xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp (revision 489fec2777881adbcc5fd013227ab84e3e4e69ff)
1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
19 #include "mlir/Dialect/Linalg/Passes.h"
20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
21 #include "mlir/Dialect/Linalg/Utils/Utils.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/Dialect/Tensor/IR/Tensor.h"
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/AffineMap.h"
26 #include "mlir/IR/Dominance.h"
27 #include "mlir/Support/LLVM.h"
28 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
29 #include "mlir/Transforms/RegionUtils.h"
30 #include "llvm/ADT/MapVector.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 
35 #include <set>
36 
37 #define DEBUG_TYPE "linalg-fusion"
38 
39 using namespace mlir;
40 using namespace mlir::linalg;
41 
42 using llvm::dbgs;
43 
44 /// Implements a simple high-level fusion pass on linalg structured operations.
45 ///
46 /// In each block, linalg ops are processed in reverse textual order.
47 /// Given a linalg op `O`, fusion occurs by:
48 ///   1. inspecting the linalg ops that write into the views read by `O`. There
49 ///      are 2 cases:
50 ///      a) buffer case: use the SSA value of the views and a simple alias
51 ///         analysis on subview ops to determine producer-consumer dependences;
52 ///      b) tensor case: use SSA use-def chains on extract_slice ops;
53 ///   2. greedily fuse the linalg ops that produce the subview/extract_slice.
54 ///   3. inspect the fused ops and determine whether they have other remaining
55 ///      LinalgOp uses. If not, then erase the original producing linalg op.
56 ///
57 /// More advanced use cases, analyses as well as profitability heuristics are
58 /// left for future work.
59 
60 struct ShapeDimension {
61   Value shape;
62   unsigned dimension;
63 };
64 
65 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
66 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
67 // guarantees at least one such dimension is found. If multiple candidates exist
68 // they must agree by construction (i.e. have the same size) and we just return
69 // the first one.
70 static ShapeDimension
71 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
72                           bool fromSubViewOpOnly = false) {
73   // Iterate over the inputs and outputs in order.
74   // Extract the subranges from the linearized ranges.
75   for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
76     // The method `getRangeFromOperandShape` requires using SubViewOp or
77     // ExtractSliceOps. If the value isn't defined from there continue.
78     // todo: The method should be adapted to get the values from
79     // `ViewInterface`. The interface needs a `getOrCreateRanges` method which
80     // currently returns a `linalg.range`. The fix here is to move this op to
81     // `std` dialect and add the method to `ViewInterface`.
82     if (fromSubViewOpOnly &&
83         !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
84             opOperand->get().getDefiningOp()))
85       continue;
86 
87     AffineMap map = op.getTiedIndexingMap(opOperand);
88     LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
89                             << opOperand->getOperandNumber() << "\n");
90     LLVM_DEBUG(llvm::dbgs()
91                << "getShapeDefiningLoopRange map: " << map << "\n");
92     SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
93     for (auto en : llvm::enumerate(map.getResults())) {
94       auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
95       if (!dimExpr)
96         continue;
97       if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
98         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
99                                 << loopDepth << "\n");
100         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
101                                 << opOperand->get() << "\n");
102         return ShapeDimension{opOperand->get(),
103                               static_cast<unsigned>(en.index())};
104       }
105     }
106   }
107   llvm_unreachable("Expect to be able to extract a shape defining loop range");
108 }
109 
110 // Return tiled operands for the fused producer op. When fusing into
111 // `linalg.tiled_loop` one has to update `input` and `output` arguments of the
112 // loop correspondingly.
113 // Each input tensor of the producer op has to be added to `inputs` of the
114 // `tiled_loop` if it is not present there already. Each output tensor has to
115 // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending
116 // on whether the correponding result is an input or an output to the loop.
117 //
118 // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the
119 // intermediate result is not used by any other operation but the consumer. A
120 // more generic way is to append all missing output tensors of the producer to
121 // the tiled loop outputs and hence modify the number of the results, since we
122 // would need to add the intermediate results to `linalg.yield`. After that a
123 // canonicalization pass would move the unused output args of the `tiled_loop`
124 // to the `input` section.
125 static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) {
126   auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp());
127   if (!tiledLoop)
128     return producer.getInputAndOutputOperands();
129 
130   SmallVector<Value> tiledOperands;
131   assert(producer.hasTensorSemantics() &&
132          "only fusion on tensors is currently supported for TiledLinalgOp");
133 
134   for (OpOperand *producerInput : producer.getInputOperands()) {
135     OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get());
136     if (addedInput == nullptr)
137       addedInput = &tiledLoop.appendInputOperand(b, producerInput->get());
138     BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput);
139     tiledOperands.push_back(addedBlockArg);
140   }
141   for (OpOperand *producerOutput : producer.getOutputOperands()) {
142     OpResult result = producer.getTiedOpResult(producerOutput);
143     OpOperand *resultInputOperand = tiledLoop.findInputOperand(result);
144     OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result);
145     assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) &&
146            "The result should be present in `input` or `output` args of "
147            "`tiled_loop");
148 
149     bool isInput = resultInputOperand;
150     int opNumber = isInput ? resultInputOperand->getOperandNumber()
151                            : resultOutputOperand->getOperandNumber();
152 
153     OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get());
154     if (addedOutput == nullptr)
155       addedOutput =
156           isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get())
157                   : &tiledLoop.appendOutputOperand(b, producerOutput->get());
158 
159     OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber);
160     auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput);
161     auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand);
162     resultOperandBlockArg.replaceAllUsesWith(addedBlockArg);
163     tiledLoop.eraseOperand(b, resultOperand);
164     tiledOperands.push_back(addedBlockArg);
165   }
166   return tiledOperands;
167 }
168 
169 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
170 /// provides the loop range information for the fused loops. The rest are
171 /// obtained from the producer itself, since they are not tiled + fused.
172 static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
173                      const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
174   SmallVector<Value, 8> ivs, tileSizes, sizeBounds;
175   SmallVector<Range, 8> loopRanges;
176   Location loc = producer.getLoc();
177   auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
178   auto one = b.create<arith::ConstantIndexOp>(loc, 1);
179 
180   for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
181     auto shapeDim = getShapeDefiningLoopRange(producer, i);
182     Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension);
183     sizeBounds.push_back(dim);
184     auto it = fusedLoopsAndRanges.find(i);
185     if (it != fusedLoopsAndRanges.end()) {
186       ivs.push_back(it->second.offset);
187       tileSizes.push_back(it->second.size);
188       loopRanges.push_back(it->second);
189       LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
190                               << loopRanges.back() << "\n");
191     } else {
192       tileSizes.push_back(zero);
193       loopRanges.push_back(Range{zero, dim, one});
194       LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
195                               << loopRanges.back() << "\n");
196     }
197   }
198 
199   SmallVector<Value, 8> clonedShapes;
200   clonedShapes.reserve(producer.getNumInputsAndOutputs());
201 
202   // Compute subranges for all tensor input/output operands.
203   clonedShapes.append(makeTiledShapes(b, loc, producer,
204                                       getTiledOperands(b, producer), ivs,
205                                       tileSizes, sizeBounds));
206 
207   // Iterate over the results in order.
208   // Extract the subtensor type from the linearized range.
209   // Since we do not enforce any canonicalizations on the fly, this is always
210   // fully dynamic at construction time.
211   SmallVector<Type, 4> resultTypes;
212   resultTypes.reserve(producer->getNumResults());
213   for (RankedTensorType t : producer.getOutputTensorTypes()) {
214     unsigned rank = t.getRank();
215     SmallVector<int64_t, 4> staticOffsetsVector(
216         rank, ShapedType::kDynamicStrideOrOffset);
217     SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
218     SmallVector<int64_t, 4> staticStridesVector(
219         rank, ShapedType::kDynamicStrideOrOffset);
220     resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
221         t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
222         staticStridesVector));
223   }
224 
225   Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes);
226 
227   // Shift all IndexOp results by the tile offset.
228   SmallVector<Value> allIvs;
229   transform(loopRanges, std::back_inserter(allIvs),
230             [](Range range) { return range.offset; });
231   addTileLoopIvsToIndexOpResults(b, clonedOp, allIvs);
232 
233   return clonedOp;
234 }
235 
236 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
237 /// expected to be defined by a subview op or an extract_slice op.
238 static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
239                                       Value shapedOperand, unsigned dim) {
240   Operation *shapeProducingOp = shapedOperand.getDefiningOp();
241   if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
242     return subViewOp.getOrCreateRanges(b, loc)[dim];
243   if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
244     return sliceOp.getOrCreateRanges(b, loc)[dim];
245   llvm_unreachable("SubviewOp or ExtractSliceOp expected");
246 }
247 
248 /// Fuses the producer into the loop immediately enclosing the consumer.
249 /// This is achieved by "recomputing" the producer at the time it
250 /// is needed just before the consumer.
251 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
252                      OpOperand &consumerOpOperand) {
253   LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
254   DenseMap<unsigned, Range> fusedLoopsAndRanges;
255   Value shapedOperand = consumerOpOperand.get();
256   for (auto en : llvm::enumerate(producerMap.getResults())) {
257     unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
258     fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
259         b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
260   }
261   return fuse(b, producerOp, fusedLoopsAndRanges);
262 }
263 
264 // Encode structural fusion safety preconditions.
265 // Some of these will be lifted in the future with better analysis.
266 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
267                                           LinalgOp consumer) {
268   assert(producer.hasBufferSemantics() &&
269          "expected linalg op with buffer semantics");
270   assert(consumer.hasBufferSemantics() &&
271          "expected linalg op with buffer semantics");
272   if (producer.getNumOutputs() != 1) {
273     LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
274     return false;
275   }
276   // Only fuse when the producer block dominates.
277   DominanceInfo dom(producer.getOperation());
278   if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
279     LLVM_DEBUG(
280         llvm::dbgs()
281         << "\nNot structurally fusable (producer block does not dominate)");
282     return false;
283   }
284   return true;
285 }
286 
287 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
288                                              LinalgOp consumer,
289                                              Value consumedView,
290                                              LinalgOp producer) {
291   assert(producer.hasBufferSemantics() &&
292          "expected linalg op with buffer semantics");
293   assert(consumer.hasBufferSemantics() &&
294          "expected linalg op with buffer semantics");
295   // Make some simple structural checks that alleviate the need for more
296   // complex analyses.
297   if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
298     LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
299                             << *producer.getOperation());
300     return false;
301   }
302   // Check for any interleaved write to consumedView.
303   if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
304     LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
305                             << *producer.getOperation());
306     return false;
307   }
308   return true;
309 }
310 
311 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
312                                  LinalgOp consumer, Value consumedView,
313                                  LinalgOp producer) {
314   assert(producer.hasBufferSemantics() &&
315          "expected linalg op with buffer semantics");
316   assert(consumer.hasBufferSemantics() &&
317          "expected linalg op with buffer semantics");
318   if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
319     return false;
320   // Check for any fusion-preventing dependence to any shape read/written that
321   // would violate dependences.
322   if (!graph.findCoveringDependences(producer, consumer).empty()) {
323     LLVM_DEBUG(llvm::dbgs()
324                << "\n***Not fusable due to an interleaved dependence:\t"
325                << *producer.getOperation());
326     return false;
327   }
328   return true;
329 }
330 
331 /// For `consumer` with buffer semantics, find the Linalg operation on buffers
332 /// that is the last writer of `consumerOpOperand`. For now the fusable
333 /// dependence is returned as an instance of the `dependenceGraph`.
334 static FailureOr<LinalgDependenceGraph::LinalgDependenceGraphElem>
335 findFusableProducer(OpOperand &consumerOpOperand,
336                     const LinalgDependenceGraph &dependenceGraph) {
337   LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
338                           << consumerOpOperand.get() << " @"
339                           << consumerOpOperand.getOperandNumber() << " in "
340                           << *consumerOpOperand.getOwner() << "\n");
341   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
342   if (!consumerOp)
343     return failure();
344 
345   // Only consider RAW and WAW atm.
346   for (auto depType : {
347            LinalgDependenceGraph::DependenceType::RAW,
348            LinalgDependenceGraph::DependenceType::WAW,
349        }) {
350     LLVM_DEBUG(llvm::dbgs()
351                << "Dependencies into: " << *consumerOp.getOperation() << "\n");
352     for (auto dependence : llvm::make_filter_range(
353              dependenceGraph.getDependencesInto(consumerOp, depType),
354              [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
355                LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
356                                        << elem.getIndexingValue() << " and "
357                                        << elem.getDependentValue() << "\n");
358                Value v = elem.getIndexingValue();
359                Optional<unsigned> operandNum =
360                    elem.getIndexingOpViewOperandNum();
361                return isa<LinalgOp>(elem.getDependentOp()) &&
362                       v == consumerOpOperand.get() && operandNum &&
363                       operandNum.getValue() ==
364                           consumerOpOperand.getOperandNumber();
365              })) {
366       // Consumer consumes this view, `isStructurallyFusableProducer` also
367       // checks whether it is a strict subview of the producer view.
368       auto producer = cast<LinalgOp>(dependence.getDependentOp());
369       LLVM_DEBUG(llvm::dbgs()
370                  << "\n"
371                  << LinalgDependenceGraph::getDependenceTypeStr(depType)
372                  << "producer: " << *dependence.getDependentOp()
373                  << " view: " << dependence.getDependentValue() << "\n");
374 
375       // If the producer and consumer have tensor semantics, the only dependence
376       // between them is through a RAW dependence and they are fusable by
377       // construction. For buffer semantics need additional checks.
378       if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
379           isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
380                         producer))
381         return dependence;
382       if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
383         assert(dependence.dependenceType ==
384                LinalgDependenceGraph::DependenceType::RAW);
385         return dependence;
386       }
387     }
388   }
389   return failure();
390 }
391 
392 FailureOr<FusionInfo>
393 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
394                                    const LinalgDependenceGraph &graph) {
395   Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
396       findFusableProducer(consumerOpOperand, graph);
397   if (!fusableDependence)
398     return failure();
399 
400   LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
401   if (!producerOp)
402     return failure();
403 
404   // If producer is already in the same block as consumer, we are done.
405   if (consumerOpOperand.get().getParentBlock() ==
406       fusableDependence->getDependentValue().getParentBlock())
407     return failure();
408 
409   Optional<AffineMap> producerMap =
410       fusableDependence->getDependentOpViewIndexingMap();
411   if (!producerMap)
412     return failure();
413 
414   // Must be a subview or an extract_slice to guarantee there are loops we can
415   // fuse into.
416   auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
417   if (!subView) {
418     LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
419     return failure();
420   }
421 
422   // Fuse `producer` just before `consumer`.
423   OpBuilder::InsertionGuard g(b);
424   b.setInsertionPoint(consumerOpOperand.getOwner());
425   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
426                           << *consumerOpOperand.getOwner() << "\n");
427 
428   auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
429   return FusionInfo{producerOp, fusedProducer};
430 }
431 
432 /// Walk back use-def chain through scf::For yields.
433 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
434 
435 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs
436 // dependence tracking since the dependence tracking is similar to what is done
437 // w.r.t to buffers.
438 static void getProducerOfTensor(Value tensor, OpResult &opResult) {
439   if (!tensor.getType().isa<RankedTensorType>())
440     return;
441 
442   while (true) {
443     LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
444     if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
445       opResult = tensor.cast<OpResult>();
446       return;
447     }
448     if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
449       tensor = sliceOp.source();
450       continue;
451     }
452     if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
453       if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
454         tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
455         continue;
456       }
457     }
458     return;
459   }
460 }
461 
462 FailureOr<FusionInfo>
463 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
464   Value inputTensor = consumerOpOperand.get();
465   OpResult producerOpResult;
466   getProducerOfTensor(inputTensor, producerOpResult);
467   if (!producerOpResult) {
468     LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
469     return failure();
470   }
471   return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
472 }
473 
474 FailureOr<FusionInfo>
475 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
476                                    OpOperand &consumerOpOperand) {
477   auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
478   if (!producerOp)
479     return failure();
480 
481   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
482   if (!consumerOp)
483     return failure();
484 
485   Value inputTensor = consumerOpOperand.get();
486 
487   // Must be an extract_slice op to guarantee there are loops we can fuse into.
488   auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
489   if (!sliceOp) {
490     LLVM_DEBUG(llvm::dbgs()
491                << "\nNot fusable, not an extract_slice op: " << inputTensor);
492     return failure();
493   }
494 
495   // If producer is already in the same block as consumer, we are done.
496   if (consumerOpOperand.get().getParentBlock() ==
497       producerOpResult.getParentBlock())
498     return failure();
499 
500   // Insert fused `producer` just before `consumer`.
501   OpBuilder::InsertionGuard g(b);
502   b.setInsertionPoint(consumerOp);
503   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
504   OpOperand *opOperand =
505       producerOp.getOutputOperand(producerOpResult.getResultNumber());
506   LinalgOp fusedProducer =
507       fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand),
508            consumerOpOperand);
509 
510   // Replace use.
511   // Canonicalizations are not guaranteed to have happened before constructing
512   // `fusedProducer`. In the tensor case this can result in temporary type
513   // mismatches. Insert a `tensor.cast` op to propagate the transformation
514   // invariant that types are compatible.
515   Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
516   Type consumerType = consumerOpOperand.get().getType();
517   if (consumerType != def.getType())
518     def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
519   consumerOpOperand.set(def);
520   return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
521 }
522 
523 /// Prune all dimensions that are of reduction iterator type from `map`.
524 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
525                                            AffineMap map) {
526   llvm::SmallDenseSet<unsigned> projectedDims;
527   for (auto attr : llvm::enumerate(iteratorTypes)) {
528     if (!isParallelIterator(attr.value()))
529       projectedDims.insert(attr.index());
530   }
531   return getProjectedMap(map, projectedDims);
532 }
533 
534 /// Returns the mapping from iterations in the consumer that write to the same
535 /// location as the iterations in the producer. To do so use
536 /// - indexing map of the fused view in the consumer : consumerIndexMap
537 /// - indexing map of the fused view in the producer : producerIndexMap
538 ///     consumerLoopToProducerLoop =
539 ///       inverse(producerIndexMap).compose(consumerIndexMap)
540 static FailureOr<AffineMap> getConsumerLoopToProducerLoopMap(
541     LinalgDependenceGraph::LinalgDependenceGraphElem dependence) {
542   auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp());
543   if (!producer)
544     return failure();
545 
546   Optional<AffineMap> producerIndexingMap =
547       dependence.getDependentOpViewIndexingMap();
548   Optional<AffineMap> consumerIndexingMap =
549       dependence.getIndexingOpViewIndexingMap();
550   if (!producerIndexingMap || !consumerIndexingMap)
551     return failure();
552 
553   AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
554       producer.iterator_types().getValue(), *producerIndexingMap);
555   if (!prunedProducerIndexingMap.isPermutation())
556     return failure();
557 
558   if (consumerIndexingMap->getNumResults() !=
559       prunedProducerIndexingMap.getNumResults())
560     return failure();
561 
562   LLVM_DEBUG({
563     llvm::dbgs() << "\t producerMap : ";
564     producerIndexingMap->print(llvm::dbgs());
565     llvm::dbgs() << "  pruned : ";
566     prunedProducerIndexingMap.print(llvm::dbgs());
567     llvm::dbgs() << "\n";
568     llvm::dbgs() << "\t consumerMap : ";
569     consumerIndexingMap->print(llvm::dbgs());
570     llvm::dbgs() << "\n";
571   });
572 
573   AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap);
574   if (!invProducerIndexMap)
575     return failure();
576 
577   return invProducerIndexMap.compose(*consumerIndexingMap);
578 }
579 
580 /// Given a projected permutation `map`, returns true if the map changes the
581 /// order in which the fused loop dimension appear.
582 static bool doesTransposeAccess(AffineMap map,
583                                 const std::set<unsigned> &fusableLoops) {
584   Optional<unsigned> lastFusableLoop;
585   for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) {
586          return expr.cast<AffineDimExpr>().getPosition();
587        })) {
588     if (!fusableLoops.count(pos))
589       continue;
590     if (!lastFusableLoop) {
591       lastFusableLoop = pos;
592       continue;
593     }
594     if (pos <= lastFusableLoop.getValue())
595       return true;
596     lastFusableLoop = pos;
597   }
598   return false;
599 }
600 
601 /// Returns the positions of the loop in `op` that can be tiled based on the
602 /// operations that are to be fused with it. For example, in a
603 ///
604 ///   linalg.matmul ins(%a, %b : ...) outs(%c : ...)
605 ///
606 /// if the producer of %a needs to be fused with this op, only the `i` loop of
607 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be
608 /// fused, then no loops can be tiled while fusing. The conditions used are:
609 /// 1. Only parallel loops can be used for tile + fuse. Find the number of
610 ///    common outer parallel loops between the op and its producers being fused.
611 /// 2. Of the parallel loops only some can be fused. Only those loops can be
612 ///    fused such where the fusable loops iteration space only touches one tile
613 ///    of the fused operation. This is because the producer (which is writing
614 ///    the fused subview) has update semantics.
615 ///
616 /// Since an inverse computation is needed, we need to consider the projection
617 /// of the producerIndexMap w.r.t the parallel loops.  The actual fusable loops
618 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to
619 /// parallel loops and appear in the result of the map
620 ///
621 /// Example 1:
622 ///   linalg.fill(%cst, %c)
623 ///   linalg.matmul ins(%a, %b) outs(%c)
624 ///     Number of parallel loops : 2
625 ///     producerIndexMap = affine_map<(i, j) ->(i , j)>
626 ///     consumerIndexMap = affine_map<(i, j, k) -> (i, j)>
627 ///     consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)>
628 ///     Fused dimensions : i, j
629 ///
630 /// Example 2:
631 ///   linalg.matmul ins(%a, %b) outs(%c)
632 ///   linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ...
633 ///                   iterator_types = ["parallel", "parallel"]}
634 ///     ins(%c) ...
635 ///
636 ///     Number of parallel loops = 2:
637 ///     producerIndexMap (projected to parallel loops) =
638 ///       affine_map<(i, j) -> (i, j)>
639 ///     consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)>
640 ///     Fused dimensions : i, j
641 ///
642 /// Example 3:
643 ///   linalg.copy(%s, %b)
644 ///   linalg.matmul ins(%a, %b) outs(%c)
645 ///
646 ///   Number of parallel loops = 2
647 ///   produceIndexMap : affine_map<(i, j) -> (i, j)>
648 ///   consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)>
649 ///     submap with only parallel loops = affine_map<(i, j) -> (j)>
650 ///   Fused dimensions : j
651 static std::set<unsigned>
652 collectFusableLoops(ArrayRef<LinalgOp> ops,
653                     const FusableOpDependencesTy &fusableDependences) {
654   assert(!ops.empty());
655   auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
656     return linalgOp.iterator_types()
657         .getValue()
658         .take_while([](Attribute attr) -> bool {
659           return attr.cast<StringAttr>().getValue() ==
660                  getParallelIteratorTypeName();
661         })
662         .size();
663   };
664 
665   size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back());
666   for (auto op : ops.drop_back()) {
667     numOuterParallelLoops =
668         std::min(numOuterParallelLoops, getNumOuterParallelLoops(op));
669   }
670 
671   std::set<unsigned> fusableLoops;
672   auto range = llvm::seq<unsigned>(0, numOuterParallelLoops);
673   fusableLoops.insert(range.begin(), range.end());
674 
675   for (auto op : reverse(ops)) {
676     for (auto dependence : fusableDependences.lookup(op)) {
677       LLVM_DEBUG({
678         llvm::dbgs() << "\t fusable :";
679         for (unsigned i : fusableLoops)
680           llvm::dbgs() << " " << i;
681         llvm::dbgs() << "\n";
682       });
683 
684       Optional<AffineMap> consumerLoopToProducerLoop =
685           getConsumerLoopToProducerLoopMap(dependence);
686       if (!consumerLoopToProducerLoop) {
687         op.emitRemark("failed to get map from consumer loop to producer loop");
688         return {};
689       }
690       // todo: This condition is only an implementation limitation. When fusing
691       // the operation, if the accesses in the producer/consumer are transposes
692       // of each other, the loop bounds for the tiled producer can be
693       // manipulated accordingly. This requires some additional bookkeeping in
694       // the implementation of tile+fuse that is deferred to later.
695       if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) {
696         op.emitRemark("unhandled fusion when fusion requires permutation");
697         return {};
698       }
699 
700       std::set<unsigned> candidates;
701       for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) {
702         unsigned position = expr.cast<AffineDimExpr>().getPosition();
703         if (fusableLoops.count(position))
704           candidates.insert(position);
705       }
706       LLVM_DEBUG({
707         llvm::dbgs() << "\t candidates :";
708         for (unsigned i : candidates)
709           llvm::dbgs() << " " << i;
710         llvm::dbgs() << "\n";
711       });
712       if (candidates.empty())
713         return {};
714       std::swap(candidates, fusableLoops);
715     }
716   }
717 
718   return fusableLoops;
719 }
720 
721 /// Find all dependences that are fusable.
722 FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
723     ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) {
724   FusableOpDependencesTy fusableDependences;
725   DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap;
726   for (LinalgOp op : reverse(ops)) {
727     for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
728       Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
729           fusableDependence = findFusableProducer(*opOperand, dependenceGraph);
730       if (!fusableDependence)
731         continue;
732       LinalgOp producerOp =
733           dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
734       if (!producerOp)
735         continue;
736       // Do not fuse dependences that are to operations not in the same basic
737       // block. This avoid moving fused operations across loops that might
738       // themselves carry dependency making the fusion illegal.
739       if (producerOp->getBlock() != op->getBlock())
740         continue;
741 
742       // Make sure that the indexing map of the view used for fusion in the
743       // producer is a projected permutation.
744       Optional<AffineMap> producerMap =
745           fusableDependence->getDependentOpViewIndexingMap();
746       Optional<AffineMap> consumerMap =
747           fusableDependence->getIndexingOpViewIndexingMap();
748       assert(
749           consumerMap &&
750           "unable to find indexing map of operand/result of indexing OpView");
751       fusedProducerIndexingMap[producerOp.getOperation()].push_back(
752           *consumerMap);
753       if (!producerMap || !producerMap->isProjectedPermutation() ||
754           !consumerMap->isProjectedPermutation())
755         continue;
756 
757       fusableDependences[producerOp.getOperation()].push_back(
758           *fusableDependence);
759     }
760   }
761   // TODO: Currently fusion would not be legal if the fusable dependence is to
762   // the same producer but different indexing map in the consumer. Fix this, but
763   // in the meanwhile disallow such a fusion.
764   for (auto useIndexingMapsList : fusedProducerIndexingMap) {
765     AffineMap map1 = useIndexingMapsList.second.front();
766     for (AffineMap map2 :
767          ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) {
768       if (map1 != map2) {
769         fusableDependences.erase(useIndexingMapsList.first);
770         break;
771       }
772     }
773   }
774   return fusableDependences;
775 }
776 
777 /// Tile the fused loops in the root operation, by setting the tile sizes for
778 /// all other loops to zero (those will be tiled later).
779 static FailureOr<TiledLinalgOp>
780 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector,
781                   const LinalgTilingOptions &options,
782                   const std::set<unsigned> &fusedLoops) {
783   SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end());
784   auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
785   for (unsigned i = 0, e = tileSizes.size(); i != e; ++i)
786     if (!fusedLoops.count(i))
787       tileSizes[i] = zero;
788   LinalgTilingOptions tileFusedLoopsOptions = options;
789   tileFusedLoopsOptions.setTileSizes(tileSizes);
790   return tileLinalgOp(b, op, tileFusedLoopsOptions);
791 }
792 
793 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected
794 /// to be a tiled operation such that it is valid to fuse all operations in
795 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of
796 /// `tiledOp`.
797 static SmallVector<LinalgOp, 1>
798 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp,
799                ArrayRef<LinalgOp> fusionCandidates,
800                const FusableOpDependencesTy &fusableDependences,
801                const std::set<unsigned> &fusedLoops) {
802   LinalgOp tiledOp = tiledLinalgOp.op;
803   OpBuilder::InsertionGuard guard(b);
804   b.setInsertionPoint(tiledOp);
805 
806   DenseMap<unsigned, Range> fusedLoopsAndRanges;
807   for (unsigned loop : fusedLoops) {
808     ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true);
809     fusedLoopsAndRanges[loop] = getRangeFromOperandShape(
810         b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension);
811   }
812 
813   SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size());
814   DenseMap<Operation *, LinalgOp> origOpToFusedOp;
815   origOpToFusedOp[rootOp.getOperation()] = tiledOp;
816   for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) {
817     LinalgOp origOp = candidate.value();
818     LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges);
819     origOpToFusedOp[origOp.getOperation()] = fusedOp;
820     fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp;
821 
822     // Prepare the builder for the next insertion point.
823     auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); });
824     if (!origOp.hasTensorSemantics())
825       continue;
826 
827     // If the producer consumer operations are linalg operations on tensors, the
828     // dependence is due to value produced (as a return tensor) by the producer
829     // and used in the consumer. The returned value of the fused op needs to be
830     // made the operand of the tiled/fused consumer operation. By construction
831     // the value returned by the producer is the value used by the consumer.
832     for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) {
833       if (dependence.dependenceType !=
834           LinalgDependenceGraph::DependenceType::RAW)
835         continue;
836 
837       unsigned resultIndex =
838           dependence.getDependentOpViewResultNum().getValue();
839       LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp());
840       if (!consumer)
841         continue;
842 
843       Value replacementValue = fusedOp.getOperation()->getResult(resultIndex);
844       consumer.getOperation()->setOperand(
845           dependence.getIndexingOpViewOperandNum().getValue(),
846           replacementValue);
847     }
848 
849     // At this point, all Linalg uses of the tensors produced by `origOp` have
850     // been replaced. However, there may still be "output tensor"-like uses
851     // coming from WAW dependencies.
852     // All these uses are iter_args of the outermost loop (TODO: add a check).
853     // Such iter_args uses serve 2 purposes:
854     //  1. give a shape to the output
855     //  2. encode destructive updates that may be inplaceable by bufferization.
856     // To keep the second type of information while letting the unfused op die
857     // unused, we need to forward the producer output operand.
858     if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) {
859       for (auto &operand : forOp.getIterOpOperands()) {
860         if (auto opResult = operand.get().dyn_cast<OpResult>()) {
861           if (opResult.getOwner() == origOp) {
862             Value output =
863                 origOp.getOutputOperand(opResult.getResultNumber())->get();
864             assert(output.getType().isa<RankedTensorType>());
865             operand.set(output);
866           }
867         }
868       }
869     }
870   }
871   return fusedOps;
872 }
873 
874 static FailureOr<TiledAndFusedLinalgOps>
875 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops,
876                          const LinalgDependenceGraph &dependenceGraph,
877                          const LinalgTilingOptions &tilingOptions) {
878   if (ops.size() < 2)
879     return failure();
880   LinalgOp rootOp = ops.back();
881   if (!llvm::all_of(
882           ops,
883           [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) &&
884       !llvm::all_of(ops, [](LinalgOp linalgOp) {
885         return linalgOp.hasTensorSemantics();
886       })) {
887     rootOp.emitError(
888         "unable to fuse operations that have tensor semantics with operations "
889         "that have buffer semantics and viceversa.");
890     return failure();
891   }
892   // TODO: Support interchange with tile + fuse. This might actually help do
893   // better fusion.
894   if (!tilingOptions.interchangeVector.empty()) {
895     rootOp.emitRemark("unable to handle tile and fuse with interchange");
896     return failure();
897   }
898 
899   OpBuilder::InsertionGuard guard(b);
900   b.setInsertionPoint(rootOp);
901 
902   // Find all the producers.
903   LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n");
904   FusableOpDependencesTy fusableDependences =
905       findAllFusableDependences(ops, dependenceGraph);
906   if (fusableDependences.empty()) {
907     LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n");
908     return failure();
909   }
910 
911   TiledAndFusedLinalgOps ret;
912   // Find the loops that can be tiled and fused.
913   LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n");
914   ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences);
915 
916   // If there are no fusable dependences or there are no tile+fusable loops,
917   // just return.
918   if (ret.fusedLoopDims.empty()) {
919     LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n");
920     return failure();
921   }
922 
923   // Tile the fused loops in the last operation in the list.
924   SmallVector<Value, 4> tileSizeVector =
925       tilingOptions.tileSizeComputationFunction(b, rootOp);
926   FailureOr<TiledLinalgOp> tiledRootOp = tileRootOperation(
927       b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims);
928   if (failed(tiledRootOp)) {
929     rootOp.emitRemark("failed to tile the fused loops");
930     return failure();
931   }
932   ret.op = tiledRootOp->op;
933   ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end());
934 
935   // Fuse the other operations into the fused inter-tile loops produced above.
936   ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(),
937                                       fusableDependences, ret.fusedLoopDims);
938 
939   return ret;
940 }
941 
942 FailureOr<TiledAndFusedLinalgOps>
943 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops,
944                                    const LinalgDependenceGraph &dependenceGraph,
945                                    const LinalgTilingOptions &tilingOptions) {
946   switch (tilingOptions.loopType) {
947   case LinalgTilingLoopType::Loops:
948   case LinalgTilingLoopType::ParallelLoops:
949   case LinalgTilingLoopType::TiledLoops:
950     return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions);
951   default:;
952   }
953   return failure();
954 }
955