatchFailure(linalgOp, 281 "failed to rewrite as a padded op"); 282 283 // Hoist the padding. 284 for (const auto &en : enumerate(options.hoistPaddings)) { 285 if (static_cast<int64_t>(en.index()) >= paddedOp->getNumOperands()) 286 break; 287 OpOperand &opOperand = paddedOp->getOpOperand(en.index()); 288 auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>(); 289 if (!padOp || en.value() == 0) { 290 (void)rewriter.notifyMatchFailure(linalgOp, "not a tensor.pad -- skip"); 291 continue; 292 } 293 294 // Fail hoisting if the operand shape is not fully static. 295 if (llvm::any_of(paddedOp.getShape(&opOperand), ShapedType::isDynamic)) { 296 (void)rewriter.notifyMatchFailure(linalgOp, 297 "non static padding shape -- skip"); 298 continue; 299 } 300 301 tensor::PadOp hoistedOp; 302 SmallVector<TransposeOp> transposeOps; 303 SmallVector<int64_t> transposeVector = 304 en.index() < options.transposePaddings.size() 305 ? options.transposePaddings[en.index()] 306 : SmallVector<int64_t>{}; 307 308 FailureOr<Value> newResult = hoistPaddingOnTensors( 309 padOp, en.value(), transposeVector, hoistedOp, transposeOps); 310 if (failed(newResult)) { 311 (void)rewriter.notifyMatchFailure(linalgOp, 312 "failed to apply hoistPadding"); 313 continue; 314 } 315 rewriter.replaceOp(padOp, *newResult); 316 } 317 318 // Replace the original operation to pad. 319 rewriter.replaceOp(linalgOp, newResults); 320 321 return paddedOp; 322 } 323