1 //===- IRDLLoading.cpp - IRDL dialect loading --------------------- C++ -*-===//
2 //
3 // This file is licensed under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Manages the loading of MLIR objects from IRDL operations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "mlir/Dialect/IRDL/IRDLLoading.h"
14 #include "mlir/Dialect/IRDL/IR/IRDL.h"
15 #include "mlir/Dialect/IRDL/IR/IRDLInterfaces.h"
16 #include "mlir/Dialect/IRDL/IRDLSymbols.h"
17 #include "mlir/Dialect/IRDL/IRDLVerifiers.h"
18 #include "mlir/IR/Attributes.h"
19 #include "mlir/IR/BuiltinOps.h"
20 #include "mlir/IR/ExtensibleDialect.h"
21 #include "mlir/IR/OperationSupport.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/Support/SMLoc.h"
25 #include <numeric>
26
27 using namespace mlir;
28 using namespace mlir::irdl;
29
30 /// Verify that the given list of parameters satisfy the given constraints.
31 /// This encodes the logic of the verification method for attributes and types
32 /// defined with IRDL.
33 static LogicalResult
irdlAttrOrTypeVerifier(function_ref<InFlightDiagnostic ()> emitError,ArrayRef<Attribute> params,ArrayRef<std::unique_ptr<Constraint>> constraints,ArrayRef<size_t> paramConstraints)34 irdlAttrOrTypeVerifier(function_ref<InFlightDiagnostic()> emitError,
35 ArrayRef<Attribute> params,
36 ArrayRef<std::unique_ptr<Constraint>> constraints,
37 ArrayRef<size_t> paramConstraints) {
38 if (params.size() != paramConstraints.size()) {
39 emitError() << "expected " << paramConstraints.size()
40 << " type arguments, but had " << params.size();
41 return failure();
42 }
43
44 ConstraintVerifier verifier(constraints);
45
46 // Check that each parameter satisfies its constraint.
47 for (auto [i, param] : enumerate(params))
48 if (failed(verifier.verify(emitError, param, paramConstraints[i])))
49 return failure();
50
51 return success();
52 }
53
54 /// Get the operand segment sizes from the attribute dictionary.
getSegmentSizesFromAttr(Operation * op,StringRef elemName,StringRef attrName,unsigned numElements,ArrayRef<Variadicity> variadicities,SmallVectorImpl<int> & segmentSizes)55 LogicalResult getSegmentSizesFromAttr(Operation *op, StringRef elemName,
56 StringRef attrName, unsigned numElements,
57 ArrayRef<Variadicity> variadicities,
58 SmallVectorImpl<int> &segmentSizes) {
59 // Get the segment sizes attribute, and check that it is of the right type.
60 Attribute segmentSizesAttr = op->getAttr(attrName);
61 if (!segmentSizesAttr) {
62 return op->emitError() << "'" << attrName
63 << "' attribute is expected but not provided";
64 }
65
66 auto denseSegmentSizes = dyn_cast<DenseI32ArrayAttr>(segmentSizesAttr);
67 if (!denseSegmentSizes) {
68 return op->emitError() << "'" << attrName
69 << "' attribute is expected to be a dense i32 array";
70 }
71
72 if (denseSegmentSizes.size() != (int64_t)variadicities.size()) {
73 return op->emitError() << "'" << attrName << "' attribute for specifying "
74 << elemName << " segments must have "
75 << variadicities.size() << " elements, but got "
76 << denseSegmentSizes.size();
77 }
78
79 // Check that the segment sizes are corresponding to the given variadicities,
80 for (auto [i, segmentSize, variadicity] :
81 enumerate(denseSegmentSizes.asArrayRef(), variadicities)) {
82 if (segmentSize < 0)
83 return op->emitError()
84 << "'" << attrName << "' attribute for specifying " << elemName
85 << " segments must have non-negative values";
86 if (variadicity == Variadicity::single && segmentSize != 1)
87 return op->emitError() << "element " << i << " in '" << attrName
88 << "' attribute must be equal to 1";
89
90 if (variadicity == Variadicity::optional && segmentSize > 1)
91 return op->emitError() << "element " << i << " in '" << attrName
92 << "' attribute must be equal to 0 or 1";
93
94 segmentSizes.push_back(segmentSize);
95 }
96
97 // Check that the sum of the segment sizes is equal to the number of elements.
98 int32_t sum = 0;
99 for (int32_t segmentSize : denseSegmentSizes.asArrayRef())
100 sum += segmentSize;
101 if (sum != static_cast<int32_t>(numElements))
102 return op->emitError() << "sum of elements in '" << attrName
103 << "' attribute must be equal to the number of "
104 << elemName << "s";
105
106 return success();
107 }
108
109 /// Compute the segment sizes of the given element (operands, results).
110 /// If the operation has more than two non-single elements (optional or
111 /// variadic), then get the segment sizes from the attribute dictionary.
112 /// Otherwise, compute the segment sizes from the number of elements.
113 /// `elemName` should be either `"operand"` or `"result"`.
getSegmentSizes(Operation * op,StringRef elemName,StringRef attrName,unsigned numElements,ArrayRef<Variadicity> variadicities,SmallVectorImpl<int> & segmentSizes)114 LogicalResult getSegmentSizes(Operation *op, StringRef elemName,
115 StringRef attrName, unsigned numElements,
116 ArrayRef<Variadicity> variadicities,
117 SmallVectorImpl<int> &segmentSizes) {
118 // If we have more than one non-single variadicity, we need to get the
119 // segment sizes from the attribute dictionary.
120 int numberNonSingle = count_if(
121 variadicities, [](Variadicity v) { return v != Variadicity::single; });
122 if (numberNonSingle > 1)
123 return getSegmentSizesFromAttr(op, elemName, attrName, numElements,
124 variadicities, segmentSizes);
125
126 // If we only have single variadicities, the segments sizes are all 1.
127 if (numberNonSingle == 0) {
128 if (numElements != variadicities.size()) {
129 return op->emitError() << "op expects exactly " << variadicities.size()
130 << " " << elemName << "s, but got " << numElements;
131 }
132 for (size_t i = 0, e = variadicities.size(); i < e; ++i)
133 segmentSizes.push_back(1);
134 return success();
135 }
136
137 assert(numberNonSingle == 1);
138
139 // There is exactly one non-single element, so we can
140 // compute its size and check that it is valid.
141 int nonSingleSegmentSize = static_cast<int>(numElements) -
142 static_cast<int>(variadicities.size()) + 1;
143
144 if (nonSingleSegmentSize < 0) {
145 return op->emitError() << "op expects at least " << variadicities.size() - 1
146 << " " << elemName << "s, but got " << numElements;
147 }
148
149 // Add the segment sizes.
150 for (Variadicity variadicity : variadicities) {
151 if (variadicity == Variadicity::single) {
152 segmentSizes.push_back(1);
153 continue;
154 }
155
156 // If we have an optional element, we should check that it represents
157 // zero or one elements.
158 if (nonSingleSegmentSize > 1 && variadicity == Variadicity::optional)
159 return op->emitError() << "op expects at most " << variadicities.size()
160 << " " << elemName << "s, but got " << numElements;
161
162 segmentSizes.push_back(nonSingleSegmentSize);
163 }
164
165 return success();
166 }
167
168 /// Compute the segment sizes of the given operands.
169 /// If the operation has more than two non-single operands (optional or
170 /// variadic), then get the segment sizes from the attribute dictionary.
171 /// Otherwise, compute the segment sizes from the number of operands.
getOperandSegmentSizes(Operation * op,ArrayRef<Variadicity> variadicities,SmallVectorImpl<int> & segmentSizes)172 LogicalResult getOperandSegmentSizes(Operation *op,
173 ArrayRef<Variadicity> variadicities,
174 SmallVectorImpl<int> &segmentSizes) {
175 return getSegmentSizes(op, "operand", "operand_segment_sizes",
176 op->getNumOperands(), variadicities, segmentSizes);
177 }
178
179 /// Compute the segment sizes of the given results.
180 /// If the operation has more than two non-single results (optional or
181 /// variadic), then get the segment sizes from the attribute dictionary.
182 /// Otherwise, compute the segment sizes from the number of results.
getResultSegmentSizes(Operation * op,ArrayRef<Variadicity> variadicities,SmallVectorImpl<int> & segmentSizes)183 LogicalResult getResultSegmentSizes(Operation *op,
184 ArrayRef<Variadicity> variadicities,
185 SmallVectorImpl<int> &segmentSizes) {
186 return getSegmentSizes(op, "result", "result_segment_sizes",
187 op->getNumResults(), variadicities, segmentSizes);
188 }
189
190 /// Verify that the given operation satisfies the given constraints.
191 /// This encodes the logic of the verification method for operations defined
192 /// with IRDL.
irdlOpVerifier(Operation * op,ConstraintVerifier & verifier,ArrayRef<size_t> operandConstrs,ArrayRef<Variadicity> operandVariadicity,ArrayRef<size_t> resultConstrs,ArrayRef<Variadicity> resultVariadicity,const DenseMap<StringAttr,size_t> & attributeConstrs)193 static LogicalResult irdlOpVerifier(
194 Operation *op, ConstraintVerifier &verifier,
195 ArrayRef<size_t> operandConstrs, ArrayRef<Variadicity> operandVariadicity,
196 ArrayRef<size_t> resultConstrs, ArrayRef<Variadicity> resultVariadicity,
197 const DenseMap<StringAttr, size_t> &attributeConstrs) {
198 // Get the segment sizes for the operands.
199 // This will check that the number of operands is correct.
200 SmallVector<int> operandSegmentSizes;
201 if (failed(
202 getOperandSegmentSizes(op, operandVariadicity, operandSegmentSizes)))
203 return failure();
204
205 // Get the segment sizes for the results.
206 // This will check that the number of results is correct.
207 SmallVector<int> resultSegmentSizes;
208 if (failed(getResultSegmentSizes(op, resultVariadicity, resultSegmentSizes)))
209 return failure();
210
211 auto emitError = [op] { return op->emitError(); };
212
213 /// Сheck that we have all needed attributes passed
214 /// and they satisfy the constraints.
215 DictionaryAttr actualAttrs = op->getAttrDictionary();
216
217 for (auto [name, constraint] : attributeConstrs) {
218 /// First, check if the attribute actually passed.
219 std::optional<NamedAttribute> actual = actualAttrs.getNamed(name);
220 if (!actual.has_value())
221 return op->emitOpError()
222 << "attribute " << name << " is expected but not provided";
223
224 /// Then, check if the attribute value satisfies the constraint.
225 if (failed(verifier.verify({emitError}, actual->getValue(), constraint)))
226 return failure();
227 }
228
229 // Check that all operands satisfy the constraints
230 int operandIdx = 0;
231 for (auto [defIndex, segmentSize] : enumerate(operandSegmentSizes)) {
232 for (int i = 0; i < segmentSize; i++) {
233 if (failed(verifier.verify(
234 {emitError}, TypeAttr::get(op->getOperandTypes()[operandIdx]),
235 operandConstrs[defIndex])))
236 return failure();
237 ++operandIdx;
238 }
239 }
240
241 // Check that all results satisfy the constraints
242 int resultIdx = 0;
243 for (auto [defIndex, segmentSize] : enumerate(resultSegmentSizes)) {
244 for (int i = 0; i < segmentSize; i++) {
245 if (failed(verifier.verify({emitError},
246 TypeAttr::get(op->getResultTypes()[resultIdx]),
247 resultConstrs[defIndex])))
248 return failure();
249 ++resultIdx;
250 }
251 }
252
253 return success();
254 }
255
irdlRegionVerifier(Operation * op,ConstraintVerifier & verifier,ArrayRef<std::unique_ptr<RegionConstraint>> regionsConstraints)256 static LogicalResult irdlRegionVerifier(
257 Operation *op, ConstraintVerifier &verifier,
258 ArrayRef<std::unique_ptr<RegionConstraint>> regionsConstraints) {
259 if (op->getNumRegions() != regionsConstraints.size()) {
260 return op->emitOpError()
261 << "unexpected number of regions: expected "
262 << regionsConstraints.size() << " but got " << op->getNumRegions();
263 }
264
265 for (auto [constraint, region] :
266 llvm::zip(regionsConstraints, op->getRegions()))
267 if (failed(constraint->verify(region, verifier)))
268 return failure();
269
270 return success();
271 }
272
273 llvm::unique_function<LogicalResult(Operation *) const>
createVerifier(OperationOp op,const DenseMap<irdl::TypeOp,std::unique_ptr<DynamicTypeDefinition>> & types,const DenseMap<irdl::AttributeOp,std::unique_ptr<DynamicAttrDefinition>> & attrs)274 mlir::irdl::createVerifier(
275 OperationOp op,
276 const DenseMap<irdl::TypeOp, std::unique_ptr<DynamicTypeDefinition>> &types,
277 const DenseMap<irdl::AttributeOp, std::unique_ptr<DynamicAttrDefinition>>
278 &attrs) {
279 // Resolve SSA values to verifier constraint slots
280 SmallVector<Value> constrToValue;
281 SmallVector<Value> regionToValue;
282 for (Operation &op : op->getRegion(0).getOps()) {
283 if (isa<VerifyConstraintInterface>(op)) {
284 if (op.getNumResults() != 1) {
285 op.emitError()
286 << "IRDL constraint operations must have exactly one result";
287 return nullptr;
288 }
289 constrToValue.push_back(op.getResult(0));
290 }
291 if (isa<VerifyRegionInterface>(op)) {
292 if (op.getNumResults() != 1) {
293 op.emitError()
294 << "IRDL constraint operations must have exactly one result";
295 return nullptr;
296 }
297 regionToValue.push_back(op.getResult(0));
298 }
299 }
300
301 // Build the verifiers for each constraint slot
302 SmallVector<std::unique_ptr<Constraint>> constraints;
303 for (Value v : constrToValue) {
304 VerifyConstraintInterface op =
305 cast<VerifyConstraintInterface>(v.getDefiningOp());
306 std::unique_ptr<Constraint> verifier =
307 op.getVerifier(constrToValue, types, attrs);
308 if (!verifier)
309 return nullptr;
310 constraints.push_back(std::move(verifier));
311 }
312
313 // Build region constraints
314 SmallVector<std::unique_ptr<RegionConstraint>> regionConstraints;
315 for (Value v : regionToValue) {
316 VerifyRegionInterface op = cast<VerifyRegionInterface>(v.getDefiningOp());
317 std::unique_ptr<RegionConstraint> verifier =
318 op.getVerifier(constrToValue, types, attrs);
319 regionConstraints.push_back(std::move(verifier));
320 }
321
322 SmallVector<size_t> operandConstraints;
323 SmallVector<Variadicity> operandVariadicity;
324
325 // Gather which constraint slots correspond to operand constraints
326 auto operandsOp = op.getOp<OperandsOp>();
327 if (operandsOp.has_value()) {
328 operandConstraints.reserve(operandsOp->getArgs().size());
329 for (Value operand : operandsOp->getArgs()) {
330 for (auto [i, constr] : enumerate(constrToValue)) {
331 if (constr == operand) {
332 operandConstraints.push_back(i);
333 break;
334 }
335 }
336 }
337
338 // Gather the variadicities of each operand
339 for (VariadicityAttr attr : operandsOp->getVariadicity())
340 operandVariadicity.push_back(attr.getValue());
341 }
342
343 SmallVector<size_t> resultConstraints;
344 SmallVector<Variadicity> resultVariadicity;
345
346 // Gather which constraint slots correspond to result constraints
347 auto resultsOp = op.getOp<ResultsOp>();
348 if (resultsOp.has_value()) {
349 resultConstraints.reserve(resultsOp->getArgs().size());
350 for (Value result : resultsOp->getArgs()) {
351 for (auto [i, constr] : enumerate(constrToValue)) {
352 if (constr == result) {
353 resultConstraints.push_back(i);
354 break;
355 }
356 }
357 }
358
359 // Gather the variadicities of each result
360 for (Attribute attr : resultsOp->getVariadicity())
361 resultVariadicity.push_back(cast<VariadicityAttr>(attr).getValue());
362 }
363
364 // Gather which constraint slots correspond to attributes constraints
365 DenseMap<StringAttr, size_t> attributeConstraints;
366 auto attributesOp = op.getOp<AttributesOp>();
367 if (attributesOp.has_value()) {
368 const Operation::operand_range values = attributesOp->getAttributeValues();
369 const ArrayAttr names = attributesOp->getAttributeValueNames();
370
371 for (const auto &[name, value] : llvm::zip(names, values)) {
372 for (auto [i, constr] : enumerate(constrToValue)) {
373 if (constr == value) {
374 attributeConstraints[cast<StringAttr>(name)] = i;
375 break;
376 }
377 }
378 }
379 }
380
381 return
382 [constraints{std::move(constraints)},
383 regionConstraints{std::move(regionConstraints)},
384 operandConstraints{std::move(operandConstraints)},
385 operandVariadicity{std::move(operandVariadicity)},
386 resultConstraints{std::move(resultConstraints)},
387 resultVariadicity{std::move(resultVariadicity)},
388 attributeConstraints{std::move(attributeConstraints)}](Operation *op) {
389 ConstraintVerifier verifier(constraints);
390 const LogicalResult opVerifierResult = irdlOpVerifier(
391 op, verifier, operandConstraints, operandVariadicity,
392 resultConstraints, resultVariadicity, attributeConstraints);
393 const LogicalResult opRegionVerifierResult =
394 irdlRegionVerifier(op, verifier, regionConstraints);
395 return LogicalResult::success(opVerifierResult.succeeded() &&
396 opRegionVerifierResult.succeeded());
397 };
398 }
399
400 /// Define and load an operation represented by a `irdl.operation`
401 /// operation.
loadOperation(OperationOp op,ExtensibleDialect * dialect,const DenseMap<TypeOp,std::unique_ptr<DynamicTypeDefinition>> & types,const DenseMap<AttributeOp,std::unique_ptr<DynamicAttrDefinition>> & attrs)402 static WalkResult loadOperation(
403 OperationOp op, ExtensibleDialect *dialect,
404 const DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> &types,
405 const DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>>
406 &attrs) {
407
408 // IRDL does not support defining custom parsers or printers.
409 auto parser = [](OpAsmParser &parser, OperationState &result) {
410 return failure();
411 };
412 auto printer = [](Operation *op, OpAsmPrinter &printer, StringRef) {
413 printer.printGenericOp(op);
414 };
415
416 auto verifier = createVerifier(op, types, attrs);
417 if (!verifier)
418 return WalkResult::interrupt();
419
420 // IRDL supports only checking number of blocks and argument constraints
421 // It is done in the main verifier to reuse `ConstraintVerifier` context
422 auto regionVerifier = [](Operation *op) { return LogicalResult::success(); };
423
424 auto opDef = DynamicOpDefinition::get(
425 op.getName(), dialect, std::move(verifier), std::move(regionVerifier),
426 std::move(parser), std::move(printer));
427 dialect->registerDynamicOp(std::move(opDef));
428
429 return WalkResult::advance();
430 }
431
432 /// Get the verifier of a type or attribute definition.
433 /// Return nullptr if the definition is invalid.
getAttrOrTypeVerifier(Operation * attrOrTypeDef,ExtensibleDialect * dialect,DenseMap<TypeOp,std::unique_ptr<DynamicTypeDefinition>> & types,DenseMap<AttributeOp,std::unique_ptr<DynamicAttrDefinition>> & attrs)434 static DynamicAttrDefinition::VerifierFn getAttrOrTypeVerifier(
435 Operation *attrOrTypeDef, ExtensibleDialect *dialect,
436 DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> &types,
437 DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> &attrs) {
438 assert((isa<AttributeOp>(attrOrTypeDef) || isa<TypeOp>(attrOrTypeDef)) &&
439 "Expected an attribute or type definition");
440
441 // Resolve SSA values to verifier constraint slots
442 SmallVector<Value> constrToValue;
443 for (Operation &op : attrOrTypeDef->getRegion(0).getOps()) {
444 if (isa<VerifyConstraintInterface>(op)) {
445 assert(op.getNumResults() == 1 &&
446 "IRDL constraint operations must have exactly one result");
447 constrToValue.push_back(op.getResult(0));
448 }
449 }
450
451 // Build the verifiers for each constraint slot
452 SmallVector<std::unique_ptr<Constraint>> constraints;
453 for (Value v : constrToValue) {
454 VerifyConstraintInterface op =
455 cast<VerifyConstraintInterface>(v.getDefiningOp());
456 std::unique_ptr<Constraint> verifier =
457 op.getVerifier(constrToValue, types, attrs);
458 if (!verifier)
459 return {};
460 constraints.push_back(std::move(verifier));
461 }
462
463 // Get the parameter definitions.
464 std::optional<ParametersOp> params;
465 if (auto attr = dyn_cast<AttributeOp>(attrOrTypeDef))
466 params = attr.getOp<ParametersOp>();
467 else if (auto type = dyn_cast<TypeOp>(attrOrTypeDef))
468 params = type.getOp<ParametersOp>();
469
470 // Gather which constraint slots correspond to parameter constraints
471 SmallVector<size_t> paramConstraints;
472 if (params.has_value()) {
473 paramConstraints.reserve(params->getArgs().size());
474 for (Value param : params->getArgs()) {
475 for (auto [i, constr] : enumerate(constrToValue)) {
476 if (constr == param) {
477 paramConstraints.push_back(i);
478 break;
479 }
480 }
481 }
482 }
483
484 auto verifier = [paramConstraints{std::move(paramConstraints)},
485 constraints{std::move(constraints)}](
486 function_ref<InFlightDiagnostic()> emitError,
487 ArrayRef<Attribute> params) {
488 return irdlAttrOrTypeVerifier(emitError, params, constraints,
489 paramConstraints);
490 };
491
492 // While the `std::move` is not required, not adding it triggers a bug in
493 // clang-10.
494 return std::move(verifier);
495 }
496
497 /// Get the possible bases of a constraint. Return `true` if all bases can
498 /// potentially be matched.
499 /// A base is a type or an attribute definition. For instance, the base of
500 /// `irdl.parametric "!builtin.complex"(...)` is `builtin.complex`.
501 /// This function returns the following information through arguments:
502 /// - `paramIds`: the set of type or attribute IDs that are used as bases.
503 /// - `paramIrdlOps`: the set of IRDL operations that are used as bases.
504 /// - `isIds`: the set of type or attribute IDs that are used in `irdl.is`
505 /// constraints.
getBases(Operation * op,SmallPtrSet<TypeID,4> & paramIds,SmallPtrSet<Operation *,4> & paramIrdlOps,SmallPtrSet<TypeID,4> & isIds)506 static bool getBases(Operation *op, SmallPtrSet<TypeID, 4> ¶mIds,
507 SmallPtrSet<Operation *, 4> ¶mIrdlOps,
508 SmallPtrSet<TypeID, 4> &isIds) {
509 // For `irdl.any_of`, we get the bases from all its arguments.
510 if (auto anyOf = dyn_cast<AnyOfOp>(op)) {
511 bool hasAny = false;
512 for (Value arg : anyOf.getArgs())
513 hasAny &= getBases(arg.getDefiningOp(), paramIds, paramIrdlOps, isIds);
514 return hasAny;
515 }
516
517 // For `irdl.all_of`, we get the bases from the first argument.
518 // This is restrictive, but we can relax it later if needed.
519 if (auto allOf = dyn_cast<AllOfOp>(op))
520 return getBases(allOf.getArgs()[0].getDefiningOp(), paramIds, paramIrdlOps,
521 isIds);
522
523 // For `irdl.parametric`, we get directly the base from the operation.
524 if (auto params = dyn_cast<ParametricOp>(op)) {
525 SymbolRefAttr symRef = params.getBaseType();
526 Operation *defOp = irdl::lookupSymbolNearDialect(op, symRef);
527 assert(defOp && "symbol reference should refer to an existing operation");
528 paramIrdlOps.insert(defOp);
529 return false;
530 }
531
532 // For `irdl.is`, we get the base TypeID directly.
533 if (auto is = dyn_cast<IsOp>(op)) {
534 Attribute expected = is.getExpected();
535 isIds.insert(expected.getTypeID());
536 return false;
537 }
538
539 // For `irdl.any`, we return `false` since we can match any type or attribute
540 // base.
541 if (auto isA = dyn_cast<AnyOp>(op))
542 return true;
543
544 llvm_unreachable("unknown IRDL constraint");
545 }
546
547 /// Check that an any_of is in the subset IRDL can handle.
548 /// IRDL uses a greedy algorithm to match constraints. This means that if we
549 /// encounter an `any_of` with multiple constraints, we will match the first
550 /// constraint that is satisfied. Thus, the order of constraints matter in
551 /// `any_of` with our current algorithm.
552 /// In order to make the order of constraints irrelevant, we require that
553 /// all `any_of` constraint parameters are disjoint. For this, we check that
554 /// the base parameters are all disjoints between `parametric` operations, and
555 /// that they are disjoint between `parametric` and `is` operations.
556 /// This restriction will be relaxed in the future, when we will change our
557 /// algorithm to be non-greedy.
checkCorrectAnyOf(AnyOfOp anyOf)558 static LogicalResult checkCorrectAnyOf(AnyOfOp anyOf) {
559 SmallPtrSet<TypeID, 4> paramIds;
560 SmallPtrSet<Operation *, 4> paramIrdlOps;
561 SmallPtrSet<TypeID, 4> isIds;
562
563 for (Value arg : anyOf.getArgs()) {
564 Operation *argOp = arg.getDefiningOp();
565 SmallPtrSet<TypeID, 4> argParamIds;
566 SmallPtrSet<Operation *, 4> argParamIrdlOps;
567 SmallPtrSet<TypeID, 4> argIsIds;
568
569 // Get the bases of this argument. If it can match any type or attribute,
570 // then our `any_of` should not be allowed.
571 if (getBases(argOp, argParamIds, argParamIrdlOps, argIsIds))
572 return failure();
573
574 // We check that the base parameters are all disjoints between `parametric`
575 // operations, and that they are disjoint between `parametric` and `is`
576 // operations.
577 for (TypeID id : argParamIds) {
578 if (isIds.count(id))
579 return failure();
580 bool inserted = paramIds.insert(id).second;
581 if (!inserted)
582 return failure();
583 }
584
585 // We check that the base parameters are all disjoints with `irdl.is`
586 // operations.
587 for (TypeID id : isIds) {
588 if (paramIds.count(id))
589 return failure();
590 isIds.insert(id);
591 }
592
593 // We check that all `parametric` operations are disjoint. We do not
594 // need to check that they are disjoint with `is` operations, since
595 // `is` operations cannot refer to attributes defined with `irdl.parametric`
596 // operations.
597 for (Operation *op : argParamIrdlOps) {
598 bool inserted = paramIrdlOps.insert(op).second;
599 if (!inserted)
600 return failure();
601 }
602 }
603
604 return success();
605 }
606
607 /// Load all dialects in the given module, without loading any operation, type
608 /// or attribute definitions.
loadEmptyDialects(ModuleOp op)609 static DenseMap<DialectOp, ExtensibleDialect *> loadEmptyDialects(ModuleOp op) {
610 DenseMap<DialectOp, ExtensibleDialect *> dialects;
611 op.walk([&](DialectOp dialectOp) {
612 MLIRContext *ctx = dialectOp.getContext();
613 StringRef dialectName = dialectOp.getName();
614
615 DynamicDialect *dialect = ctx->getOrLoadDynamicDialect(
616 dialectName, [](DynamicDialect *dialect) {});
617
618 dialects.insert({dialectOp, dialect});
619 });
620 return dialects;
621 }
622
623 /// Preallocate type definitions objects with empty verifiers.
624 /// This in particular allocates a TypeID for each type definition.
625 static DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>>
preallocateTypeDefs(ModuleOp op,DenseMap<DialectOp,ExtensibleDialect * > dialects)626 preallocateTypeDefs(ModuleOp op,
627 DenseMap<DialectOp, ExtensibleDialect *> dialects) {
628 DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> typeDefs;
629 op.walk([&](TypeOp typeOp) {
630 ExtensibleDialect *dialect = dialects[typeOp.getParentOp()];
631 auto typeDef = DynamicTypeDefinition::get(
632 typeOp.getName(), dialect,
633 [](function_ref<InFlightDiagnostic()>, ArrayRef<Attribute>) {
634 return success();
635 });
636 typeDefs.try_emplace(typeOp, std::move(typeDef));
637 });
638 return typeDefs;
639 }
640
641 /// Preallocate attribute definitions objects with empty verifiers.
642 /// This in particular allocates a TypeID for each attribute definition.
643 static DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>>
preallocateAttrDefs(ModuleOp op,DenseMap<DialectOp,ExtensibleDialect * > dialects)644 preallocateAttrDefs(ModuleOp op,
645 DenseMap<DialectOp, ExtensibleDialect *> dialects) {
646 DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> attrDefs;
647 op.walk([&](AttributeOp attrOp) {
648 ExtensibleDialect *dialect = dialects[attrOp.getParentOp()];
649 auto attrDef = DynamicAttrDefinition::get(
650 attrOp.getName(), dialect,
651 [](function_ref<InFlightDiagnostic()>, ArrayRef<Attribute>) {
652 return success();
653 });
654 attrDefs.try_emplace(attrOp, std::move(attrDef));
655 });
656 return attrDefs;
657 }
658
loadDialects(ModuleOp op)659 LogicalResult mlir::irdl::loadDialects(ModuleOp op) {
660 // First, check that all any_of constraints are in a correct form.
661 // This is to ensure we can do the verification correctly.
662 WalkResult anyOfCorrects = op.walk(
663 [](AnyOfOp anyOf) { return (WalkResult)checkCorrectAnyOf(anyOf); });
664 if (anyOfCorrects.wasInterrupted())
665 return op.emitError("any_of constraints are not in the correct form");
666
667 // Preallocate all dialects, and type and attribute definitions.
668 // In particular, this allocates TypeIDs so type and attributes can have
669 // verifiers that refer to each other.
670 DenseMap<DialectOp, ExtensibleDialect *> dialects = loadEmptyDialects(op);
671 DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> types =
672 preallocateTypeDefs(op, dialects);
673 DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> attrs =
674 preallocateAttrDefs(op, dialects);
675
676 // Set the verifier for types.
677 WalkResult res = op.walk([&](TypeOp typeOp) {
678 DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier(
679 typeOp, dialects[typeOp.getParentOp()], types, attrs);
680 if (!verifier)
681 return WalkResult::interrupt();
682 types[typeOp]->setVerifyFn(std::move(verifier));
683 return WalkResult::advance();
684 });
685 if (res.wasInterrupted())
686 return failure();
687
688 // Set the verifier for attributes.
689 res = op.walk([&](AttributeOp attrOp) {
690 DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier(
691 attrOp, dialects[attrOp.getParentOp()], types, attrs);
692 if (!verifier)
693 return WalkResult::interrupt();
694 attrs[attrOp]->setVerifyFn(std::move(verifier));
695 return WalkResult::advance();
696 });
697 if (res.wasInterrupted())
698 return failure();
699
700 // Define and load all operations.
701 res = op.walk([&](OperationOp opOp) {
702 return loadOperation(opOp, dialects[opOp.getParentOp()], types, attrs);
703 });
704 if (res.wasInterrupted())
705 return failure();
706
707 // Load all types in their dialects.
708 for (auto &pair : types) {
709 ExtensibleDialect *dialect = dialects[pair.first.getParentOp()];
710 dialect->registerDynamicType(std::move(pair.second));
711 }
712
713 // Load all attributes in their dialects.
714 for (auto &pair : attrs) {
715 ExtensibleDialect *dialect = dialects[pair.first.getParentOp()];
716 dialect->registerDynamicAttr(std::move(pair.second));
717 }
718
719 return success();
720 }
721