//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the linalg dialect Fusion pass. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/Dominance.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #define DEBUG_TYPE "linalg-fusion" using namespace mlir; using namespace mlir::linalg; using llvm::dbgs; /// Implements a simple high-level fusion pass on linalg structured operations. /// /// In each block, linalg ops are processed in reverse textual order. /// Given a linalg op `O`, fusion occurs by: /// 1. inspecting the linalg ops that write into the views read by `O`. There /// are 2 cases: /// a) buffer case: use the SSA value of the views and a simple alias /// analysis on subview ops to determine producer-consumer dependences; /// b) tensor case: use SSA use-def chains on extract_slice ops; /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. /// 3. inspect the fused ops and determine whether they have other remaining /// LinalgOp uses. If not, then erase the original producing linalg op. /// /// More advanced use cases, analyses as well as profitability heuristics are /// left for future work. struct ShapeDimension { Value shape; unsigned dimension; }; // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps // guarantees at least one such dimension is found. If multiple candidates exist // they must agree by construction (i.e. have the same size) and we just return // the first one. static ShapeDimension getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, bool fromSubViewOpOnly = false) { // Iterate over the inputs and outputs in order. // Extract the subranges from the linearized ranges. for (OpOperand *opOperand : op.getInputAndOutputOperands()) { // The method `getRangeFromOperandShape` requires using SubViewOp or // ExtractSliceOps. If the value isn't defined from there continue. // todo: The method should be adapted to get the values from // `ViewInterface`. The interface needs a `getOrCreateRanges` method which // currently returns a `linalg.range`. The fix here is to move this op to // `std` dialect and add the method to `ViewInterface`. if (fromSubViewOpOnly && !isa_and_nonnull( opOperand->get().getDefiningOp())) continue; AffineMap map = op.getTiedIndexingMap(opOperand); LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " << opOperand->getOperandNumber() << "\n"); LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange map: " << map << "\n"); SmallVector shapeRanges(map.getNumResults(), nullptr); for (auto en : llvm::enumerate(map.getResults())) { auto dimExpr = en.value().dyn_cast(); if (!dimExpr) continue; if (loopDepth == en.value().cast().getPosition()) { LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " << loopDepth << "\n"); LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " << opOperand->get() << "\n"); return ShapeDimension{opOperand->get(), static_cast(en.index())}; } } } llvm_unreachable("Expect to be able to extract a shape defining loop range"); } // Return tiled operands for the fused producer op. When fusing into // `linalg.tiled_loop` one has to update `input` and `output` arguments of the // loop correspondingly. // Each input tensor of the producer op has to be added to `inputs` of the // `tiled_loop` if it is not present there already. Each output tensor has to // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending // on whether the correponding result is an input or an output to the loop. // // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the // intermediate result is not used by any other operation but the consumer. A // more generic way is to append all missing output tensors of the producer to // the tiled loop outputs and hence modify the number of the results, since we // would need to add the intermediate results to `linalg.yield`. After that a // canonicalization pass would move the unused output args of the `tiled_loop` // to the `input` section. static SmallVector getTiledOperands(OpBuilder &b, LinalgOp producer) { auto tiledLoop = dyn_cast(b.getBlock()->getParentOp()); if (!tiledLoop) return producer.getInputAndOutputOperands(); SmallVector tiledOperands; assert(producer.hasTensorSemantics() && "only fusion on tensors is currently supported for TiledLinalgOp"); for (OpOperand *producerInput : producer.getInputOperands()) { OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get()); if (addedInput == nullptr) addedInput = &tiledLoop.appendInputOperand(b, producerInput->get()); BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput); tiledOperands.push_back(addedBlockArg); } for (OpOperand *producerOutput : producer.getOutputOperands()) { OpResult result = producer.getTiedOpResult(producerOutput); OpOperand *resultInputOperand = tiledLoop.findInputOperand(result); OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result); assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) && "The result should be present in `input` or `output` args of " "`tiled_loop"); bool isInput = resultInputOperand; int opNumber = isInput ? resultInputOperand->getOperandNumber() : resultOutputOperand->getOperandNumber(); OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get()); if (addedOutput == nullptr) addedOutput = isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get()) : &tiledLoop.appendOutputOperand(b, producerOutput->get()); OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber); auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput); auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand); resultOperandBlockArg.replaceAllUsesWith(addedBlockArg); tiledLoop.eraseOperand(b, resultOperand); tiledOperands.push_back(addedBlockArg); } return tiledOperands; } /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` /// provides the loop range information for the fused loops. The rest are /// obtained from the producer itself, since they are not tiled + fused. static LinalgOp fuse(OpBuilder &b, LinalgOp producer, const DenseMap &fusedLoopsAndRanges) { SmallVector ivs, tileSizes, sizeBounds; SmallVector loopRanges; Location loc = producer.getLoc(); auto zero = b.create(loc, 0); auto one = b.create(loc, 1); for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { auto shapeDim = getShapeDefiningLoopRange(producer, i); Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension); sizeBounds.push_back(dim); auto it = fusedLoopsAndRanges.find(i); if (it != fusedLoopsAndRanges.end()) { ivs.push_back(it->second.offset); tileSizes.push_back(it->second.size); loopRanges.push_back(it->second); LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " << loopRanges.back() << "\n"); } else { tileSizes.push_back(zero); loopRanges.push_back(Range{zero, dim, one}); LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " << loopRanges.back() << "\n"); } } SmallVector clonedShapes; clonedShapes.reserve(producer.getNumInputsAndOutputs()); // Compute subranges for all tensor input/output operands. clonedShapes.append(makeTiledShapes(b, loc, producer, getTiledOperands(b, producer), ivs, tileSizes, sizeBounds)); // Iterate over the results in order. // Extract the subtensor type from the linearized range. // Since we do not enforce any canonicalizations on the fly, this is always // fully dynamic at construction time. SmallVector resultTypes; resultTypes.reserve(producer->getNumResults()); for (RankedTensorType t : producer.getOutputTensorTypes()) { unsigned rank = t.getRank(); SmallVector staticOffsetsVector( rank, ShapedType::kDynamicStrideOrOffset); SmallVector staticSizesVector(rank, ShapedType::kDynamicSize); SmallVector staticStridesVector( rank, ShapedType::kDynamicStrideOrOffset); resultTypes.push_back(tensor::ExtractSliceOp::inferResultType( t.cast(), staticOffsetsVector, staticSizesVector, staticStridesVector)); } Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes); // Shift all IndexOp results by the tile offset. SmallVector allIvs; transform(loopRanges, std::back_inserter(allIvs), [](Range range) { return range.offset; }); addTileLoopIvsToIndexOpResults(b, clonedOp, allIvs); return clonedOp; } /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is /// expected to be defined by a subview op or an extract_slice op. static Range getRangeFromOperandShape(OpBuilder &b, Location loc, Value shapedOperand, unsigned dim) { Operation *shapeProducingOp = shapedOperand.getDefiningOp(); if (auto subViewOp = dyn_cast(shapeProducingOp)) return subViewOp.getOrCreateRanges(b, loc)[dim]; if (auto sliceOp = dyn_cast(shapeProducingOp)) return sliceOp.getOrCreateRanges(b, loc)[dim]; llvm_unreachable("SubviewOp or ExtractSliceOp expected"); } /// Fuses the producer into the loop immediately enclosing the consumer. /// This is achieved by "recomputing" the producer at the time it /// is needed just before the consumer. static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, OpOperand &consumerOpOperand) { LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); DenseMap fusedLoopsAndRanges; Value shapedOperand = consumerOpOperand.get(); for (auto en : llvm::enumerate(producerMap.getResults())) { unsigned posInProducerLoop = en.value().cast().getPosition(); fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); } return fuse(b, producerOp, fusedLoopsAndRanges); } // Encode structural fusion safety preconditions. // Some of these will be lifted in the future with better analysis. static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, LinalgOp consumer) { assert(producer.hasBufferSemantics() && "expected linalg op with buffer semantics"); assert(consumer.hasBufferSemantics() && "expected linalg op with buffer semantics"); if (producer.getNumOutputs() != 1) { LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)"); return false; } // Only fuse when the producer block dominates. DominanceInfo dom(producer.getOperation()); if (!dom.dominates(producer->getBlock(), consumer->getBlock())) { LLVM_DEBUG( llvm::dbgs() << "\nNot structurally fusable (producer block does not dominate)"); return false; } return true; } bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, LinalgOp consumer, Value consumedView, LinalgOp producer) { assert(producer.hasBufferSemantics() && "expected linalg op with buffer semantics"); assert(consumer.hasBufferSemantics() && "expected linalg op with buffer semantics"); // Make some simple structural checks that alleviate the need for more // complex analyses. if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t" << *producer.getOperation()); return false; } // Check for any interleaved write to consumedView. if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t" << *producer.getOperation()); return false; } return true; } bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, LinalgOp consumer, Value consumedView, LinalgOp producer) { assert(producer.hasBufferSemantics() && "expected linalg op with buffer semantics"); assert(consumer.hasBufferSemantics() && "expected linalg op with buffer semantics"); if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) return false; // Check for any fusion-preventing dependence to any shape read/written that // would violate dependences. if (!graph.findCoveringDependences(producer, consumer).empty()) { LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to an interleaved dependence:\t" << *producer.getOperation()); return false; } return true; } /// For `consumer` with buffer semantics, find the Linalg operation on buffers /// that is the last writer of `consumerOpOperand`. For now the fusable /// dependence is returned as an instance of the `dependenceGraph`. static FailureOr findFusableProducer(OpOperand &consumerOpOperand, const LinalgDependenceGraph &dependenceGraph) { LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: " << consumerOpOperand.get() << " @" << consumerOpOperand.getOperandNumber() << " in " << *consumerOpOperand.getOwner() << "\n"); LinalgOp consumerOp = dyn_cast(consumerOpOperand.getOwner()); if (!consumerOp) return failure(); // Only consider RAW and WAW atm. for (auto depType : { LinalgDependenceGraph::DependenceType::RAW, LinalgDependenceGraph::DependenceType::WAW, }) { LLVM_DEBUG(llvm::dbgs() << "Dependencies into: " << *consumerOp.getOperation() << "\n"); for (auto dependence : llvm::make_filter_range( dependenceGraph.getDependencesInto(consumerOp, depType), [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) { LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: " << elem.getIndexingValue() << " and " << elem.getDependentValue() << "\n"); Value v = elem.getIndexingValue(); Optional operandNum = elem.getIndexingOpViewOperandNum(); return isa(elem.getDependentOp()) && v == consumerOpOperand.get() && operandNum && operandNum.getValue() == consumerOpOperand.getOperandNumber(); })) { // Consumer consumes this view, `isStructurallyFusableProducer` also // checks whether it is a strict subview of the producer view. auto producer = cast(dependence.getDependentOp()); LLVM_DEBUG(llvm::dbgs() << "\n" << LinalgDependenceGraph::getDependenceTypeStr(depType) << "producer: " << *dependence.getDependentOp() << " view: " << dependence.getDependentValue() << "\n"); // If the producer and consumer have tensor semantics, the only dependence // between them is through a RAW dependence and they are fusable by // construction. For buffer semantics need additional checks. if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() && isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(), producer)) return dependence; if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) { assert(dependence.dependenceType == LinalgDependenceGraph::DependenceType::RAW); return dependence; } } } return failure(); } FailureOr mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand, const LinalgDependenceGraph &graph) { Optional fusableDependence = findFusableProducer(consumerOpOperand, graph); if (!fusableDependence) return failure(); LinalgOp producerOp = dyn_cast(fusableDependence->getDependentOp()); if (!producerOp) return failure(); // If producer is already in the same block as consumer, we are done. if (consumerOpOperand.get().getParentBlock() == fusableDependence->getDependentValue().getParentBlock()) return failure(); Optional producerMap = fusableDependence->getDependentOpViewIndexingMap(); if (!producerMap) return failure(); // Must be a subview or an extract_slice to guarantee there are loops we can // fuse into. auto subView = consumerOpOperand.get().getDefiningOp(); if (!subView) { LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)"); return failure(); } // Fuse `producer` just before `consumer`. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(consumerOpOperand.getOwner()); LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOpOperand.getOwner() << "\n"); auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand); return FusionInfo{producerOp, fusedProducer}; } /// Walk back use-def chain through scf::For yields. /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp // TODO(ravishankarm, ntv): This can be moved into the dependence graphs // dependence tracking since the dependence tracking is similar to what is done // w.r.t to buffers. static void getProducerOfTensor(Value tensor, OpResult &opResult) { if (!tensor.getType().isa()) return; while (true) { LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); if (auto linalgOp = tensor.getDefiningOp()) { opResult = tensor.cast(); return; } if (auto sliceOp = tensor.getDefiningOp()) { tensor = sliceOp.source(); continue; } if (auto blockArg = tensor.dyn_cast()) { if (auto forOp = blockArg.getDefiningOp()) { tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber()); continue; } } return; } } FailureOr mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { Value inputTensor = consumerOpOperand.get(); OpResult producerOpResult; getProducerOfTensor(inputTensor, producerOpResult); if (!producerOpResult) { LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); return failure(); } return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); } FailureOr mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, OpOperand &consumerOpOperand) { auto producerOp = dyn_cast(producerOpResult.getOwner()); if (!producerOp) return failure(); LinalgOp consumerOp = dyn_cast(consumerOpOperand.getOwner()); if (!consumerOp) return failure(); Value inputTensor = consumerOpOperand.get(); // Must be an extract_slice op to guarantee there are loops we can fuse into. auto sliceOp = inputTensor.getDefiningOp(); if (!sliceOp) { LLVM_DEBUG(llvm::dbgs() << "\nNot fusable, not an extract_slice op: " << inputTensor); return failure(); } // If producer is already in the same block as consumer, we are done. if (consumerOpOperand.get().getParentBlock() == producerOpResult.getParentBlock()) return failure(); // Insert fused `producer` just before `consumer`. OpBuilder::InsertionGuard g(b); b.setInsertionPoint(consumerOp); LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); OpOperand *opOperand = producerOp.getOutputOperand(producerOpResult.getResultNumber()); LinalgOp fusedProducer = fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand), consumerOpOperand); // Replace use. // Canonicalizations are not guaranteed to have happened before constructing // `fusedProducer`. In the tensor case this can result in temporary type // mismatches. Insert a `tensor.cast` op to propagate the transformation // invariant that types are compatible. Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); Type consumerType = consumerOpOperand.get().getType(); if (consumerType != def.getType()) def = b.create(fusedProducer.getLoc(), consumerType, def); consumerOpOperand.set(def); return FusionInfo{cast(producerOpResult.getOwner()), fusedProducer}; } /// Prune all dimensions that are of reduction iterator type from `map`. static AffineMap pruneReductionDimsFromMap(ArrayRef iteratorTypes, AffineMap map) { llvm::SmallDenseSet projectedDims; for (auto attr : llvm::enumerate(iteratorTypes)) { if (!isParallelIterator(attr.value())) projectedDims.insert(attr.index()); } return getProjectedMap(map, projectedDims); } /// Returns the mapping from iterations in the consumer that write to the same /// location as the iterations in the producer. To do so use /// - indexing map of the fused view in the consumer : consumerIndexMap /// - indexing map of the fused view in the producer : producerIndexMap /// consumerLoopToProducerLoop = /// inverse(producerIndexMap).compose(consumerIndexMap) static FailureOr getConsumerLoopToProducerLoopMap( LinalgDependenceGraph::LinalgDependenceGraphElem dependence) { auto producer = dyn_cast(dependence.getDependentOp()); if (!producer) return failure(); Optional producerIndexingMap = dependence.getDependentOpViewIndexingMap(); Optional consumerIndexingMap = dependence.getIndexingOpViewIndexingMap(); if (!producerIndexingMap || !consumerIndexingMap) return failure(); AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap( producer.iterator_types().getValue(), *producerIndexingMap); if (!prunedProducerIndexingMap.isPermutation()) return failure(); if (consumerIndexingMap->getNumResults() != prunedProducerIndexingMap.getNumResults()) return failure(); LLVM_DEBUG({ llvm::dbgs() << "\t producerMap : "; producerIndexingMap->print(llvm::dbgs()); llvm::dbgs() << " pruned : "; prunedProducerIndexingMap.print(llvm::dbgs()); llvm::dbgs() << "\n"; llvm::dbgs() << "\t consumerMap : "; consumerIndexingMap->print(llvm::dbgs()); llvm::dbgs() << "\n"; }); AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap); if (!invProducerIndexMap) return failure(); return invProducerIndexMap.compose(*consumerIndexingMap); } /// Given a projected permutation `map`, returns true if the map changes the /// order in which the fused loop dimension appear. static bool doesTransposeAccess(AffineMap map, const std::set &fusableLoops) { Optional lastFusableLoop; for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) { return expr.cast().getPosition(); })) { if (!fusableLoops.count(pos)) continue; if (!lastFusableLoop) { lastFusableLoop = pos; continue; } if (pos <= lastFusableLoop.getValue()) return true; lastFusableLoop = pos; } return false; } /// Returns the positions of the loop in `op` that can be tiled based on the /// operations that are to be fused with it. For example, in a /// /// linalg.matmul ins(%a, %b : ...) outs(%c : ...) /// /// if the producer of %a needs to be fused with this op, only the `i` loop of /// the matmul can be tiled while fusing. If producer of %a, and %b are to be /// fused, then no loops can be tiled while fusing. The conditions used are: /// 1. Only parallel loops can be used for tile + fuse. Find the number of /// common outer parallel loops between the op and its producers being fused. /// 2. Of the parallel loops only some can be fused. Only those loops can be /// fused such where the fusable loops iteration space only touches one tile /// of the fused operation. This is because the producer (which is writing /// the fused subview) has update semantics. /// /// Since an inverse computation is needed, we need to consider the projection /// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops /// are the dimensions of the consumerLoopToProducerLoop map that correspond to /// parallel loops and appear in the result of the map /// /// Example 1: /// linalg.fill(%cst, %c) /// linalg.matmul ins(%a, %b) outs(%c) /// Number of parallel loops : 2 /// producerIndexMap = affine_map<(i, j) ->(i , j)> /// consumerIndexMap = affine_map<(i, j, k) -> (i, j)> /// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)> /// Fused dimensions : i, j /// /// Example 2: /// linalg.matmul ins(%a, %b) outs(%c) /// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ... /// iterator_types = ["parallel", "parallel"]} /// ins(%c) ... /// /// Number of parallel loops = 2: /// producerIndexMap (projected to parallel loops) = /// affine_map<(i, j) -> (i, j)> /// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)> /// Fused dimensions : i, j /// /// Example 3: /// linalg.copy(%s, %b) /// linalg.matmul ins(%a, %b) outs(%c) /// /// Number of parallel loops = 2 /// produceIndexMap : affine_map<(i, j) -> (i, j)> /// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)> /// submap with only parallel loops = affine_map<(i, j) -> (j)> /// Fused dimensions : j static std::set collectFusableLoops(ArrayRef ops, const FusableOpDependencesTy &fusableDependences) { assert(!ops.empty()); auto getNumOuterParallelLoops = [](LinalgOp linalgOp) { return linalgOp.iterator_types() .getValue() .take_while([](Attribute attr) -> bool { return attr.cast().getValue() == getParallelIteratorTypeName(); }) .size(); }; size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back()); for (auto op : ops.drop_back()) { numOuterParallelLoops = std::min(numOuterParallelLoops, getNumOuterParallelLoops(op)); } std::set fusableLoops; auto range = llvm::seq(0, numOuterParallelLoops); fusableLoops.insert(range.begin(), range.end()); for (auto op : reverse(ops)) { for (auto dependence : fusableDependences.lookup(op)) { LLVM_DEBUG({ llvm::dbgs() << "\t fusable :"; for (unsigned i : fusableLoops) llvm::dbgs() << " " << i; llvm::dbgs() << "\n"; }); Optional consumerLoopToProducerLoop = getConsumerLoopToProducerLoopMap(dependence); if (!consumerLoopToProducerLoop) { op.emitRemark("failed to get map from consumer loop to producer loop"); return {}; } // todo: This condition is only an implementation limitation. When fusing // the operation, if the accesses in the producer/consumer are transposes // of each other, the loop bounds for the tiled producer can be // manipulated accordingly. This requires some additional bookkeeping in // the implementation of tile+fuse that is deferred to later. if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) { op.emitRemark("unhandled fusion when fusion requires permutation"); return {}; } std::set candidates; for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) { unsigned position = expr.cast().getPosition(); if (fusableLoops.count(position)) candidates.insert(position); } LLVM_DEBUG({ llvm::dbgs() << "\t candidates :"; for (unsigned i : candidates) llvm::dbgs() << " " << i; llvm::dbgs() << "\n"; }); if (candidates.empty()) return {}; std::swap(candidates, fusableLoops); } } return fusableLoops; } /// Find all dependences that are fusable. FusableOpDependencesTy mlir::linalg::findAllFusableDependences( ArrayRef ops, const LinalgDependenceGraph &dependenceGraph) { FusableOpDependencesTy fusableDependences; DenseMap> fusedProducerIndexingMap; for (LinalgOp op : reverse(ops)) { for (OpOperand *opOperand : op.getInputAndOutputOperands()) { Optional fusableDependence = findFusableProducer(*opOperand, dependenceGraph); if (!fusableDependence) continue; LinalgOp producerOp = dyn_cast(fusableDependence->getDependentOp()); if (!producerOp) continue; // Do not fuse dependences that are to operations not in the same basic // block. This avoid moving fused operations across loops that might // themselves carry dependency making the fusion illegal. if (producerOp->getBlock() != op->getBlock()) continue; // Make sure that the indexing map of the view used for fusion in the // producer is a projected permutation. Optional producerMap = fusableDependence->getDependentOpViewIndexingMap(); Optional consumerMap = fusableDependence->getIndexingOpViewIndexingMap(); assert( consumerMap && "unable to find indexing map of operand/result of indexing OpView"); fusedProducerIndexingMap[producerOp.getOperation()].push_back( *consumerMap); if (!producerMap || !producerMap->isProjectedPermutation() || !consumerMap->isProjectedPermutation()) continue; fusableDependences[producerOp.getOperation()].push_back( *fusableDependence); } } // TODO: Currently fusion would not be legal if the fusable dependence is to // the same producer but different indexing map in the consumer. Fix this, but // in the meanwhile disallow such a fusion. for (auto useIndexingMapsList : fusedProducerIndexingMap) { AffineMap map1 = useIndexingMapsList.second.front(); for (AffineMap map2 : ArrayRef(useIndexingMapsList.second).drop_front()) { if (map1 != map2) { fusableDependences.erase(useIndexingMapsList.first); break; } } } return fusableDependences; } /// Tile the fused loops in the root operation, by setting the tile sizes for /// all other loops to zero (those will be tiled later). static FailureOr tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef tileSizeVector, const LinalgTilingOptions &options, const std::set &fusedLoops) { SmallVector tileSizes(tileSizeVector.begin(), tileSizeVector.end()); auto zero = b.create(op.getLoc(), 0); for (unsigned i = 0, e = tileSizes.size(); i != e; ++i) if (!fusedLoops.count(i)) tileSizes[i] = zero; LinalgTilingOptions tileFusedLoopsOptions = options; tileFusedLoopsOptions.setTileSizes(tileSizes); return tileLinalgOp(b, op, tileFusedLoopsOptions); } /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected /// to be a tiled operation such that it is valid to fuse all operations in /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of /// `tiledOp`. static SmallVector fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp, ArrayRef fusionCandidates, const FusableOpDependencesTy &fusableDependences, const std::set &fusedLoops) { LinalgOp tiledOp = tiledLinalgOp.op; OpBuilder::InsertionGuard guard(b); b.setInsertionPoint(tiledOp); DenseMap fusedLoopsAndRanges; for (unsigned loop : fusedLoops) { ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true); fusedLoopsAndRanges[loop] = getRangeFromOperandShape( b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension); } SmallVector fusedOps(fusionCandidates.size()); DenseMap origOpToFusedOp; origOpToFusedOp[rootOp.getOperation()] = tiledOp; for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) { LinalgOp origOp = candidate.value(); LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges); origOpToFusedOp[origOp.getOperation()] = fusedOp; fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp; // Prepare the builder for the next insertion point. auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); }); if (!origOp.hasTensorSemantics()) continue; // If the producer consumer operations are linalg operations on tensors, the // dependence is due to value produced (as a return tensor) by the producer // and used in the consumer. The returned value of the fused op needs to be // made the operand of the tiled/fused consumer operation. By construction // the value returned by the producer is the value used by the consumer. for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) { if (dependence.dependenceType != LinalgDependenceGraph::DependenceType::RAW) continue; unsigned resultIndex = dependence.getDependentOpViewResultNum().getValue(); LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp()); if (!consumer) continue; Value replacementValue = fusedOp.getOperation()->getResult(resultIndex); consumer.getOperation()->setOperand( dependence.getIndexingOpViewOperandNum().getValue(), replacementValue); } // At this point, all Linalg uses of the tensors produced by `origOp` have // been replaced. However, there may still be "output tensor"-like uses // coming from WAW dependencies. // All these uses are iter_args of the outermost loop (TODO: add a check). // Such iter_args uses serve 2 purposes: // 1. give a shape to the output // 2. encode destructive updates that may be inplaceable by bufferization. // To keep the second type of information while letting the unfused op die // unused, we need to forward the producer output operand. if (auto forOp = dyn_cast(tiledLinalgOp.loops.front())) { for (auto &operand : forOp.getIterOpOperands()) { if (auto opResult = operand.get().dyn_cast()) { if (opResult.getOwner() == origOp) { Value output = origOp.getOutputOperand(opResult.getResultNumber())->get(); assert(output.getType().isa()); operand.set(output); } } } } } return fusedOps; } static FailureOr tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef ops, const LinalgDependenceGraph &dependenceGraph, const LinalgTilingOptions &tilingOptions) { if (ops.size() < 2) return failure(); LinalgOp rootOp = ops.back(); if (!llvm::all_of( ops, [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) && !llvm::all_of(ops, [](LinalgOp linalgOp) { return linalgOp.hasTensorSemantics(); })) { rootOp.emitError( "unable to fuse operations that have tensor semantics with operations " "that have buffer semantics and viceversa."); return failure(); } // TODO: Support interchange with tile + fuse. This might actually help do // better fusion. if (!tilingOptions.interchangeVector.empty()) { rootOp.emitRemark("unable to handle tile and fuse with interchange"); return failure(); } OpBuilder::InsertionGuard guard(b); b.setInsertionPoint(rootOp); // Find all the producers. LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n"); FusableOpDependencesTy fusableDependences = findAllFusableDependences(ops, dependenceGraph); if (fusableDependences.empty()) { LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n"); return failure(); } TiledAndFusedLinalgOps ret; // Find the loops that can be tiled and fused. LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n"); ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences); // If there are no fusable dependences or there are no tile+fusable loops, // just return. if (ret.fusedLoopDims.empty()) { LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n"); return failure(); } // Tile the fused loops in the last operation in the list. SmallVector tileSizeVector = tilingOptions.tileSizeComputationFunction(b, rootOp); FailureOr tiledRootOp = tileRootOperation( b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims); if (failed(tiledRootOp)) { rootOp.emitRemark("failed to tile the fused loops"); return failure(); } ret.op = tiledRootOp->op; ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end()); // Fuse the other operations into the fused inter-tile loops produced above. ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(), fusableDependences, ret.fusedLoopDims); return ret; } FailureOr mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef ops, const LinalgDependenceGraph &dependenceGraph, const LinalgTilingOptions &tilingOptions) { switch (tilingOptions.loopType) { case LinalgTilingLoopType::Loops: case LinalgTilingLoopType::ParallelLoops: case LinalgTilingLoopType::TiledLoops: return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions); default:; } return failure(); }