1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Debuginfod/HTTPClient.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/ProfileData/InstrProfCorrelator.h" 20 #include "llvm/ProfileData/InstrProfReader.h" 21 #include "llvm/ProfileData/InstrProfWriter.h" 22 #include "llvm/ProfileData/MemProf.h" 23 #include "llvm/ProfileData/MemProfReader.h" 24 #include "llvm/ProfileData/ProfileCommon.h" 25 #include "llvm/ProfileData/SampleProfReader.h" 26 #include "llvm/ProfileData/SampleProfWriter.h" 27 #include "llvm/Support/BalancedPartitioning.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Discriminator.h" 30 #include "llvm/Support/Errc.h" 31 #include "llvm/Support/FileSystem.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/FormattedStream.h" 34 #include "llvm/Support/LLVMDriver.h" 35 #include "llvm/Support/MD5.h" 36 #include "llvm/Support/MemoryBuffer.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Support/Regex.h" 39 #include "llvm/Support/ThreadPool.h" 40 #include "llvm/Support/Threading.h" 41 #include "llvm/Support/VirtualFileSystem.h" 42 #include "llvm/Support/WithColor.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cmath> 46 #include <optional> 47 #include <queue> 48 49 using namespace llvm; 50 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 51 52 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 53 // on each subcommand. 54 cl::SubCommand ShowSubcommand( 55 "show", 56 "Takes a profile data file and displays the profiles. See detailed " 57 "documentation in " 58 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 59 cl::SubCommand OrderSubcommand( 60 "order", 61 "Reads temporal profiling traces from a profile and outputs a function " 62 "order that reduces the number of page faults for those traces. See " 63 "detailed documentation in " 64 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 65 cl::SubCommand OverlapSubcommand( 66 "overlap", 67 "Computes and displays the overlap between two profiles. See detailed " 68 "documentation in " 69 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 70 cl::SubCommand MergeSubcommand( 71 "merge", 72 "Takes several profiles and merge them together. See detailed " 73 "documentation in " 74 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 75 76 namespace { 77 enum ProfileKinds { instr, sample, memory }; 78 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 79 80 enum ProfileFormat { 81 PF_None = 0, 82 PF_Text, 83 PF_Compact_Binary, // Deprecated 84 PF_Ext_Binary, 85 PF_GCC, 86 PF_Binary 87 }; 88 89 enum class ShowFormat { Text, Json, Yaml }; 90 } // namespace 91 92 // Common options. 93 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 94 cl::init("-"), cl::desc("Output file"), 95 cl::sub(ShowSubcommand), 96 cl::sub(OrderSubcommand), 97 cl::sub(OverlapSubcommand), 98 cl::sub(MergeSubcommand)); 99 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 100 // will be used. llvm::cl::alias::done() method asserts this condition. 101 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 102 cl::aliasopt(OutputFilename)); 103 104 // Options common to at least two commands. 105 cl::opt<ProfileKinds> ProfileKind( 106 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 107 cl::sub(OverlapSubcommand), cl::init(instr), 108 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 109 clEnumVal(sample, "Sample profile"))); 110 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 111 cl::sub(ShowSubcommand), 112 cl::sub(OrderSubcommand)); 113 cl::opt<unsigned> MaxDbgCorrelationWarnings( 114 "max-debug-info-correlation-warnings", 115 cl::desc("The maximum number of warnings to emit when correlating " 116 "profile from debug info (0 = no limit)"), 117 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 118 cl::opt<std::string> ProfiledBinary( 119 "profiled-binary", cl::init(""), 120 cl::desc("Path to binary from which the profile was collected."), 121 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 122 cl::opt<std::string> DebugInfoFilename( 123 "debug-info", cl::init(""), 124 cl::desc( 125 "For show, read and extract profile metadata from debug info and show " 126 "the functions it found. For merge, use the provided debug info to " 127 "correlate the raw profile."), 128 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 129 cl::opt<std::string> 130 BinaryFilename("binary-file", cl::init(""), 131 cl::desc("For merge, use the provided unstripped bianry to " 132 "correlate the raw profile."), 133 cl::sub(MergeSubcommand)); 134 cl::list<std::string> DebugFileDirectory( 135 "debug-file-directory", 136 cl::desc("Directories to search for object files by build ID")); 137 cl::opt<bool> DebugInfod("debuginfod", cl::init(false), cl::Hidden, 138 cl::sub(MergeSubcommand), 139 cl::desc("Enable debuginfod")); 140 cl::opt<ProfCorrelatorKind> BIDFetcherProfileCorrelate( 141 "correlate", 142 cl::desc("Use debug-info or binary correlation to correlate profiles with " 143 "build id fetcher"), 144 cl::init(InstrProfCorrelator::NONE), 145 cl::values(clEnumValN(InstrProfCorrelator::NONE, "", 146 "No profile correlation"), 147 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info", 148 "Use debug info to correlate"), 149 clEnumValN(InstrProfCorrelator::BINARY, "binary", 150 "Use binary to correlate"))); 151 cl::opt<std::string> FuncNameFilter( 152 "function", 153 cl::desc("Only functions matching the filter are shown in the output. For " 154 "overlapping CSSPGO, this takes a function name with calling " 155 "context."), 156 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand), 157 cl::sub(MergeSubcommand)); 158 159 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 160 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 161 // options. 162 163 // Options specific to merge subcommand. 164 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 165 cl::desc("<filename...>")); 166 cl::list<std::string> WeightedInputFilenames("weighted-input", 167 cl::sub(MergeSubcommand), 168 cl::desc("<weight>,<filename>")); 169 cl::opt<ProfileFormat> OutputFormat( 170 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 171 cl::init(PF_Ext_Binary), 172 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 173 clEnumValN(PF_Ext_Binary, "extbinary", 174 "Extensible binary encoding " 175 "(default)"), 176 clEnumValN(PF_Text, "text", "Text encoding"), 177 clEnumValN(PF_GCC, "gcc", 178 "GCC encoding (only meaningful for -sample)"))); 179 cl::opt<std::string> 180 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 181 cl::desc("Path to file containing newline-separated " 182 "[<weight>,]<filename> entries")); 183 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 184 cl::aliasopt(InputFilenamesFile)); 185 cl::opt<bool> DumpInputFileList( 186 "dump-input-file-list", cl::init(false), cl::Hidden, 187 cl::sub(MergeSubcommand), 188 cl::desc("Dump the list of input files and their weights, then exit")); 189 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 190 cl::sub(MergeSubcommand), 191 cl::desc("Symbol remapping file")); 192 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 193 cl::aliasopt(RemappingFile)); 194 cl::opt<bool> 195 UseMD5("use-md5", cl::init(false), cl::Hidden, 196 cl::desc("Choose to use MD5 to represent string in name table (only " 197 "meaningful for -extbinary)"), 198 cl::sub(MergeSubcommand)); 199 cl::opt<bool> CompressAllSections( 200 "compress-all-sections", cl::init(false), cl::Hidden, 201 cl::sub(MergeSubcommand), 202 cl::desc("Compress all sections when writing the profile (only " 203 "meaningful for -extbinary)")); 204 cl::opt<bool> SampleMergeColdContext( 205 "sample-merge-cold-context", cl::init(false), cl::Hidden, 206 cl::sub(MergeSubcommand), 207 cl::desc( 208 "Merge context sample profiles whose count is below cold threshold")); 209 cl::opt<bool> SampleTrimColdContext( 210 "sample-trim-cold-context", cl::init(false), cl::Hidden, 211 cl::sub(MergeSubcommand), 212 cl::desc( 213 "Trim context sample profiles whose count is below cold threshold")); 214 cl::opt<uint32_t> SampleColdContextFrameDepth( 215 "sample-frame-depth-for-cold-context", cl::init(1), 216 cl::sub(MergeSubcommand), 217 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 218 "context-less base profile")); 219 cl::opt<size_t> OutputSizeLimit( 220 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 221 cl::desc("Trim cold functions until profile size is below specified " 222 "limit in bytes. This uses a heursitic and functions may be " 223 "excessively trimmed")); 224 cl::opt<bool> GenPartialProfile( 225 "gen-partial-profile", cl::init(false), cl::Hidden, 226 cl::sub(MergeSubcommand), 227 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 228 cl::opt<bool> SplitLayout( 229 "split-layout", cl::init(false), cl::Hidden, 230 cl::sub(MergeSubcommand), 231 cl::desc("Split the profile to two sections with one containing sample " 232 "profiles with inlined functions and the other without (only " 233 "meaningful for -extbinary)")); 234 cl::opt<std::string> SupplInstrWithSample( 235 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 236 cl::sub(MergeSubcommand), 237 cl::desc("Supplement an instr profile with sample profile, to correct " 238 "the profile unrepresentativeness issue. The sample " 239 "profile is the input of the flag. Output will be in instr " 240 "format (The flag only works with -instr)")); 241 cl::opt<float> ZeroCounterThreshold( 242 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 243 cl::sub(MergeSubcommand), 244 cl::desc("For the function which is cold in instr profile but hot in " 245 "sample profile, if the ratio of the number of zero counters " 246 "divided by the total number of counters is above the " 247 "threshold, the profile of the function will be regarded as " 248 "being harmful for performance and will be dropped.")); 249 cl::opt<unsigned> SupplMinSizeThreshold( 250 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 251 cl::sub(MergeSubcommand), 252 cl::desc("If the size of a function is smaller than the threshold, " 253 "assume it can be inlined by PGO early inliner and it won't " 254 "be adjusted based on sample profile.")); 255 cl::opt<unsigned> InstrProfColdThreshold( 256 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 257 cl::sub(MergeSubcommand), 258 cl::desc("User specified cold threshold for instr profile which will " 259 "override the cold threshold got from profile summary. ")); 260 // WARNING: This reservoir size value is propagated to any input indexed 261 // profiles for simplicity. Changing this value between invocations could 262 // result in sample bias. 263 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 264 "temporal-profile-trace-reservoir-size", cl::init(100), 265 cl::sub(MergeSubcommand), 266 cl::desc("The maximum number of stored temporal profile traces (default: " 267 "100)")); 268 cl::opt<uint64_t> TemporalProfMaxTraceLength( 269 "temporal-profile-max-trace-length", cl::init(10000), 270 cl::sub(MergeSubcommand), 271 cl::desc("The maximum length of a single temporal profile trace " 272 "(default: 10000)")); 273 cl::opt<std::string> FuncNameNegativeFilter( 274 "no-function", cl::init(""), 275 cl::sub(MergeSubcommand), 276 cl::desc("Exclude functions matching the filter from the output.")); 277 278 cl::opt<FailureMode> 279 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 280 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 281 cl::values(clEnumValN(warnOnly, "warn", 282 "Do not fail and just print warnings."), 283 clEnumValN(failIfAnyAreInvalid, "any", 284 "Fail if any profile is invalid."), 285 clEnumValN(failIfAllAreInvalid, "all", 286 "Fail only if all profiles are invalid."))); 287 288 cl::opt<bool> OutputSparse( 289 "sparse", cl::init(false), cl::sub(MergeSubcommand), 290 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 291 cl::opt<unsigned> NumThreads( 292 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 293 cl::desc("Number of merge threads to use (default: autodetect)")); 294 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 295 cl::aliasopt(NumThreads)); 296 297 cl::opt<std::string> ProfileSymbolListFile( 298 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 299 cl::desc("Path to file containing the list of function symbols " 300 "used to populate profile symbol list")); 301 302 cl::opt<SampleProfileLayout> ProfileLayout( 303 "convert-sample-profile-layout", 304 cl::desc("Convert the generated profile to a profile with a new layout"), 305 cl::sub(MergeSubcommand), cl::init(SPL_None), 306 cl::values( 307 clEnumValN(SPL_Nest, "nest", 308 "Nested profile, the input should be CS flat profile"), 309 clEnumValN(SPL_Flat, "flat", 310 "Profile with nested inlinee flatten out"))); 311 312 cl::opt<bool> DropProfileSymbolList( 313 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 314 cl::sub(MergeSubcommand), 315 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 316 "(only meaningful for -sample)")); 317 318 cl::opt<bool> KeepVTableSymbols( 319 "keep-vtable-symbols", cl::init(false), cl::Hidden, 320 cl::sub(MergeSubcommand), 321 cl::desc("If true, keep the vtable symbols in indexed profiles")); 322 323 // Temporary support for writing the previous version of the format, to enable 324 // some forward compatibility. 325 // TODO: Consider enabling this with future version changes as well, to ease 326 // deployment of newer versions of llvm-profdata. 327 cl::opt<bool> DoWritePrevVersion( 328 "write-prev-version", cl::init(false), cl::Hidden, 329 cl::desc("Write the previous version of indexed format, to enable " 330 "some forward compatibility.")); 331 332 cl::opt<memprof::IndexedVersion> MemProfVersionRequested( 333 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand), 334 cl::desc("Specify the version of the memprof format to use"), 335 cl::init(memprof::Version3), 336 cl::values(clEnumValN(memprof::Version1, "1", "version 1"), 337 clEnumValN(memprof::Version2, "2", "version 2"), 338 clEnumValN(memprof::Version3, "3", "version 3"))); 339 340 cl::opt<bool> MemProfFullSchema( 341 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand), 342 cl::desc("Use the full schema for serialization"), cl::init(false)); 343 344 static cl::opt<bool> 345 MemprofGenerateRandomHotness("memprof-random-hotness", cl::init(false), 346 cl::Hidden, cl::sub(MergeSubcommand), 347 cl::desc("Generate random hotness values")); 348 static cl::opt<unsigned> MemprofGenerateRandomHotnessSeed( 349 "memprof-random-hotness-seed", cl::init(0), cl::Hidden, 350 cl::sub(MergeSubcommand), 351 cl::desc("Random hotness seed to use (0 to generate new seed)")); 352 353 // Options specific to overlap subcommand. 354 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 355 cl::desc("<base profile file>"), 356 cl::sub(OverlapSubcommand)); 357 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 358 cl::desc("<test profile file>"), 359 cl::sub(OverlapSubcommand)); 360 361 cl::opt<unsigned long long> SimilarityCutoff( 362 "similarity-cutoff", cl::init(0), 363 cl::desc("For sample profiles, list function names (with calling context " 364 "for csspgo) for overlapped functions " 365 "with similarities below the cutoff (percentage times 10000)."), 366 cl::sub(OverlapSubcommand)); 367 368 cl::opt<bool> IsCS( 369 "cs", cl::init(false), 370 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 371 cl::sub(OverlapSubcommand)); 372 373 cl::opt<unsigned long long> OverlapValueCutoff( 374 "value-cutoff", cl::init(-1), 375 cl::desc( 376 "Function level overlap information for every function (with calling " 377 "context for csspgo) in test " 378 "profile with max count value greater than the parameter value"), 379 cl::sub(OverlapSubcommand)); 380 381 // Options specific to show subcommand. 382 cl::opt<bool> ShowCounts("counts", cl::init(false), 383 cl::desc("Show counter values for shown functions"), 384 cl::sub(ShowSubcommand)); 385 cl::opt<ShowFormat> 386 SFormat("show-format", cl::init(ShowFormat::Text), 387 cl::desc("Emit output in the selected format if supported"), 388 cl::sub(ShowSubcommand), 389 cl::values(clEnumValN(ShowFormat::Text, "text", 390 "emit normal text output (default)"), 391 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 392 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 393 // TODO: Consider replacing this with `--show-format=text-encoding`. 394 cl::opt<bool> 395 TextFormat("text", cl::init(false), 396 cl::desc("Show instr profile data in text dump format"), 397 cl::sub(ShowSubcommand)); 398 cl::opt<bool> 399 JsonFormat("json", 400 cl::desc("Show sample profile data in the JSON format " 401 "(deprecated, please use --show-format=json)"), 402 cl::sub(ShowSubcommand)); 403 cl::opt<bool> ShowIndirectCallTargets( 404 "ic-targets", cl::init(false), 405 cl::desc("Show indirect call site target values for shown functions"), 406 cl::sub(ShowSubcommand)); 407 cl::opt<bool> ShowVTables("show-vtables", cl::init(false), 408 cl::desc("Show vtable names for shown functions"), 409 cl::sub(ShowSubcommand)); 410 cl::opt<bool> ShowMemOPSizes( 411 "memop-sizes", cl::init(false), 412 cl::desc("Show the profiled sizes of the memory intrinsic calls " 413 "for shown functions"), 414 cl::sub(ShowSubcommand)); 415 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 416 cl::desc("Show detailed profile summary"), 417 cl::sub(ShowSubcommand)); 418 cl::list<uint32_t> DetailedSummaryCutoffs( 419 cl::CommaSeparated, "detailed-summary-cutoffs", 420 cl::desc( 421 "Cutoff percentages (times 10000) for generating detailed summary"), 422 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 423 cl::opt<bool> 424 ShowHotFuncList("hot-func-list", cl::init(false), 425 cl::desc("Show profile summary of a list of hot functions"), 426 cl::sub(ShowSubcommand)); 427 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 428 cl::desc("Details for each and every function"), 429 cl::sub(ShowSubcommand)); 430 cl::opt<bool> ShowCS("showcs", cl::init(false), 431 cl::desc("Show context sensitive counts"), 432 cl::sub(ShowSubcommand)); 433 cl::opt<ProfileKinds> ShowProfileKind( 434 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 435 cl::init(instr), 436 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 437 clEnumVal(sample, "Sample profile"), 438 clEnumVal(memory, "MemProf memory access profile"))); 439 cl::opt<uint32_t> TopNFunctions( 440 "topn", cl::init(0), 441 cl::desc("Show the list of functions with the largest internal counts"), 442 cl::sub(ShowSubcommand)); 443 cl::opt<uint32_t> ShowValueCutoff( 444 "value-cutoff", cl::init(0), 445 cl::desc("Set the count value cutoff. Functions with the maximum count " 446 "less than this value will not be printed out. (Default is 0)"), 447 cl::sub(ShowSubcommand)); 448 cl::opt<bool> OnlyListBelow( 449 "list-below-cutoff", cl::init(false), 450 cl::desc("Only output names of functions whose max count values are " 451 "below the cutoff value"), 452 cl::sub(ShowSubcommand)); 453 cl::opt<bool> ShowProfileSymbolList( 454 "show-prof-sym-list", cl::init(false), 455 cl::desc("Show profile symbol list if it exists in the profile. "), 456 cl::sub(ShowSubcommand)); 457 cl::opt<bool> ShowSectionInfoOnly( 458 "show-sec-info-only", cl::init(false), 459 cl::desc("Show the information of each section in the sample profile. " 460 "The flag is only usable when the sample profile is in " 461 "extbinary format"), 462 cl::sub(ShowSubcommand)); 463 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 464 cl::desc("Show binary ids in the profile. "), 465 cl::sub(ShowSubcommand)); 466 cl::opt<bool> ShowTemporalProfTraces( 467 "temporal-profile-traces", 468 cl::desc("Show temporal profile traces in the profile."), 469 cl::sub(ShowSubcommand)); 470 471 cl::opt<bool> 472 ShowCovered("covered", cl::init(false), 473 cl::desc("Show only the functions that have been executed."), 474 cl::sub(ShowSubcommand)); 475 476 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 477 cl::desc("Show profile version. "), 478 cl::sub(ShowSubcommand)); 479 480 // Options specific to order subcommand. 481 cl::opt<unsigned> 482 NumTestTraces("num-test-traces", cl::init(0), 483 cl::desc("Keep aside the last <num-test-traces> traces in " 484 "the profile when computing the function order and " 485 "instead use them to evaluate that order"), 486 cl::sub(OrderSubcommand)); 487 488 // We use this string to indicate that there are 489 // multiple static functions map to the same name. 490 const std::string DuplicateNameStr = "----"; 491 492 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") { 493 WithColor::warning(); 494 if (!Whence.empty()) 495 errs() << Whence << ": "; 496 errs() << Message << "\n"; 497 if (!Hint.empty()) 498 WithColor::note() << Hint << "\n"; 499 } 500 501 static void warn(Error E, StringRef Whence = "") { 502 if (E.isA<InstrProfError>()) { 503 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 504 warn(IPE.message(), Whence); 505 }); 506 } 507 } 508 509 static void exitWithError(Twine Message, StringRef Whence = "", 510 StringRef Hint = "") { 511 WithColor::error(); 512 if (!Whence.empty()) 513 errs() << Whence << ": "; 514 errs() << Message << "\n"; 515 if (!Hint.empty()) 516 WithColor::note() << Hint << "\n"; 517 ::exit(1); 518 } 519 520 static void exitWithError(Error E, StringRef Whence = "") { 521 if (E.isA<InstrProfError>()) { 522 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 523 instrprof_error instrError = IPE.get(); 524 StringRef Hint = ""; 525 if (instrError == instrprof_error::unrecognized_format) { 526 // Hint in case user missed specifying the profile type. 527 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 528 } 529 exitWithError(IPE.message(), Whence, Hint); 530 }); 531 return; 532 } 533 534 exitWithError(toString(std::move(E)), Whence); 535 } 536 537 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 538 exitWithError(EC.message(), Whence); 539 } 540 541 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 542 StringRef Whence = "") { 543 if (FailMode == failIfAnyAreInvalid) 544 exitWithErrorCode(EC, Whence); 545 else 546 warn(EC.message(), Whence); 547 } 548 549 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 550 StringRef WhenceFunction = "", 551 bool ShowHint = true) { 552 if (!WhenceFile.empty()) 553 errs() << WhenceFile << ": "; 554 if (!WhenceFunction.empty()) 555 errs() << WhenceFunction << ": "; 556 557 auto IPE = instrprof_error::success; 558 E = handleErrors(std::move(E), 559 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 560 IPE = E->get(); 561 return Error(std::move(E)); 562 }); 563 errs() << toString(std::move(E)) << "\n"; 564 565 if (ShowHint) { 566 StringRef Hint = ""; 567 if (IPE != instrprof_error::success) { 568 switch (IPE) { 569 case instrprof_error::hash_mismatch: 570 case instrprof_error::count_mismatch: 571 case instrprof_error::value_site_count_mismatch: 572 Hint = "Make sure that all profile data to be merged is generated " 573 "from the same binary."; 574 break; 575 default: 576 break; 577 } 578 } 579 580 if (!Hint.empty()) 581 errs() << Hint << "\n"; 582 } 583 } 584 585 namespace { 586 /// A remapper from original symbol names to new symbol names based on a file 587 /// containing a list of mappings from old name to new name. 588 class SymbolRemapper { 589 std::unique_ptr<MemoryBuffer> File; 590 DenseMap<StringRef, StringRef> RemappingTable; 591 592 public: 593 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 594 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 595 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 596 if (!BufOrError) 597 exitWithErrorCode(BufOrError.getError(), InputFile); 598 599 auto Remapper = std::make_unique<SymbolRemapper>(); 600 Remapper->File = std::move(BufOrError.get()); 601 602 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 603 !LineIt.is_at_eof(); ++LineIt) { 604 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 605 if (Parts.first.empty() || Parts.second.empty() || 606 Parts.second.count(' ')) { 607 exitWithError("unexpected line in remapping file", 608 (InputFile + ":" + Twine(LineIt.line_number())).str(), 609 "expected 'old_symbol new_symbol'"); 610 } 611 Remapper->RemappingTable.insert(Parts); 612 } 613 return Remapper; 614 } 615 616 /// Attempt to map the given old symbol into a new symbol. 617 /// 618 /// \return The new symbol, or \p Name if no such symbol was found. 619 StringRef operator()(StringRef Name) { 620 StringRef New = RemappingTable.lookup(Name); 621 return New.empty() ? Name : New; 622 } 623 624 FunctionId operator()(FunctionId Name) { 625 // MD5 name cannot be remapped. 626 if (!Name.isStringRef()) 627 return Name; 628 StringRef New = RemappingTable.lookup(Name.stringRef()); 629 return New.empty() ? Name : FunctionId(New); 630 } 631 }; 632 } 633 634 struct WeightedFile { 635 std::string Filename; 636 uint64_t Weight; 637 }; 638 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 639 640 /// Keep track of merged data and reported errors. 641 struct WriterContext { 642 std::mutex Lock; 643 InstrProfWriter Writer; 644 std::vector<std::pair<Error, std::string>> Errors; 645 std::mutex &ErrLock; 646 SmallSet<instrprof_error, 4> &WriterErrorCodes; 647 648 WriterContext(bool IsSparse, std::mutex &ErrLock, 649 SmallSet<instrprof_error, 4> &WriterErrorCodes, 650 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 651 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion, 652 MemProfVersionRequested, MemProfFullSchema, 653 MemprofGenerateRandomHotness, MemprofGenerateRandomHotnessSeed), 654 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {} 655 }; 656 657 /// Computer the overlap b/w profile BaseFilename and TestFileName, 658 /// and store the program level result to Overlap. 659 static void overlapInput(const std::string &BaseFilename, 660 const std::string &TestFilename, WriterContext *WC, 661 OverlapStats &Overlap, 662 const OverlapFuncFilters &FuncFilter, 663 raw_fd_ostream &OS, bool IsCS) { 664 auto FS = vfs::getRealFileSystem(); 665 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 666 if (Error E = ReaderOrErr.takeError()) { 667 // Skip the empty profiles by returning sliently. 668 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 669 if (ErrorCode != instrprof_error::empty_raw_profile) 670 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 671 TestFilename); 672 return; 673 } 674 675 auto Reader = std::move(ReaderOrErr.get()); 676 for (auto &I : *Reader) { 677 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 678 FuncOverlap.setFuncInfo(I.Name, I.Hash); 679 680 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 681 FuncOverlap.dump(OS); 682 } 683 } 684 685 /// Load an input into a writer context. 686 static void 687 loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 688 const InstrProfCorrelator *Correlator, const StringRef ProfiledBinary, 689 WriterContext *WC, const object::BuildIDFetcher *BIDFetcher = nullptr, 690 const ProfCorrelatorKind *BIDFetcherCorrelatorKind = nullptr) { 691 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 692 693 // Copy the filename, because llvm::ThreadPool copied the input "const 694 // WeightedFile &" by value, making a reference to the filename within it 695 // invalid outside of this packaged task. 696 std::string Filename = Input.Filename; 697 698 using ::llvm::memprof::RawMemProfReader; 699 if (RawMemProfReader::hasFormat(Input.Filename)) { 700 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 701 if (!ReaderOrErr) { 702 exitWithError(ReaderOrErr.takeError(), Input.Filename); 703 } 704 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 705 // Check if the profile types can be merged, e.g. clang frontend profiles 706 // should not be merged with memprof profiles. 707 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 708 consumeError(std::move(E)); 709 WC->Errors.emplace_back( 710 make_error<StringError>( 711 "Cannot merge MemProf profile with Clang generated profile.", 712 std::error_code()), 713 Filename); 714 return; 715 } 716 717 auto MemProfError = [&](Error E) { 718 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 719 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 720 Filename); 721 }; 722 723 WC->Writer.addMemProfData(Reader->takeMemProfData(), MemProfError); 724 return; 725 } 726 727 auto FS = vfs::getRealFileSystem(); 728 // TODO: This only saves the first non-fatal error from InstrProfReader, and 729 // then added to WriterContext::Errors. However, this is not extensible, if 730 // we have more non-fatal errors from InstrProfReader in the future. How 731 // should this interact with different -failure-mode? 732 std::optional<std::pair<Error, std::string>> ReaderWarning; 733 auto Warn = [&](Error E) { 734 if (ReaderWarning) { 735 consumeError(std::move(E)); 736 return; 737 } 738 // Only show the first time an error occurs in this file. 739 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 740 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 741 }; 742 743 const ProfCorrelatorKind CorrelatorKind = BIDFetcherCorrelatorKind 744 ? *BIDFetcherCorrelatorKind 745 : ProfCorrelatorKind::NONE; 746 auto ReaderOrErr = InstrProfReader::create(Input.Filename, *FS, Correlator, 747 BIDFetcher, CorrelatorKind, Warn); 748 if (Error E = ReaderOrErr.takeError()) { 749 // Skip the empty profiles by returning silently. 750 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 751 if (ErrCode != instrprof_error::empty_raw_profile) 752 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 753 Filename); 754 return; 755 } 756 757 auto Reader = std::move(ReaderOrErr.get()); 758 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 759 consumeError(std::move(E)); 760 WC->Errors.emplace_back( 761 make_error<StringError>( 762 "Merge IR generated profile with Clang generated profile.", 763 std::error_code()), 764 Filename); 765 return; 766 } 767 768 for (auto &I : *Reader) { 769 if (Remapper) 770 I.Name = (*Remapper)(I.Name); 771 const StringRef FuncName = I.Name; 772 bool Reported = false; 773 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 774 if (Reported) { 775 consumeError(std::move(E)); 776 return; 777 } 778 Reported = true; 779 // Only show hint the first time an error occurs. 780 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 781 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 782 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 783 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 784 Input.Filename, FuncName, firstTime); 785 }); 786 } 787 788 if (KeepVTableSymbols) { 789 const InstrProfSymtab &symtab = Reader->getSymtab(); 790 const auto &VTableNames = symtab.getVTableNames(); 791 792 for (const auto &kv : VTableNames) 793 WC->Writer.addVTableName(kv.getKey()); 794 } 795 796 if (Reader->hasTemporalProfile()) { 797 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 798 if (!Traces.empty()) 799 WC->Writer.addTemporalProfileTraces( 800 Traces, Reader->getTemporalProfTraceStreamSize()); 801 } 802 if (Reader->hasError()) { 803 if (Error E = Reader->getError()) { 804 WC->Errors.emplace_back(std::move(E), Filename); 805 return; 806 } 807 } 808 809 std::vector<llvm::object::BuildID> BinaryIds; 810 if (Error E = Reader->readBinaryIds(BinaryIds)) { 811 WC->Errors.emplace_back(std::move(E), Filename); 812 return; 813 } 814 WC->Writer.addBinaryIds(BinaryIds); 815 816 if (ReaderWarning) { 817 WC->Errors.emplace_back(std::move(ReaderWarning->first), 818 ReaderWarning->second); 819 } 820 } 821 822 /// Merge the \p Src writer context into \p Dst. 823 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 824 for (auto &ErrorPair : Src->Errors) 825 Dst->Errors.push_back(std::move(ErrorPair)); 826 Src->Errors.clear(); 827 828 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 829 exitWithError(std::move(E)); 830 831 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 832 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 833 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 834 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 835 if (firstTime) 836 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 837 }); 838 } 839 840 static StringRef 841 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) { 842 return Val.first(); 843 } 844 845 static std::string 846 getFuncName(const SampleProfileMap::value_type &Val) { 847 return Val.second.getContext().toString(); 848 } 849 850 template <typename T> 851 static void filterFunctions(T &ProfileMap) { 852 bool hasFilter = !FuncNameFilter.empty(); 853 bool hasNegativeFilter = !FuncNameNegativeFilter.empty(); 854 if (!hasFilter && !hasNegativeFilter) 855 return; 856 857 // If filter starts with '?' it is MSVC mangled name, not a regex. 858 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+"); 859 if (hasFilter && FuncNameFilter[0] == '?' && 860 ProbablyMSVCMangledName.match(FuncNameFilter)) 861 FuncNameFilter = llvm::Regex::escape(FuncNameFilter); 862 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' && 863 ProbablyMSVCMangledName.match(FuncNameNegativeFilter)) 864 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter); 865 866 size_t Count = ProfileMap.size(); 867 llvm::Regex Pattern(FuncNameFilter); 868 llvm::Regex NegativePattern(FuncNameNegativeFilter); 869 std::string Error; 870 if (hasFilter && !Pattern.isValid(Error)) 871 exitWithError(Error); 872 if (hasNegativeFilter && !NegativePattern.isValid(Error)) 873 exitWithError(Error); 874 875 // Handle MD5 profile, so it is still able to match using the original name. 876 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter)); 877 std::string NegativeMD5Name = 878 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter)); 879 880 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { 881 auto Tmp = I++; 882 const auto &FuncName = getFuncName(*Tmp); 883 // Negative filter has higher precedence than positive filter. 884 if ((hasNegativeFilter && 885 (NegativePattern.match(FuncName) || 886 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) || 887 (hasFilter && !(Pattern.match(FuncName) || 888 (FunctionSamples::UseMD5 && MD5Name == FuncName)))) 889 ProfileMap.erase(Tmp); 890 } 891 892 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions " 893 << "in the original profile are filtered.\n"; 894 } 895 896 static void writeInstrProfile(StringRef OutputFilename, 897 ProfileFormat OutputFormat, 898 InstrProfWriter &Writer) { 899 std::error_code EC; 900 raw_fd_ostream Output(OutputFilename.data(), EC, 901 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 902 : sys::fs::OF_None); 903 if (EC) 904 exitWithErrorCode(EC, OutputFilename); 905 906 if (OutputFormat == PF_Text) { 907 if (Error E = Writer.writeText(Output)) 908 warn(std::move(E)); 909 } else { 910 if (Output.is_displayed()) 911 exitWithError("cannot write a non-text format profile to the terminal"); 912 if (Error E = Writer.write(Output)) 913 warn(std::move(E)); 914 } 915 } 916 917 static void mergeInstrProfile(const WeightedFileVector &Inputs, 918 SymbolRemapper *Remapper, 919 int MaxDbgCorrelationWarnings, 920 const StringRef ProfiledBinary) { 921 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 922 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 923 if (OutputFormat == PF_Compact_Binary) 924 exitWithError("Compact Binary is deprecated"); 925 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 926 OutputFormat != PF_Text) 927 exitWithError("unknown format is specified"); 928 929 // TODO: Maybe we should support correlation with mixture of different 930 // correlation modes(w/wo debug-info/object correlation). 931 if (DebugInfoFilename.empty()) { 932 if (!BinaryFilename.empty() && (DebugInfod || !DebugFileDirectory.empty())) 933 exitWithError("Expected only one of -binary-file, -debuginfod or " 934 "-debug-file-directory"); 935 } else if (!BinaryFilename.empty() || DebugInfod || 936 !DebugFileDirectory.empty()) { 937 exitWithError("Expected only one of -debug-info, -binary-file, -debuginfod " 938 "or -debug-file-directory"); 939 } 940 std::string CorrelateFilename; 941 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 942 if (!DebugInfoFilename.empty()) { 943 CorrelateFilename = DebugInfoFilename; 944 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 945 } else if (!BinaryFilename.empty()) { 946 CorrelateFilename = BinaryFilename; 947 CorrelateKind = ProfCorrelatorKind::BINARY; 948 } 949 950 std::unique_ptr<InstrProfCorrelator> Correlator; 951 if (CorrelateKind != InstrProfCorrelator::NONE) { 952 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 953 .moveInto(Correlator)) 954 exitWithError(std::move(Err), CorrelateFilename); 955 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 956 exitWithError(std::move(Err), CorrelateFilename); 957 } 958 959 ProfCorrelatorKind BIDFetcherCorrelateKind = ProfCorrelatorKind::NONE; 960 std::unique_ptr<object::BuildIDFetcher> BIDFetcher; 961 if (DebugInfod) { 962 llvm::HTTPClient::initialize(); 963 BIDFetcher = std::make_unique<DebuginfodFetcher>(DebugFileDirectory); 964 if (!BIDFetcherProfileCorrelate) 965 exitWithError("Expected --correlate when --debuginfod is provided"); 966 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 967 } else if (!DebugFileDirectory.empty()) { 968 BIDFetcher = std::make_unique<object::BuildIDFetcher>(DebugFileDirectory); 969 if (!BIDFetcherProfileCorrelate) 970 exitWithError("Expected --correlate when --debug-file-directory " 971 "is provided"); 972 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 973 } else if (BIDFetcherProfileCorrelate) { 974 exitWithError("Expected --debuginfod or --debug-file-directory when " 975 "--correlate is provided"); 976 } 977 978 std::mutex ErrorLock; 979 SmallSet<instrprof_error, 4> WriterErrorCodes; 980 981 // If NumThreads is not specified, auto-detect a good default. 982 if (NumThreads == 0) 983 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 984 unsigned((Inputs.size() + 1) / 2)); 985 986 // Initialize the writer contexts. 987 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 988 for (unsigned I = 0; I < NumThreads; ++I) 989 Contexts.emplace_back(std::make_unique<WriterContext>( 990 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 991 MaxTraceLength)); 992 993 if (NumThreads == 1) { 994 for (const auto &Input : Inputs) 995 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 996 Contexts[0].get(), BIDFetcher.get(), &BIDFetcherCorrelateKind); 997 } else { 998 DefaultThreadPool Pool(hardware_concurrency(NumThreads)); 999 1000 // Load the inputs in parallel (N/NumThreads serial steps). 1001 unsigned Ctx = 0; 1002 for (const auto &Input : Inputs) { 1003 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 1004 Contexts[Ctx].get(), BIDFetcher.get(), 1005 &BIDFetcherCorrelateKind); 1006 Ctx = (Ctx + 1) % NumThreads; 1007 } 1008 Pool.wait(); 1009 1010 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 1011 unsigned Mid = Contexts.size() / 2; 1012 unsigned End = Contexts.size(); 1013 assert(Mid > 0 && "Expected more than one context"); 1014 do { 1015 for (unsigned I = 0; I < Mid; ++I) 1016 Pool.async(mergeWriterContexts, Contexts[I].get(), 1017 Contexts[I + Mid].get()); 1018 Pool.wait(); 1019 if (End & 1) { 1020 Pool.async(mergeWriterContexts, Contexts[0].get(), 1021 Contexts[End - 1].get()); 1022 Pool.wait(); 1023 } 1024 End = Mid; 1025 Mid /= 2; 1026 } while (Mid > 0); 1027 } 1028 1029 // Handle deferred errors encountered during merging. If the number of errors 1030 // is equal to the number of inputs the merge failed. 1031 unsigned NumErrors = 0; 1032 for (std::unique_ptr<WriterContext> &WC : Contexts) { 1033 for (auto &ErrorPair : WC->Errors) { 1034 ++NumErrors; 1035 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 1036 } 1037 } 1038 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 1039 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 1040 exitWithError("no profile can be merged"); 1041 1042 filterFunctions(Contexts[0]->Writer.getProfileData()); 1043 1044 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 1045 } 1046 1047 /// The profile entry for a function in instrumentation profile. 1048 struct InstrProfileEntry { 1049 uint64_t MaxCount = 0; 1050 uint64_t NumEdgeCounters = 0; 1051 float ZeroCounterRatio = 0.0; 1052 InstrProfRecord *ProfRecord; 1053 InstrProfileEntry(InstrProfRecord *Record); 1054 InstrProfileEntry() = default; 1055 }; 1056 1057 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 1058 ProfRecord = Record; 1059 uint64_t CntNum = Record->Counts.size(); 1060 uint64_t ZeroCntNum = 0; 1061 for (size_t I = 0; I < CntNum; ++I) { 1062 MaxCount = std::max(MaxCount, Record->Counts[I]); 1063 ZeroCntNum += !Record->Counts[I]; 1064 } 1065 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 1066 NumEdgeCounters = CntNum; 1067 } 1068 1069 /// Either set all the counters in the instr profile entry \p IFE to 1070 /// -1 / -2 /in order to drop the profile or scale up the 1071 /// counters in \p IFP to be above hot / cold threshold. We use 1072 /// the ratio of zero counters in the profile of a function to 1073 /// decide the profile is helpful or harmful for performance, 1074 /// and to choose whether to scale up or drop it. 1075 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 1076 uint64_t HotInstrThreshold, 1077 uint64_t ColdInstrThreshold, 1078 float ZeroCounterThreshold) { 1079 InstrProfRecord *ProfRecord = IFE.ProfRecord; 1080 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 1081 // If all or most of the counters of the function are zero, the 1082 // profile is unaccountable and should be dropped. Reset all the 1083 // counters to be -1 / -2 and PGO profile-use will drop the profile. 1084 // All counters being -1 also implies that the function is hot so 1085 // PGO profile-use will also set the entry count metadata to be 1086 // above hot threshold. 1087 // All counters being -2 implies that the function is warm so 1088 // PGO profile-use will also set the entry count metadata to be 1089 // above cold threshold. 1090 auto Kind = 1091 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 1092 ProfRecord->setPseudoCount(Kind); 1093 return; 1094 } 1095 1096 // Scale up the MaxCount to be multiple times above hot / cold threshold. 1097 const unsigned MultiplyFactor = 3; 1098 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 1099 uint64_t Numerator = Threshold * MultiplyFactor; 1100 1101 // Make sure Threshold for warm counters is below the HotInstrThreshold. 1102 if (!SetToHot && Threshold >= HotInstrThreshold) { 1103 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 1104 } 1105 1106 uint64_t Denominator = IFE.MaxCount; 1107 if (Numerator <= Denominator) 1108 return; 1109 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 1110 warn(toString(make_error<InstrProfError>(E))); 1111 }); 1112 } 1113 1114 const uint64_t ColdPercentileIdx = 15; 1115 const uint64_t HotPercentileIdx = 11; 1116 1117 using sampleprof::FSDiscriminatorPass; 1118 1119 // Internal options to set FSDiscriminatorPass. Used in merge and show 1120 // commands. 1121 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 1122 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 1123 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 1124 "pass beyond this value. The enum values are defined in " 1125 "Support/Discriminator.h"), 1126 cl::values(clEnumVal(Base, "Use base discriminators only"), 1127 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 1128 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 1129 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 1130 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 1131 1132 static unsigned getDiscriminatorMask() { 1133 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 1134 } 1135 1136 /// Adjust the instr profile in \p WC based on the sample profile in 1137 /// \p Reader. 1138 static void 1139 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 1140 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 1141 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 1142 unsigned InstrProfColdThreshold) { 1143 // Function to its entry in instr profile. 1144 StringMap<InstrProfileEntry> InstrProfileMap; 1145 StringMap<StringRef> StaticFuncMap; 1146 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 1147 1148 auto checkSampleProfileHasFUnique = [&Reader]() { 1149 for (const auto &PD : Reader->getProfiles()) { 1150 auto &FContext = PD.second.getContext(); 1151 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 1152 std::string::npos) { 1153 return true; 1154 } 1155 } 1156 return false; 1157 }; 1158 1159 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 1160 1161 auto buildStaticFuncMap = [&StaticFuncMap, 1162 SampleProfileHasFUnique](const StringRef Name) { 1163 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1164 size_t PrefixPos = StringRef::npos; 1165 for (auto &FilePrefix : FilePrefixes) { 1166 std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter; 1167 PrefixPos = Name.find_insensitive(NamePrefix); 1168 if (PrefixPos == StringRef::npos) 1169 continue; 1170 PrefixPos += NamePrefix.size(); 1171 break; 1172 } 1173 1174 if (PrefixPos == StringRef::npos) { 1175 return; 1176 } 1177 1178 StringRef NewName = Name.drop_front(PrefixPos); 1179 StringRef FName = Name.substr(0, PrefixPos - 1); 1180 if (NewName.size() == 0) { 1181 return; 1182 } 1183 1184 // This name should have a static linkage. 1185 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1186 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1187 1188 // If sample profile and instrumented profile do not agree on symbol 1189 // uniqification. 1190 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1191 // If instrumented profile uses -funique-internal-linkage-symbols, 1192 // we need to trim the name. 1193 if (ProfileHasFUnique) { 1194 NewName = NewName.substr(0, PostfixPos); 1195 } else { 1196 // If sample profile uses -funique-internal-linkage-symbols, 1197 // we build the map. 1198 std::string NStr = 1199 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1200 NewName = StringRef(NStr); 1201 StaticFuncMap[NewName] = Name; 1202 return; 1203 } 1204 } 1205 1206 auto [It, Inserted] = StaticFuncMap.try_emplace(NewName, Name); 1207 if (!Inserted) 1208 It->second = DuplicateNameStr; 1209 }; 1210 1211 // We need to flatten the SampleFDO profile as the InstrFDO 1212 // profile does not have inlined callsite profiles. 1213 // One caveat is the pre-inlined function -- their samples 1214 // should be collapsed into the caller function. 1215 // Here we do a DFS traversal to get the flatten profile 1216 // info: the sum of entrycount and the max of maxcount. 1217 // Here is the algorithm: 1218 // recursive (FS, root_name) { 1219 // name = FS->getName(); 1220 // get samples for FS; 1221 // if (InstrProf.find(name) { 1222 // root_name = name; 1223 // } else { 1224 // if (name is in static_func map) { 1225 // root_name = static_name; 1226 // } 1227 // } 1228 // update the Map entry for root_name; 1229 // for (subfs: FS) { 1230 // recursive(subfs, root_name); 1231 // } 1232 // } 1233 // 1234 // Here is an example. 1235 // 1236 // SampleProfile: 1237 // foo:12345:1000 1238 // 1: 1000 1239 // 2.1: 1000 1240 // 15: 5000 1241 // 4: bar:1000 1242 // 1: 1000 1243 // 2: goo:3000 1244 // 1: 3000 1245 // 8: bar:40000 1246 // 1: 10000 1247 // 2: goo:30000 1248 // 1: 30000 1249 // 1250 // InstrProfile has two entries: 1251 // foo 1252 // bar.cc;bar 1253 // 1254 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1255 // {"foo", {1000, 5000}} 1256 // {"bar.cc;bar", {11000, 30000}} 1257 // 1258 // foo's has an entry count of 1000, and max body count of 5000. 1259 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1260 // 10000), and max count of 30000 (from the callsite in line 8). 1261 // 1262 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1263 // entry in InstrProfile. 1264 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1265 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1266 &InstrProfileMap](const FunctionSamples &FS, 1267 const StringRef &RootName) { 1268 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1269 const StringRef &RootName, 1270 auto &BuildImpl) -> void { 1271 std::string NameStr = FS.getFunction().str(); 1272 const StringRef Name = NameStr; 1273 const StringRef *NewRootName = &RootName; 1274 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1275 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1276 1277 auto It = InstrProfileMap.find(Name); 1278 if (It != InstrProfileMap.end()) { 1279 NewRootName = &Name; 1280 } else { 1281 auto NewName = StaticFuncMap.find(Name); 1282 if (NewName != StaticFuncMap.end()) { 1283 It = InstrProfileMap.find(NewName->second); 1284 if (NewName->second != DuplicateNameStr) { 1285 NewRootName = &NewName->second; 1286 } 1287 } else { 1288 // Here the EntrySample is of an inlined function, so we should not 1289 // update the EntrySample in the map. 1290 EntrySample = 0; 1291 } 1292 } 1293 EntrySample += FlattenSampleMap[*NewRootName].first; 1294 MaxBodySample = 1295 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1296 FlattenSampleMap[*NewRootName] = 1297 std::make_pair(EntrySample, MaxBodySample); 1298 1299 for (const auto &C : FS.getCallsiteSamples()) 1300 for (const auto &F : C.second) 1301 BuildImpl(F.second, *NewRootName, BuildImpl); 1302 }; 1303 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1304 }; 1305 1306 for (auto &PD : WC->Writer.getProfileData()) { 1307 // Populate IPBuilder. 1308 for (const auto &PDV : PD.getValue()) { 1309 InstrProfRecord Record = PDV.second; 1310 IPBuilder.addRecord(Record); 1311 } 1312 1313 // If a function has multiple entries in instr profile, skip it. 1314 if (PD.getValue().size() != 1) 1315 continue; 1316 1317 // Initialize InstrProfileMap. 1318 InstrProfRecord *R = &PD.getValue().begin()->second; 1319 StringRef FullName = PD.getKey(); 1320 InstrProfileMap[FullName] = InstrProfileEntry(R); 1321 buildStaticFuncMap(FullName); 1322 } 1323 1324 for (auto &PD : Reader->getProfiles()) { 1325 sampleprof::FunctionSamples &FS = PD.second; 1326 std::string Name = FS.getFunction().str(); 1327 BuildMaxSampleMap(FS, Name); 1328 } 1329 1330 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1331 ProfileSummary SamplePS = Reader->getSummary(); 1332 1333 // Compute cold thresholds for instr profile and sample profile. 1334 uint64_t HotSampleThreshold = 1335 ProfileSummaryBuilder::getEntryForPercentile( 1336 SamplePS.getDetailedSummary(), 1337 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1338 .MinCount; 1339 uint64_t ColdSampleThreshold = 1340 ProfileSummaryBuilder::getEntryForPercentile( 1341 SamplePS.getDetailedSummary(), 1342 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1343 .MinCount; 1344 uint64_t HotInstrThreshold = 1345 ProfileSummaryBuilder::getEntryForPercentile( 1346 InstrPS.getDetailedSummary(), 1347 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1348 .MinCount; 1349 uint64_t ColdInstrThreshold = 1350 InstrProfColdThreshold 1351 ? InstrProfColdThreshold 1352 : ProfileSummaryBuilder::getEntryForPercentile( 1353 InstrPS.getDetailedSummary(), 1354 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1355 .MinCount; 1356 1357 // Find hot/warm functions in sample profile which is cold in instr profile 1358 // and adjust the profiles of those functions in the instr profile. 1359 for (const auto &E : FlattenSampleMap) { 1360 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1361 if (SampleMaxCount < ColdSampleThreshold) 1362 continue; 1363 StringRef Name = E.first(); 1364 auto It = InstrProfileMap.find(Name); 1365 if (It == InstrProfileMap.end()) { 1366 auto NewName = StaticFuncMap.find(Name); 1367 if (NewName != StaticFuncMap.end()) { 1368 It = InstrProfileMap.find(NewName->second); 1369 if (NewName->second == DuplicateNameStr) { 1370 WithColor::warning() 1371 << "Static function " << Name 1372 << " has multiple promoted names, cannot adjust profile.\n"; 1373 } 1374 } 1375 } 1376 if (It == InstrProfileMap.end() || 1377 It->second.MaxCount > ColdInstrThreshold || 1378 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1379 continue; 1380 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1381 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1382 ColdInstrThreshold, ZeroCounterThreshold); 1383 } 1384 } 1385 1386 /// The main function to supplement instr profile with sample profile. 1387 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1388 /// sample profile. \p OutputFilename specifies the output profile name. 1389 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1390 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1391 /// specifies the minimal size for the functions whose profile will be 1392 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1393 /// a function contains too many zero counters and whether its profile 1394 /// should be dropped. \p InstrProfColdThreshold is the user specified 1395 /// cold threshold which will override the cold threshold got from the 1396 /// instr profile summary. 1397 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1398 StringRef SampleFilename, bool OutputSparse, 1399 unsigned SupplMinSizeThreshold, 1400 float ZeroCounterThreshold, 1401 unsigned InstrProfColdThreshold) { 1402 if (OutputFilename == "-") 1403 exitWithError("cannot write indexed profdata format to stdout"); 1404 if (Inputs.size() != 1) 1405 exitWithError("expect one input to be an instr profile"); 1406 if (Inputs[0].Weight != 1) 1407 exitWithError("expect instr profile doesn't have weight"); 1408 1409 StringRef InstrFilename = Inputs[0].Filename; 1410 1411 // Read sample profile. 1412 LLVMContext Context; 1413 auto FS = vfs::getRealFileSystem(); 1414 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1415 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1416 if (std::error_code EC = ReaderOrErr.getError()) 1417 exitWithErrorCode(EC, SampleFilename); 1418 auto Reader = std::move(ReaderOrErr.get()); 1419 if (std::error_code EC = Reader->read()) 1420 exitWithErrorCode(EC, SampleFilename); 1421 1422 // Read instr profile. 1423 std::mutex ErrorLock; 1424 SmallSet<instrprof_error, 4> WriterErrorCodes; 1425 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1426 WriterErrorCodes); 1427 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1428 if (WC->Errors.size() > 0) 1429 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1430 1431 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1432 InstrProfColdThreshold); 1433 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1434 } 1435 1436 /// Make a copy of the given function samples with all symbol names remapped 1437 /// by the provided symbol remapper. 1438 static sampleprof::FunctionSamples 1439 remapSamples(const sampleprof::FunctionSamples &Samples, 1440 SymbolRemapper &Remapper, sampleprof_error &Error) { 1441 sampleprof::FunctionSamples Result; 1442 Result.setFunction(Remapper(Samples.getFunction())); 1443 Result.addTotalSamples(Samples.getTotalSamples()); 1444 Result.addHeadSamples(Samples.getHeadSamples()); 1445 for (const auto &BodySample : Samples.getBodySamples()) { 1446 uint32_t MaskedDiscriminator = 1447 BodySample.first.Discriminator & getDiscriminatorMask(); 1448 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1449 BodySample.second.getSamples()); 1450 for (const auto &Target : BodySample.second.getCallTargets()) { 1451 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1452 MaskedDiscriminator, 1453 Remapper(Target.first), Target.second); 1454 } 1455 } 1456 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1457 sampleprof::FunctionSamplesMap &Target = 1458 Result.functionSamplesAt(CallsiteSamples.first); 1459 for (const auto &Callsite : CallsiteSamples.second) { 1460 sampleprof::FunctionSamples Remapped = 1461 remapSamples(Callsite.second, Remapper, Error); 1462 mergeSampleProfErrors(Error, 1463 Target[Remapped.getFunction()].merge(Remapped)); 1464 } 1465 } 1466 return Result; 1467 } 1468 1469 static sampleprof::SampleProfileFormat FormatMap[] = { 1470 sampleprof::SPF_None, 1471 sampleprof::SPF_Text, 1472 sampleprof::SPF_None, 1473 sampleprof::SPF_Ext_Binary, 1474 sampleprof::SPF_GCC, 1475 sampleprof::SPF_Binary}; 1476 1477 static std::unique_ptr<MemoryBuffer> 1478 getInputFileBuf(const StringRef &InputFile) { 1479 if (InputFile == "") 1480 return {}; 1481 1482 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1483 if (!BufOrError) 1484 exitWithErrorCode(BufOrError.getError(), InputFile); 1485 1486 return std::move(*BufOrError); 1487 } 1488 1489 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1490 sampleprof::ProfileSymbolList &PSL) { 1491 if (!Buffer) 1492 return; 1493 1494 SmallVector<StringRef, 32> SymbolVec; 1495 StringRef Data = Buffer->getBuffer(); 1496 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1497 1498 for (StringRef SymbolStr : SymbolVec) 1499 PSL.add(SymbolStr.trim()); 1500 } 1501 1502 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1503 ProfileFormat OutputFormat, 1504 MemoryBuffer *Buffer, 1505 sampleprof::ProfileSymbolList &WriterList, 1506 bool CompressAllSections, bool UseMD5, 1507 bool GenPartialProfile) { 1508 if (SplitLayout) { 1509 if (OutputFormat == PF_Binary) 1510 warn("-split-layout is ignored. Specify -extbinary to enable it"); 1511 else 1512 Writer.setUseCtxSplitLayout(); 1513 } 1514 1515 populateProfileSymbolList(Buffer, WriterList); 1516 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1517 warn("Profile Symbol list is not empty but the output format is not " 1518 "ExtBinary format. The list will be lost in the output. "); 1519 1520 Writer.setProfileSymbolList(&WriterList); 1521 1522 if (CompressAllSections) { 1523 if (OutputFormat != PF_Ext_Binary) 1524 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1525 else 1526 Writer.setToCompressAllSections(); 1527 } 1528 if (UseMD5) { 1529 if (OutputFormat != PF_Ext_Binary) 1530 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1531 else 1532 Writer.setUseMD5(); 1533 } 1534 if (GenPartialProfile) { 1535 if (OutputFormat != PF_Ext_Binary) 1536 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1537 else 1538 Writer.setPartialProfile(); 1539 } 1540 } 1541 1542 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1543 SymbolRemapper *Remapper, 1544 StringRef ProfileSymbolListFile, 1545 size_t OutputSizeLimit) { 1546 using namespace sampleprof; 1547 SampleProfileMap ProfileMap; 1548 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1549 LLVMContext Context; 1550 sampleprof::ProfileSymbolList WriterList; 1551 std::optional<bool> ProfileIsProbeBased; 1552 std::optional<bool> ProfileIsCS; 1553 for (const auto &Input : Inputs) { 1554 auto FS = vfs::getRealFileSystem(); 1555 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1556 FSDiscriminatorPassOption); 1557 if (std::error_code EC = ReaderOrErr.getError()) { 1558 warnOrExitGivenError(FailMode, EC, Input.Filename); 1559 continue; 1560 } 1561 1562 // We need to keep the readers around until after all the files are 1563 // read so that we do not lose the function names stored in each 1564 // reader's memory. The function names are needed to write out the 1565 // merged profile map. 1566 Readers.push_back(std::move(ReaderOrErr.get())); 1567 const auto Reader = Readers.back().get(); 1568 if (std::error_code EC = Reader->read()) { 1569 warnOrExitGivenError(FailMode, EC, Input.Filename); 1570 Readers.pop_back(); 1571 continue; 1572 } 1573 1574 SampleProfileMap &Profiles = Reader->getProfiles(); 1575 if (ProfileIsProbeBased && 1576 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1577 exitWithError( 1578 "cannot merge probe-based profile with non-probe-based profile"); 1579 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1580 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1581 exitWithError("cannot merge CS profile with non-CS profile"); 1582 ProfileIsCS = FunctionSamples::ProfileIsCS; 1583 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1584 I != E; ++I) { 1585 sampleprof_error Result = sampleprof_error::success; 1586 FunctionSamples Remapped = 1587 Remapper ? remapSamples(I->second, *Remapper, Result) 1588 : FunctionSamples(); 1589 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1590 SampleContext FContext = Samples.getContext(); 1591 mergeSampleProfErrors(Result, 1592 ProfileMap[FContext].merge(Samples, Input.Weight)); 1593 if (Result != sampleprof_error::success) { 1594 std::error_code EC = make_error_code(Result); 1595 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1596 FContext.toString()); 1597 } 1598 } 1599 1600 if (!DropProfileSymbolList) { 1601 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1602 Reader->getProfileSymbolList(); 1603 if (ReaderList) 1604 WriterList.merge(*ReaderList); 1605 } 1606 } 1607 1608 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1609 // Use threshold calculated from profile summary unless specified. 1610 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1611 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1612 uint64_t SampleProfColdThreshold = 1613 ProfileSummaryBuilder::getColdCountThreshold( 1614 (Summary->getDetailedSummary())); 1615 1616 // Trim and merge cold context profile using cold threshold above; 1617 SampleContextTrimmer(ProfileMap) 1618 .trimAndMergeColdContextProfiles( 1619 SampleProfColdThreshold, SampleTrimColdContext, 1620 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1621 } 1622 1623 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1624 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1625 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1626 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1627 ProfileConverter CSConverter(ProfileMap); 1628 CSConverter.convertCSProfiles(); 1629 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1630 } 1631 1632 filterFunctions(ProfileMap); 1633 1634 auto WriterOrErr = 1635 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1636 if (std::error_code EC = WriterOrErr.getError()) 1637 exitWithErrorCode(EC, OutputFilename); 1638 1639 auto Writer = std::move(WriterOrErr.get()); 1640 // WriterList will have StringRef refering to string in Buffer. 1641 // Make sure Buffer lives as long as WriterList. 1642 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1643 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1644 CompressAllSections, UseMD5, GenPartialProfile); 1645 1646 // If OutputSizeLimit is 0 (default), it is the same as write(). 1647 if (std::error_code EC = 1648 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1649 exitWithErrorCode(EC); 1650 } 1651 1652 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1653 StringRef WeightStr, FileName; 1654 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1655 1656 uint64_t Weight; 1657 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1658 exitWithError("input weight must be a positive integer"); 1659 1660 return {std::string(FileName), Weight}; 1661 } 1662 1663 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1664 StringRef Filename = WF.Filename; 1665 uint64_t Weight = WF.Weight; 1666 1667 // If it's STDIN just pass it on. 1668 if (Filename == "-") { 1669 WNI.push_back({std::string(Filename), Weight}); 1670 return; 1671 } 1672 1673 llvm::sys::fs::file_status Status; 1674 llvm::sys::fs::status(Filename, Status); 1675 if (!llvm::sys::fs::exists(Status)) 1676 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1677 Filename); 1678 // If it's a source file, collect it. 1679 if (llvm::sys::fs::is_regular_file(Status)) { 1680 WNI.push_back({std::string(Filename), Weight}); 1681 return; 1682 } 1683 1684 if (llvm::sys::fs::is_directory(Status)) { 1685 std::error_code EC; 1686 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1687 F != E && !EC; F.increment(EC)) { 1688 if (llvm::sys::fs::is_regular_file(F->path())) { 1689 addWeightedInput(WNI, {F->path(), Weight}); 1690 } 1691 } 1692 if (EC) 1693 exitWithErrorCode(EC, Filename); 1694 } 1695 } 1696 1697 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1698 WeightedFileVector &WFV) { 1699 if (!Buffer) 1700 return; 1701 1702 SmallVector<StringRef, 8> Entries; 1703 StringRef Data = Buffer->getBuffer(); 1704 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1705 for (const StringRef &FileWeightEntry : Entries) { 1706 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1707 // Skip comments. 1708 if (SanitizedEntry.starts_with("#")) 1709 continue; 1710 // If there's no comma, it's an unweighted profile. 1711 else if (!SanitizedEntry.contains(',')) 1712 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1713 else 1714 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1715 } 1716 } 1717 1718 static int merge_main(StringRef ProgName) { 1719 WeightedFileVector WeightedInputs; 1720 for (StringRef Filename : InputFilenames) 1721 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1722 for (StringRef WeightedFilename : WeightedInputFilenames) 1723 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1724 1725 // Make sure that the file buffer stays alive for the duration of the 1726 // weighted input vector's lifetime. 1727 auto Buffer = getInputFileBuf(InputFilenamesFile); 1728 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1729 1730 if (WeightedInputs.empty()) 1731 exitWithError("no input files specified. See " + ProgName + " merge -help"); 1732 1733 if (DumpInputFileList) { 1734 for (auto &WF : WeightedInputs) 1735 outs() << WF.Weight << "," << WF.Filename << "\n"; 1736 return 0; 1737 } 1738 1739 std::unique_ptr<SymbolRemapper> Remapper; 1740 if (!RemappingFile.empty()) 1741 Remapper = SymbolRemapper::create(RemappingFile); 1742 1743 if (!SupplInstrWithSample.empty()) { 1744 if (ProfileKind != instr) 1745 exitWithError( 1746 "-supplement-instr-with-sample can only work with -instr. "); 1747 1748 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1749 SupplMinSizeThreshold, ZeroCounterThreshold, 1750 InstrProfColdThreshold); 1751 return 0; 1752 } 1753 1754 if (ProfileKind == instr) 1755 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1756 ProfiledBinary); 1757 else 1758 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1759 OutputSizeLimit); 1760 return 0; 1761 } 1762 1763 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1764 static void overlapInstrProfile(const std::string &BaseFilename, 1765 const std::string &TestFilename, 1766 const OverlapFuncFilters &FuncFilter, 1767 raw_fd_ostream &OS, bool IsCS) { 1768 std::mutex ErrorLock; 1769 SmallSet<instrprof_error, 4> WriterErrorCodes; 1770 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1771 WeightedFile WeightedInput{BaseFilename, 1}; 1772 OverlapStats Overlap; 1773 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1774 if (E) 1775 exitWithError(std::move(E), "error in getting profile count sums"); 1776 if (Overlap.Base.CountSum < 1.0f) { 1777 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1778 exit(0); 1779 } 1780 if (Overlap.Test.CountSum < 1.0f) { 1781 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1782 exit(0); 1783 } 1784 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1785 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1786 IsCS); 1787 Overlap.dump(OS); 1788 } 1789 1790 namespace { 1791 struct SampleOverlapStats { 1792 SampleContext BaseName; 1793 SampleContext TestName; 1794 // Number of overlap units 1795 uint64_t OverlapCount = 0; 1796 // Total samples of overlap units 1797 uint64_t OverlapSample = 0; 1798 // Number of and total samples of units that only present in base or test 1799 // profile 1800 uint64_t BaseUniqueCount = 0; 1801 uint64_t BaseUniqueSample = 0; 1802 uint64_t TestUniqueCount = 0; 1803 uint64_t TestUniqueSample = 0; 1804 // Number of units and total samples in base or test profile 1805 uint64_t BaseCount = 0; 1806 uint64_t BaseSample = 0; 1807 uint64_t TestCount = 0; 1808 uint64_t TestSample = 0; 1809 // Number of and total samples of units that present in at least one profile 1810 uint64_t UnionCount = 0; 1811 uint64_t UnionSample = 0; 1812 // Weighted similarity 1813 double Similarity = 0.0; 1814 // For SampleOverlapStats instances representing functions, weights of the 1815 // function in base and test profiles 1816 double BaseWeight = 0.0; 1817 double TestWeight = 0.0; 1818 1819 SampleOverlapStats() = default; 1820 }; 1821 } // end anonymous namespace 1822 1823 namespace { 1824 struct FuncSampleStats { 1825 uint64_t SampleSum = 0; 1826 uint64_t MaxSample = 0; 1827 uint64_t HotBlockCount = 0; 1828 FuncSampleStats() = default; 1829 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1830 uint64_t HotBlockCount) 1831 : SampleSum(SampleSum), MaxSample(MaxSample), 1832 HotBlockCount(HotBlockCount) {} 1833 }; 1834 } // end anonymous namespace 1835 1836 namespace { 1837 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1838 1839 // Class for updating merging steps for two sorted maps. The class should be 1840 // instantiated with a map iterator type. 1841 template <class T> class MatchStep { 1842 public: 1843 MatchStep() = delete; 1844 1845 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1846 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1847 SecondEnd(SecondEnd), Status(MS_None) {} 1848 1849 bool areBothFinished() const { 1850 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1851 } 1852 1853 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1854 1855 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1856 1857 /// Advance one step based on the previous match status unless the previous 1858 /// status is MS_None. Then update Status based on the comparison between two 1859 /// container iterators at the current step. If the previous status is 1860 /// MS_None, it means two iterators are at the beginning and no comparison has 1861 /// been made, so we simply update Status without advancing the iterators. 1862 void updateOneStep(); 1863 1864 T getFirstIter() const { return FirstIter; } 1865 1866 T getSecondIter() const { return SecondIter; } 1867 1868 MatchStatus getMatchStatus() const { return Status; } 1869 1870 private: 1871 // Current iterator and end iterator of the first container. 1872 T FirstIter; 1873 T FirstEnd; 1874 // Current iterator and end iterator of the second container. 1875 T SecondIter; 1876 T SecondEnd; 1877 // Match status of the current step. 1878 MatchStatus Status; 1879 }; 1880 } // end anonymous namespace 1881 1882 template <class T> void MatchStep<T>::updateOneStep() { 1883 switch (Status) { 1884 case MS_Match: 1885 ++FirstIter; 1886 ++SecondIter; 1887 break; 1888 case MS_FirstUnique: 1889 ++FirstIter; 1890 break; 1891 case MS_SecondUnique: 1892 ++SecondIter; 1893 break; 1894 case MS_None: 1895 break; 1896 } 1897 1898 // Update Status according to iterators at the current step. 1899 if (areBothFinished()) 1900 return; 1901 if (FirstIter != FirstEnd && 1902 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1903 Status = MS_FirstUnique; 1904 else if (SecondIter != SecondEnd && 1905 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1906 Status = MS_SecondUnique; 1907 else 1908 Status = MS_Match; 1909 } 1910 1911 // Return the sum of line/block samples, the max line/block sample, and the 1912 // number of line/block samples above the given threshold in a function 1913 // including its inlinees. 1914 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1915 FuncSampleStats &FuncStats, 1916 uint64_t HotThreshold) { 1917 for (const auto &L : Func.getBodySamples()) { 1918 uint64_t Sample = L.second.getSamples(); 1919 FuncStats.SampleSum += Sample; 1920 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1921 if (Sample >= HotThreshold) 1922 ++FuncStats.HotBlockCount; 1923 } 1924 1925 for (const auto &C : Func.getCallsiteSamples()) { 1926 for (const auto &F : C.second) 1927 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1928 } 1929 } 1930 1931 /// Predicate that determines if a function is hot with a given threshold. We 1932 /// keep it separate from its callsites for possible extension in the future. 1933 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1934 uint64_t HotThreshold) { 1935 // We intentionally compare the maximum sample count in a function with the 1936 // HotThreshold to get an approximate determination on hot functions. 1937 return (FuncStats.MaxSample >= HotThreshold); 1938 } 1939 1940 namespace { 1941 class SampleOverlapAggregator { 1942 public: 1943 SampleOverlapAggregator(const std::string &BaseFilename, 1944 const std::string &TestFilename, 1945 double LowSimilarityThreshold, double Epsilon, 1946 const OverlapFuncFilters &FuncFilter) 1947 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1948 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1949 FuncFilter(FuncFilter) {} 1950 1951 /// Detect 0-sample input profile and report to output stream. This interface 1952 /// should be called after loadProfiles(). 1953 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1954 1955 /// Write out function-level similarity statistics for functions specified by 1956 /// options --function, --value-cutoff, and --similarity-cutoff. 1957 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1958 1959 /// Write out program-level similarity and overlap statistics. 1960 void dumpProgramSummary(raw_fd_ostream &OS) const; 1961 1962 /// Write out hot-function and hot-block statistics for base_profile, 1963 /// test_profile, and their overlap. For both cases, the overlap HO is 1964 /// calculated as follows: 1965 /// Given the number of functions (or blocks) that are hot in both profiles 1966 /// HCommon and the number of functions (or blocks) that are hot in at 1967 /// least one profile HUnion, HO = HCommon / HUnion. 1968 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1969 1970 /// This function tries matching functions in base and test profiles. For each 1971 /// pair of matched functions, it aggregates the function-level 1972 /// similarity into a profile-level similarity. It also dump function-level 1973 /// similarity information of functions specified by --function, 1974 /// --value-cutoff, and --similarity-cutoff options. The program-level 1975 /// similarity PS is computed as follows: 1976 /// Given function-level similarity FS(A) for all function A, the 1977 /// weight of function A in base profile WB(A), and the weight of function 1978 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1979 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1980 /// meaning no-overlap. 1981 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1982 1983 /// Initialize ProfOverlap with the sum of samples in base and test 1984 /// profiles. This function also computes and keeps the sum of samples and 1985 /// max sample counts of each function in BaseStats and TestStats for later 1986 /// use to avoid re-computations. 1987 void initializeSampleProfileOverlap(); 1988 1989 /// Load profiles specified by BaseFilename and TestFilename. 1990 std::error_code loadProfiles(); 1991 1992 using FuncSampleStatsMap = 1993 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1994 1995 private: 1996 SampleOverlapStats ProfOverlap; 1997 SampleOverlapStats HotFuncOverlap; 1998 SampleOverlapStats HotBlockOverlap; 1999 std::string BaseFilename; 2000 std::string TestFilename; 2001 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 2002 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 2003 // BaseStats and TestStats hold FuncSampleStats for each function, with 2004 // function name as the key. 2005 FuncSampleStatsMap BaseStats; 2006 FuncSampleStatsMap TestStats; 2007 // Low similarity threshold in floating point number 2008 double LowSimilarityThreshold; 2009 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 2010 // for tracking hot blocks. 2011 uint64_t BaseHotThreshold; 2012 uint64_t TestHotThreshold; 2013 // A small threshold used to round the results of floating point accumulations 2014 // to resolve imprecision. 2015 const double Epsilon; 2016 std::multimap<double, SampleOverlapStats, std::greater<double>> 2017 FuncSimilarityDump; 2018 // FuncFilter carries specifications in options --value-cutoff and 2019 // --function. 2020 OverlapFuncFilters FuncFilter; 2021 // Column offsets for printing the function-level details table. 2022 static const unsigned int TestWeightCol = 15; 2023 static const unsigned int SimilarityCol = 30; 2024 static const unsigned int OverlapCol = 43; 2025 static const unsigned int BaseUniqueCol = 53; 2026 static const unsigned int TestUniqueCol = 67; 2027 static const unsigned int BaseSampleCol = 81; 2028 static const unsigned int TestSampleCol = 96; 2029 static const unsigned int FuncNameCol = 111; 2030 2031 /// Return a similarity of two line/block sample counters in the same 2032 /// function in base and test profiles. The line/block-similarity BS(i) is 2033 /// computed as follows: 2034 /// For an offsets i, given the sample count at i in base profile BB(i), 2035 /// the sample count at i in test profile BT(i), the sum of sample counts 2036 /// in this function in base profile SB, and the sum of sample counts in 2037 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 2038 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 2039 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 2040 const SampleOverlapStats &FuncOverlap) const; 2041 2042 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 2043 uint64_t HotBlockCount); 2044 2045 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 2046 FuncSampleStatsMap &HotFunc, 2047 uint64_t HotThreshold) const; 2048 2049 void computeHotFuncOverlap(); 2050 2051 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2052 /// Difference for two sample units in a matched function according to the 2053 /// given match status. 2054 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 2055 uint64_t HotBlockCount, 2056 SampleOverlapStats &FuncOverlap, 2057 double &Difference, MatchStatus Status); 2058 2059 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2060 /// Difference for unmatched callees that only present in one profile in a 2061 /// matched caller function. 2062 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 2063 SampleOverlapStats &FuncOverlap, 2064 double &Difference, MatchStatus Status); 2065 2066 /// This function updates sample overlap statistics of an overlap function in 2067 /// base and test profile. It also calculates a function-internal similarity 2068 /// FIS as follows: 2069 /// For offsets i that have samples in at least one profile in this 2070 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 2071 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 2072 /// 0.0 meaning no overlap. 2073 double computeSampleFunctionInternalOverlap( 2074 const sampleprof::FunctionSamples &BaseFunc, 2075 const sampleprof::FunctionSamples &TestFunc, 2076 SampleOverlapStats &FuncOverlap); 2077 2078 /// Function-level similarity (FS) is a weighted value over function internal 2079 /// similarity (FIS). This function computes a function's FS from its FIS by 2080 /// applying the weight. 2081 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 2082 uint64_t TestFuncSample) const; 2083 2084 /// The function-level similarity FS(A) for a function A is computed as 2085 /// follows: 2086 /// Compute a function-internal similarity FIS(A) by 2087 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 2088 /// function A in base profile WB(A), and the weight of function A in test 2089 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 2090 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 2091 double 2092 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 2093 const sampleprof::FunctionSamples *TestFunc, 2094 SampleOverlapStats *FuncOverlap, 2095 uint64_t BaseFuncSample, 2096 uint64_t TestFuncSample); 2097 2098 /// Profile-level similarity (PS) is a weighted aggregate over function-level 2099 /// similarities (FS). This method weights the FS value by the function 2100 /// weights in the base and test profiles for the aggregation. 2101 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 2102 uint64_t TestFuncSample) const; 2103 }; 2104 } // end anonymous namespace 2105 2106 bool SampleOverlapAggregator::detectZeroSampleProfile( 2107 raw_fd_ostream &OS) const { 2108 bool HaveZeroSample = false; 2109 if (ProfOverlap.BaseSample == 0) { 2110 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 2111 HaveZeroSample = true; 2112 } 2113 if (ProfOverlap.TestSample == 0) { 2114 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 2115 HaveZeroSample = true; 2116 } 2117 return HaveZeroSample; 2118 } 2119 2120 double SampleOverlapAggregator::computeBlockSimilarity( 2121 uint64_t BaseSample, uint64_t TestSample, 2122 const SampleOverlapStats &FuncOverlap) const { 2123 double BaseFrac = 0.0; 2124 double TestFrac = 0.0; 2125 if (FuncOverlap.BaseSample > 0) 2126 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 2127 if (FuncOverlap.TestSample > 0) 2128 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 2129 return 1.0 - std::fabs(BaseFrac - TestFrac); 2130 } 2131 2132 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 2133 uint64_t TestSample, 2134 uint64_t HotBlockCount) { 2135 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 2136 bool IsTestHot = (TestSample >= TestHotThreshold); 2137 if (!IsBaseHot && !IsTestHot) 2138 return; 2139 2140 HotBlockOverlap.UnionCount += HotBlockCount; 2141 if (IsBaseHot) 2142 HotBlockOverlap.BaseCount += HotBlockCount; 2143 if (IsTestHot) 2144 HotBlockOverlap.TestCount += HotBlockCount; 2145 if (IsBaseHot && IsTestHot) 2146 HotBlockOverlap.OverlapCount += HotBlockCount; 2147 } 2148 2149 void SampleOverlapAggregator::getHotFunctions( 2150 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 2151 uint64_t HotThreshold) const { 2152 for (const auto &F : ProfStats) { 2153 if (isFunctionHot(F.second, HotThreshold)) 2154 HotFunc.emplace(F.first, F.second); 2155 } 2156 } 2157 2158 void SampleOverlapAggregator::computeHotFuncOverlap() { 2159 FuncSampleStatsMap BaseHotFunc; 2160 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 2161 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 2162 2163 FuncSampleStatsMap TestHotFunc; 2164 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 2165 HotFuncOverlap.TestCount = TestHotFunc.size(); 2166 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 2167 2168 for (const auto &F : BaseHotFunc) { 2169 if (TestHotFunc.count(F.first)) 2170 ++HotFuncOverlap.OverlapCount; 2171 else 2172 ++HotFuncOverlap.UnionCount; 2173 } 2174 } 2175 2176 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2177 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2178 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2179 assert(Status != MS_None && 2180 "Match status should be updated before updating overlap statistics"); 2181 if (Status == MS_FirstUnique) { 2182 TestSample = 0; 2183 FuncOverlap.BaseUniqueSample += BaseSample; 2184 } else if (Status == MS_SecondUnique) { 2185 BaseSample = 0; 2186 FuncOverlap.TestUniqueSample += TestSample; 2187 } else { 2188 ++FuncOverlap.OverlapCount; 2189 } 2190 2191 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2192 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2193 Difference += 2194 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2195 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2196 } 2197 2198 void SampleOverlapAggregator::updateForUnmatchedCallee( 2199 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2200 double &Difference, MatchStatus Status) { 2201 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2202 "Status must be either of the two unmatched cases"); 2203 FuncSampleStats FuncStats; 2204 if (Status == MS_FirstUnique) { 2205 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2206 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2207 FuncStats.HotBlockCount, FuncOverlap, 2208 Difference, Status); 2209 } else { 2210 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2211 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2212 FuncStats.HotBlockCount, FuncOverlap, 2213 Difference, Status); 2214 } 2215 } 2216 2217 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2218 const sampleprof::FunctionSamples &BaseFunc, 2219 const sampleprof::FunctionSamples &TestFunc, 2220 SampleOverlapStats &FuncOverlap) { 2221 2222 using namespace sampleprof; 2223 2224 double Difference = 0; 2225 2226 // Accumulate Difference for regular line/block samples in the function. 2227 // We match them through sort-merge join algorithm because 2228 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2229 // by their offsets. 2230 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2231 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2232 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2233 BlockIterStep.updateOneStep(); 2234 while (!BlockIterStep.areBothFinished()) { 2235 uint64_t BaseSample = 2236 BlockIterStep.isFirstFinished() 2237 ? 0 2238 : BlockIterStep.getFirstIter()->second.getSamples(); 2239 uint64_t TestSample = 2240 BlockIterStep.isSecondFinished() 2241 ? 0 2242 : BlockIterStep.getSecondIter()->second.getSamples(); 2243 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2244 Difference, BlockIterStep.getMatchStatus()); 2245 2246 BlockIterStep.updateOneStep(); 2247 } 2248 2249 // Accumulate Difference for callsite lines in the function. We match 2250 // them through sort-merge algorithm because 2251 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2252 // ordered by their offsets. 2253 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2254 BaseFunc.getCallsiteSamples().cbegin(), 2255 BaseFunc.getCallsiteSamples().cend(), 2256 TestFunc.getCallsiteSamples().cbegin(), 2257 TestFunc.getCallsiteSamples().cend()); 2258 CallsiteIterStep.updateOneStep(); 2259 while (!CallsiteIterStep.areBothFinished()) { 2260 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2261 assert(CallsiteStepStatus != MS_None && 2262 "Match status should be updated before entering loop body"); 2263 2264 if (CallsiteStepStatus != MS_Match) { 2265 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2266 ? CallsiteIterStep.getFirstIter() 2267 : CallsiteIterStep.getSecondIter(); 2268 for (const auto &F : Callsite->second) 2269 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2270 CallsiteStepStatus); 2271 } else { 2272 // There may be multiple inlinees at the same offset, so we need to try 2273 // matching all of them. This match is implemented through sort-merge 2274 // algorithm because callsite records at the same offset are ordered by 2275 // function names. 2276 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2277 CallsiteIterStep.getFirstIter()->second.cbegin(), 2278 CallsiteIterStep.getFirstIter()->second.cend(), 2279 CallsiteIterStep.getSecondIter()->second.cbegin(), 2280 CallsiteIterStep.getSecondIter()->second.cend()); 2281 CalleeIterStep.updateOneStep(); 2282 while (!CalleeIterStep.areBothFinished()) { 2283 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2284 if (CalleeStepStatus != MS_Match) { 2285 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2286 ? CalleeIterStep.getFirstIter() 2287 : CalleeIterStep.getSecondIter(); 2288 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2289 CalleeStepStatus); 2290 } else { 2291 // An inlined function can contain other inlinees inside, so compute 2292 // the Difference recursively. 2293 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2294 CalleeIterStep.getFirstIter()->second, 2295 CalleeIterStep.getSecondIter()->second, 2296 FuncOverlap); 2297 } 2298 CalleeIterStep.updateOneStep(); 2299 } 2300 } 2301 CallsiteIterStep.updateOneStep(); 2302 } 2303 2304 // Difference reflects the total differences of line/block samples in this 2305 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2306 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2307 return (2.0 - Difference) / 2; 2308 } 2309 2310 double SampleOverlapAggregator::weightForFuncSimilarity( 2311 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2312 uint64_t TestFuncSample) const { 2313 // Compute the weight as the distance between the function weights in two 2314 // profiles. 2315 double BaseFrac = 0.0; 2316 double TestFrac = 0.0; 2317 assert(ProfOverlap.BaseSample > 0 && 2318 "Total samples in base profile should be greater than 0"); 2319 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2320 assert(ProfOverlap.TestSample > 0 && 2321 "Total samples in test profile should be greater than 0"); 2322 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2323 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2324 2325 // Take WeightDistance into the similarity. 2326 return FuncInternalSimilarity * (1 - WeightDistance); 2327 } 2328 2329 double 2330 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2331 uint64_t BaseFuncSample, 2332 uint64_t TestFuncSample) const { 2333 2334 double BaseFrac = 0.0; 2335 double TestFrac = 0.0; 2336 assert(ProfOverlap.BaseSample > 0 && 2337 "Total samples in base profile should be greater than 0"); 2338 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2339 assert(ProfOverlap.TestSample > 0 && 2340 "Total samples in test profile should be greater than 0"); 2341 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2342 return FuncSimilarity * (BaseFrac + TestFrac); 2343 } 2344 2345 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2346 const sampleprof::FunctionSamples *BaseFunc, 2347 const sampleprof::FunctionSamples *TestFunc, 2348 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2349 uint64_t TestFuncSample) { 2350 // Default function internal similarity before weighted, meaning two functions 2351 // has no overlap. 2352 const double DefaultFuncInternalSimilarity = 0; 2353 double FuncSimilarity; 2354 double FuncInternalSimilarity; 2355 2356 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2357 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2358 // similarity. 2359 if (!BaseFunc || !TestFunc) { 2360 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2361 } else { 2362 assert(FuncOverlap != nullptr && 2363 "FuncOverlap should be provided in this case"); 2364 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2365 *BaseFunc, *TestFunc, *FuncOverlap); 2366 // Now, FuncInternalSimilarity may be a little less than 0 due to 2367 // imprecision of floating point accumulations. Make it zero if the 2368 // difference is below Epsilon. 2369 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2370 ? 0 2371 : FuncInternalSimilarity; 2372 } 2373 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2374 BaseFuncSample, TestFuncSample); 2375 return FuncSimilarity; 2376 } 2377 2378 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2379 using namespace sampleprof; 2380 2381 std::unordered_map<SampleContext, const FunctionSamples *, 2382 SampleContext::Hash> 2383 BaseFuncProf; 2384 const auto &BaseProfiles = BaseReader->getProfiles(); 2385 for (const auto &BaseFunc : BaseProfiles) { 2386 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2387 } 2388 ProfOverlap.UnionCount = BaseFuncProf.size(); 2389 2390 const auto &TestProfiles = TestReader->getProfiles(); 2391 for (const auto &TestFunc : TestProfiles) { 2392 SampleOverlapStats FuncOverlap; 2393 FuncOverlap.TestName = TestFunc.second.getContext(); 2394 assert(TestStats.count(FuncOverlap.TestName) && 2395 "TestStats should have records for all functions in test profile " 2396 "except inlinees"); 2397 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2398 2399 bool Matched = false; 2400 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2401 if (Match == BaseFuncProf.end()) { 2402 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2403 ++ProfOverlap.TestUniqueCount; 2404 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2405 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2406 2407 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2408 2409 double FuncSimilarity = computeSampleFunctionOverlap( 2410 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2411 ProfOverlap.Similarity += 2412 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2413 2414 ++ProfOverlap.UnionCount; 2415 ProfOverlap.UnionSample += FuncStats.SampleSum; 2416 } else { 2417 ++ProfOverlap.OverlapCount; 2418 2419 // Two functions match with each other. Compute function-level overlap and 2420 // aggregate them into profile-level overlap. 2421 FuncOverlap.BaseName = Match->second->getContext(); 2422 assert(BaseStats.count(FuncOverlap.BaseName) && 2423 "BaseStats should have records for all functions in base profile " 2424 "except inlinees"); 2425 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2426 2427 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2428 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2429 FuncOverlap.TestSample); 2430 ProfOverlap.Similarity += 2431 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2432 FuncOverlap.TestSample); 2433 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2434 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2435 2436 // Accumulate the percentage of base unique and test unique samples into 2437 // ProfOverlap. 2438 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2439 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2440 2441 // Remove matched base functions for later reporting functions not found 2442 // in test profile. 2443 BaseFuncProf.erase(Match); 2444 Matched = true; 2445 } 2446 2447 // Print function-level similarity information if specified by options. 2448 assert(TestStats.count(FuncOverlap.TestName) && 2449 "TestStats should have records for all functions in test profile " 2450 "except inlinees"); 2451 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2452 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2453 (Matched && !FuncFilter.NameFilter.empty() && 2454 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2455 std::string::npos)) { 2456 assert(ProfOverlap.BaseSample > 0 && 2457 "Total samples in base profile should be greater than 0"); 2458 FuncOverlap.BaseWeight = 2459 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2460 assert(ProfOverlap.TestSample > 0 && 2461 "Total samples in test profile should be greater than 0"); 2462 FuncOverlap.TestWeight = 2463 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2464 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2465 } 2466 } 2467 2468 // Traverse through functions in base profile but not in test profile. 2469 for (const auto &F : BaseFuncProf) { 2470 assert(BaseStats.count(F.second->getContext()) && 2471 "BaseStats should have records for all functions in base profile " 2472 "except inlinees"); 2473 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2474 ++ProfOverlap.BaseUniqueCount; 2475 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2476 2477 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2478 2479 double FuncSimilarity = computeSampleFunctionOverlap( 2480 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2481 ProfOverlap.Similarity += 2482 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2483 2484 ProfOverlap.UnionSample += FuncStats.SampleSum; 2485 } 2486 2487 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2488 // of floating point accumulations. Make it 1.0 if the difference is below 2489 // Epsilon. 2490 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2491 ? 1 2492 : ProfOverlap.Similarity; 2493 2494 computeHotFuncOverlap(); 2495 } 2496 2497 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2498 const auto &BaseProf = BaseReader->getProfiles(); 2499 for (const auto &I : BaseProf) { 2500 ++ProfOverlap.BaseCount; 2501 FuncSampleStats FuncStats; 2502 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2503 ProfOverlap.BaseSample += FuncStats.SampleSum; 2504 BaseStats.emplace(I.second.getContext(), FuncStats); 2505 } 2506 2507 const auto &TestProf = TestReader->getProfiles(); 2508 for (const auto &I : TestProf) { 2509 ++ProfOverlap.TestCount; 2510 FuncSampleStats FuncStats; 2511 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2512 ProfOverlap.TestSample += FuncStats.SampleSum; 2513 TestStats.emplace(I.second.getContext(), FuncStats); 2514 } 2515 2516 ProfOverlap.BaseName = StringRef(BaseFilename); 2517 ProfOverlap.TestName = StringRef(TestFilename); 2518 } 2519 2520 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2521 using namespace sampleprof; 2522 2523 if (FuncSimilarityDump.empty()) 2524 return; 2525 2526 formatted_raw_ostream FOS(OS); 2527 FOS << "Function-level details:\n"; 2528 FOS << "Base weight"; 2529 FOS.PadToColumn(TestWeightCol); 2530 FOS << "Test weight"; 2531 FOS.PadToColumn(SimilarityCol); 2532 FOS << "Similarity"; 2533 FOS.PadToColumn(OverlapCol); 2534 FOS << "Overlap"; 2535 FOS.PadToColumn(BaseUniqueCol); 2536 FOS << "Base unique"; 2537 FOS.PadToColumn(TestUniqueCol); 2538 FOS << "Test unique"; 2539 FOS.PadToColumn(BaseSampleCol); 2540 FOS << "Base samples"; 2541 FOS.PadToColumn(TestSampleCol); 2542 FOS << "Test samples"; 2543 FOS.PadToColumn(FuncNameCol); 2544 FOS << "Function name\n"; 2545 for (const auto &F : FuncSimilarityDump) { 2546 double OverlapPercent = 2547 F.second.UnionSample > 0 2548 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2549 : 0; 2550 double BaseUniquePercent = 2551 F.second.BaseSample > 0 2552 ? static_cast<double>(F.second.BaseUniqueSample) / 2553 F.second.BaseSample 2554 : 0; 2555 double TestUniquePercent = 2556 F.second.TestSample > 0 2557 ? static_cast<double>(F.second.TestUniqueSample) / 2558 F.second.TestSample 2559 : 0; 2560 2561 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2562 FOS.PadToColumn(TestWeightCol); 2563 FOS << format("%.2f%%", F.second.TestWeight * 100); 2564 FOS.PadToColumn(SimilarityCol); 2565 FOS << format("%.2f%%", F.second.Similarity * 100); 2566 FOS.PadToColumn(OverlapCol); 2567 FOS << format("%.2f%%", OverlapPercent * 100); 2568 FOS.PadToColumn(BaseUniqueCol); 2569 FOS << format("%.2f%%", BaseUniquePercent * 100); 2570 FOS.PadToColumn(TestUniqueCol); 2571 FOS << format("%.2f%%", TestUniquePercent * 100); 2572 FOS.PadToColumn(BaseSampleCol); 2573 FOS << F.second.BaseSample; 2574 FOS.PadToColumn(TestSampleCol); 2575 FOS << F.second.TestSample; 2576 FOS.PadToColumn(FuncNameCol); 2577 FOS << F.second.TestName.toString() << "\n"; 2578 } 2579 } 2580 2581 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2582 OS << "Profile overlap infomation for base_profile: " 2583 << ProfOverlap.BaseName.toString() 2584 << " and test_profile: " << ProfOverlap.TestName.toString() 2585 << "\nProgram level:\n"; 2586 2587 OS << " Whole program profile similarity: " 2588 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2589 2590 assert(ProfOverlap.UnionSample > 0 && 2591 "Total samples in two profile should be greater than 0"); 2592 double OverlapPercent = 2593 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2594 assert(ProfOverlap.BaseSample > 0 && 2595 "Total samples in base profile should be greater than 0"); 2596 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2597 ProfOverlap.BaseSample; 2598 assert(ProfOverlap.TestSample > 0 && 2599 "Total samples in test profile should be greater than 0"); 2600 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2601 ProfOverlap.TestSample; 2602 2603 OS << " Whole program sample overlap: " 2604 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2605 OS << " percentage of samples unique in base profile: " 2606 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2607 OS << " percentage of samples unique in test profile: " 2608 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2609 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2610 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2611 2612 assert(ProfOverlap.UnionCount > 0 && 2613 "There should be at least one function in two input profiles"); 2614 double FuncOverlapPercent = 2615 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2616 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2617 << "\n"; 2618 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2619 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2620 << "\n"; 2621 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2622 << "\n"; 2623 } 2624 2625 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2626 raw_fd_ostream &OS) const { 2627 assert(HotFuncOverlap.UnionCount > 0 && 2628 "There should be at least one hot function in two input profiles"); 2629 OS << " Hot-function overlap: " 2630 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2631 HotFuncOverlap.UnionCount * 100) 2632 << "\n"; 2633 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2634 OS << " hot functions unique in base profile: " 2635 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2636 OS << " hot functions unique in test profile: " 2637 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2638 2639 assert(HotBlockOverlap.UnionCount > 0 && 2640 "There should be at least one hot block in two input profiles"); 2641 OS << " Hot-block overlap: " 2642 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2643 HotBlockOverlap.UnionCount * 100) 2644 << "\n"; 2645 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2646 OS << " hot blocks unique in base profile: " 2647 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2648 OS << " hot blocks unique in test profile: " 2649 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2650 } 2651 2652 std::error_code SampleOverlapAggregator::loadProfiles() { 2653 using namespace sampleprof; 2654 2655 LLVMContext Context; 2656 auto FS = vfs::getRealFileSystem(); 2657 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2658 FSDiscriminatorPassOption); 2659 if (std::error_code EC = BaseReaderOrErr.getError()) 2660 exitWithErrorCode(EC, BaseFilename); 2661 2662 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2663 FSDiscriminatorPassOption); 2664 if (std::error_code EC = TestReaderOrErr.getError()) 2665 exitWithErrorCode(EC, TestFilename); 2666 2667 BaseReader = std::move(BaseReaderOrErr.get()); 2668 TestReader = std::move(TestReaderOrErr.get()); 2669 2670 if (std::error_code EC = BaseReader->read()) 2671 exitWithErrorCode(EC, BaseFilename); 2672 if (std::error_code EC = TestReader->read()) 2673 exitWithErrorCode(EC, TestFilename); 2674 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2675 exitWithError( 2676 "cannot compare probe-based profile with non-probe-based profile"); 2677 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2678 exitWithError("cannot compare CS profile with non-CS profile"); 2679 2680 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2681 // profile summary. 2682 ProfileSummary &BasePS = BaseReader->getSummary(); 2683 ProfileSummary &TestPS = TestReader->getSummary(); 2684 BaseHotThreshold = 2685 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2686 TestHotThreshold = 2687 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2688 2689 return std::error_code(); 2690 } 2691 2692 void overlapSampleProfile(const std::string &BaseFilename, 2693 const std::string &TestFilename, 2694 const OverlapFuncFilters &FuncFilter, 2695 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2696 using namespace sampleprof; 2697 2698 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2699 // report 2--3 places after decimal point in percentage numbers. 2700 SampleOverlapAggregator OverlapAggr( 2701 BaseFilename, TestFilename, 2702 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2703 if (std::error_code EC = OverlapAggr.loadProfiles()) 2704 exitWithErrorCode(EC); 2705 2706 OverlapAggr.initializeSampleProfileOverlap(); 2707 if (OverlapAggr.detectZeroSampleProfile(OS)) 2708 return; 2709 2710 OverlapAggr.computeSampleProfileOverlap(OS); 2711 2712 OverlapAggr.dumpProgramSummary(OS); 2713 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2714 OverlapAggr.dumpFuncSimilarity(OS); 2715 } 2716 2717 static int overlap_main() { 2718 std::error_code EC; 2719 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2720 if (EC) 2721 exitWithErrorCode(EC, OutputFilename); 2722 2723 if (ProfileKind == instr) 2724 overlapInstrProfile(BaseFilename, TestFilename, 2725 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2726 OS, IsCS); 2727 else 2728 overlapSampleProfile(BaseFilename, TestFilename, 2729 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2730 SimilarityCutoff, OS); 2731 2732 return 0; 2733 } 2734 2735 namespace { 2736 struct ValueSitesStats { 2737 ValueSitesStats() = default; 2738 uint64_t TotalNumValueSites = 0; 2739 uint64_t TotalNumValueSitesWithValueProfile = 0; 2740 uint64_t TotalNumValues = 0; 2741 std::vector<unsigned> ValueSitesHistogram; 2742 }; 2743 } // namespace 2744 2745 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2746 ValueSitesStats &Stats, raw_fd_ostream &OS, 2747 InstrProfSymtab *Symtab) { 2748 uint32_t NS = Func.getNumValueSites(VK); 2749 Stats.TotalNumValueSites += NS; 2750 for (size_t I = 0; I < NS; ++I) { 2751 auto VD = Func.getValueArrayForSite(VK, I); 2752 uint32_t NV = VD.size(); 2753 if (NV == 0) 2754 continue; 2755 Stats.TotalNumValues += NV; 2756 Stats.TotalNumValueSitesWithValueProfile++; 2757 if (NV > Stats.ValueSitesHistogram.size()) 2758 Stats.ValueSitesHistogram.resize(NV, 0); 2759 Stats.ValueSitesHistogram[NV - 1]++; 2760 2761 uint64_t SiteSum = 0; 2762 for (const auto &V : VD) 2763 SiteSum += V.Count; 2764 if (SiteSum == 0) 2765 SiteSum = 1; 2766 2767 for (const auto &V : VD) { 2768 OS << "\t[ " << format("%2u", I) << ", "; 2769 if (Symtab == nullptr) 2770 OS << format("%4" PRIu64, V.Value); 2771 else 2772 OS << Symtab->getFuncOrVarName(V.Value); 2773 OS << ", " << format("%10" PRId64, V.Count) << " ] (" 2774 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n"; 2775 } 2776 } 2777 } 2778 2779 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2780 ValueSitesStats &Stats) { 2781 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2782 OS << " Total number of sites with values: " 2783 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2784 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2785 2786 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2787 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2788 if (Stats.ValueSitesHistogram[I] > 0) 2789 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2790 } 2791 } 2792 2793 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2794 if (SFormat == ShowFormat::Json) 2795 exitWithError("JSON output is not supported for instr profiles"); 2796 if (SFormat == ShowFormat::Yaml) 2797 exitWithError("YAML output is not supported for instr profiles"); 2798 auto FS = vfs::getRealFileSystem(); 2799 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2800 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2801 if (ShowDetailedSummary && Cutoffs.empty()) { 2802 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2803 } 2804 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2805 if (Error E = ReaderOrErr.takeError()) 2806 exitWithError(std::move(E), Filename); 2807 2808 auto Reader = std::move(ReaderOrErr.get()); 2809 bool IsIRInstr = Reader->isIRLevelProfile(); 2810 size_t ShownFunctions = 0; 2811 size_t BelowCutoffFunctions = 0; 2812 int NumVPKind = IPVK_Last - IPVK_First + 1; 2813 std::vector<ValueSitesStats> VPStats(NumVPKind); 2814 2815 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2816 const std::pair<std::string, uint64_t> &v2) { 2817 return v1.second > v2.second; 2818 }; 2819 2820 std::priority_queue<std::pair<std::string, uint64_t>, 2821 std::vector<std::pair<std::string, uint64_t>>, 2822 decltype(MinCmp)> 2823 HottestFuncs(MinCmp); 2824 2825 if (!TextFormat && OnlyListBelow) { 2826 OS << "The list of functions with the maximum counter less than " 2827 << ShowValueCutoff << ":\n"; 2828 } 2829 2830 // Add marker so that IR-level instrumentation round-trips properly. 2831 if (TextFormat && IsIRInstr) 2832 OS << ":ir\n"; 2833 2834 for (const auto &Func : *Reader) { 2835 if (Reader->isIRLevelProfile()) { 2836 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2837 if (FuncIsCS != ShowCS) 2838 continue; 2839 } 2840 bool Show = ShowAllFunctions || 2841 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2842 2843 bool doTextFormatDump = (Show && TextFormat); 2844 2845 if (doTextFormatDump) { 2846 InstrProfSymtab &Symtab = Reader->getSymtab(); 2847 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2848 OS); 2849 continue; 2850 } 2851 2852 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2853 Builder.addRecord(Func); 2854 2855 if (ShowCovered) { 2856 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2857 OS << Func.Name << "\n"; 2858 continue; 2859 } 2860 2861 uint64_t FuncMax = 0; 2862 uint64_t FuncSum = 0; 2863 2864 auto PseudoKind = Func.getCountPseudoKind(); 2865 if (PseudoKind != InstrProfRecord::NotPseudo) { 2866 if (Show) { 2867 if (!ShownFunctions) 2868 OS << "Counters:\n"; 2869 ++ShownFunctions; 2870 OS << " " << Func.Name << ":\n" 2871 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2872 << " Counters: " << Func.Counts.size(); 2873 if (PseudoKind == InstrProfRecord::PseudoHot) 2874 OS << " <PseudoHot>\n"; 2875 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2876 OS << " <PseudoWarm>\n"; 2877 else 2878 llvm_unreachable("Unknown PseudoKind"); 2879 } 2880 continue; 2881 } 2882 2883 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2884 FuncMax = std::max(FuncMax, Func.Counts[I]); 2885 FuncSum += Func.Counts[I]; 2886 } 2887 2888 if (FuncMax < ShowValueCutoff) { 2889 ++BelowCutoffFunctions; 2890 if (OnlyListBelow) { 2891 OS << " " << Func.Name << ": (Max = " << FuncMax 2892 << " Sum = " << FuncSum << ")\n"; 2893 } 2894 continue; 2895 } else if (OnlyListBelow) 2896 continue; 2897 2898 if (TopNFunctions) { 2899 if (HottestFuncs.size() == TopNFunctions) { 2900 if (HottestFuncs.top().second < FuncMax) { 2901 HottestFuncs.pop(); 2902 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2903 } 2904 } else 2905 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2906 } 2907 2908 if (Show) { 2909 if (!ShownFunctions) 2910 OS << "Counters:\n"; 2911 2912 ++ShownFunctions; 2913 2914 OS << " " << Func.Name << ":\n" 2915 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2916 << " Counters: " << Func.Counts.size() << "\n"; 2917 if (!IsIRInstr) 2918 OS << " Function count: " << Func.Counts[0] << "\n"; 2919 2920 if (ShowIndirectCallTargets) 2921 OS << " Indirect Call Site Count: " 2922 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2923 2924 if (ShowVTables) 2925 OS << " Number of instrumented vtables: " 2926 << Func.getNumValueSites(IPVK_VTableTarget) << "\n"; 2927 2928 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2929 if (ShowMemOPSizes && NumMemOPCalls > 0) 2930 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2931 << "\n"; 2932 2933 if (ShowCounts) { 2934 OS << " Block counts: ["; 2935 size_t Start = (IsIRInstr ? 0 : 1); 2936 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2937 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2938 } 2939 OS << "]\n"; 2940 } 2941 2942 if (ShowIndirectCallTargets) { 2943 OS << " Indirect Target Results:\n"; 2944 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2945 VPStats[IPVK_IndirectCallTarget], OS, 2946 &(Reader->getSymtab())); 2947 } 2948 2949 if (ShowVTables) { 2950 OS << " VTable Results:\n"; 2951 traverseAllValueSites(Func, IPVK_VTableTarget, 2952 VPStats[IPVK_VTableTarget], OS, 2953 &(Reader->getSymtab())); 2954 } 2955 2956 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2957 OS << " Memory Intrinsic Size Results:\n"; 2958 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2959 nullptr); 2960 } 2961 } 2962 } 2963 if (Reader->hasError()) 2964 exitWithError(Reader->getError(), Filename); 2965 2966 if (TextFormat || ShowCovered) 2967 return 0; 2968 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2969 bool IsIR = Reader->isIRLevelProfile(); 2970 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2971 if (IsIR) 2972 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2973 OS << "\n"; 2974 if (ShowAllFunctions || !FuncNameFilter.empty()) 2975 OS << "Functions shown: " << ShownFunctions << "\n"; 2976 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2977 if (ShowValueCutoff > 0) { 2978 OS << "Number of functions with maximum count (< " << ShowValueCutoff 2979 << "): " << BelowCutoffFunctions << "\n"; 2980 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 2981 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2982 } 2983 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2984 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2985 2986 if (TopNFunctions) { 2987 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2988 while (!HottestFuncs.empty()) { 2989 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2990 HottestFuncs.pop(); 2991 } 2992 OS << "Top " << TopNFunctions 2993 << " functions with the largest internal block counts: \n"; 2994 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2995 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2996 } 2997 2998 if (ShownFunctions && ShowIndirectCallTargets) { 2999 OS << "Statistics for indirect call sites profile:\n"; 3000 showValueSitesStats(OS, IPVK_IndirectCallTarget, 3001 VPStats[IPVK_IndirectCallTarget]); 3002 } 3003 3004 if (ShownFunctions && ShowVTables) { 3005 OS << "Statistics for vtable profile:\n"; 3006 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]); 3007 } 3008 3009 if (ShownFunctions && ShowMemOPSizes) { 3010 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 3011 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 3012 } 3013 3014 if (ShowDetailedSummary) { 3015 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 3016 OS << "Total count: " << PS->getTotalCount() << "\n"; 3017 PS->printDetailedSummary(OS); 3018 } 3019 3020 if (ShowBinaryIds) 3021 if (Error E = Reader->printBinaryIds(OS)) 3022 exitWithError(std::move(E), Filename); 3023 3024 if (ShowProfileVersion) 3025 OS << "Profile version: " << Reader->getVersion() << "\n"; 3026 3027 if (ShowTemporalProfTraces) { 3028 auto &Traces = Reader->getTemporalProfTraces(); 3029 OS << "Temporal Profile Traces (samples=" << Traces.size() 3030 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 3031 for (unsigned i = 0; i < Traces.size(); i++) { 3032 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 3033 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 3034 for (auto &NameRef : Traces[i].FunctionNameRefs) 3035 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 3036 } 3037 } 3038 3039 return 0; 3040 } 3041 3042 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 3043 raw_fd_ostream &OS) { 3044 if (!Reader->dumpSectionInfo(OS)) { 3045 WithColor::warning() << "-show-sec-info-only is only supported for " 3046 << "sample profile in extbinary format and is " 3047 << "ignored for other formats.\n"; 3048 return; 3049 } 3050 } 3051 3052 namespace { 3053 struct HotFuncInfo { 3054 std::string FuncName; 3055 uint64_t TotalCount = 0; 3056 double TotalCountPercent = 0.0f; 3057 uint64_t MaxCount = 0; 3058 uint64_t EntryCount = 0; 3059 3060 HotFuncInfo() = default; 3061 3062 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 3063 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 3064 MaxCount(MS), EntryCount(ES) {} 3065 }; 3066 } // namespace 3067 3068 // Print out detailed information about hot functions in PrintValues vector. 3069 // Users specify titles and offset of every columns through ColumnTitle and 3070 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 3071 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 3072 // print out or let it be an empty string. 3073 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 3074 const std::vector<int> &ColumnOffset, 3075 const std::vector<HotFuncInfo> &PrintValues, 3076 uint64_t HotFuncCount, uint64_t TotalFuncCount, 3077 uint64_t HotProfCount, uint64_t TotalProfCount, 3078 const std::string &HotFuncMetric, 3079 uint32_t TopNFunctions, raw_fd_ostream &OS) { 3080 assert(ColumnOffset.size() == ColumnTitle.size() && 3081 "ColumnOffset and ColumnTitle should have the same size"); 3082 assert(ColumnTitle.size() >= 4 && 3083 "ColumnTitle should have at least 4 elements"); 3084 assert(TotalFuncCount > 0 && 3085 "There should be at least one function in the profile"); 3086 double TotalProfPercent = 0; 3087 if (TotalProfCount > 0) 3088 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 3089 3090 formatted_raw_ostream FOS(OS); 3091 FOS << HotFuncCount << " out of " << TotalFuncCount 3092 << " functions with profile (" 3093 << format("%.2f%%", 3094 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 3095 << ") are considered hot functions"; 3096 if (!HotFuncMetric.empty()) 3097 FOS << " (" << HotFuncMetric << ")"; 3098 FOS << ".\n"; 3099 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 3100 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 3101 3102 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 3103 FOS.PadToColumn(ColumnOffset[I]); 3104 FOS << ColumnTitle[I]; 3105 } 3106 FOS << "\n"; 3107 3108 uint32_t Count = 0; 3109 for (const auto &R : PrintValues) { 3110 if (TopNFunctions && (Count++ == TopNFunctions)) 3111 break; 3112 FOS.PadToColumn(ColumnOffset[0]); 3113 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 3114 FOS.PadToColumn(ColumnOffset[1]); 3115 FOS << R.MaxCount; 3116 FOS.PadToColumn(ColumnOffset[2]); 3117 FOS << R.EntryCount; 3118 FOS.PadToColumn(ColumnOffset[3]); 3119 FOS << R.FuncName << "\n"; 3120 } 3121 } 3122 3123 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 3124 ProfileSummary &PS, uint32_t TopN, 3125 raw_fd_ostream &OS) { 3126 using namespace sampleprof; 3127 3128 const uint32_t HotFuncCutoff = 990000; 3129 auto &SummaryVector = PS.getDetailedSummary(); 3130 uint64_t MinCountThreshold = 0; 3131 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 3132 if (SummaryEntry.Cutoff == HotFuncCutoff) { 3133 MinCountThreshold = SummaryEntry.MinCount; 3134 break; 3135 } 3136 } 3137 3138 // Traverse all functions in the profile and keep only hot functions. 3139 // The following loop also calculates the sum of total samples of all 3140 // functions. 3141 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 3142 std::greater<uint64_t>> 3143 HotFunc; 3144 uint64_t ProfileTotalSample = 0; 3145 uint64_t HotFuncSample = 0; 3146 uint64_t HotFuncCount = 0; 3147 3148 for (const auto &I : Profiles) { 3149 FuncSampleStats FuncStats; 3150 const FunctionSamples &FuncProf = I.second; 3151 ProfileTotalSample += FuncProf.getTotalSamples(); 3152 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 3153 3154 if (isFunctionHot(FuncStats, MinCountThreshold)) { 3155 HotFunc.emplace(FuncProf.getTotalSamples(), 3156 std::make_pair(&(I.second), FuncStats.MaxSample)); 3157 HotFuncSample += FuncProf.getTotalSamples(); 3158 ++HotFuncCount; 3159 } 3160 } 3161 3162 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 3163 "Entry sample", "Function name"}; 3164 std::vector<int> ColumnOffset{0, 24, 42, 58}; 3165 std::string Metric = 3166 std::string("max sample >= ") + std::to_string(MinCountThreshold); 3167 std::vector<HotFuncInfo> PrintValues; 3168 for (const auto &FuncPair : HotFunc) { 3169 const FunctionSamples &Func = *FuncPair.second.first; 3170 double TotalSamplePercent = 3171 (ProfileTotalSample > 0) 3172 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 3173 : 0; 3174 PrintValues.emplace_back( 3175 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 3176 TotalSamplePercent, FuncPair.second.second, 3177 Func.getHeadSamplesEstimate())); 3178 } 3179 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 3180 Profiles.size(), HotFuncSample, ProfileTotalSample, 3181 Metric, TopN, OS); 3182 3183 return 0; 3184 } 3185 3186 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3187 if (SFormat == ShowFormat::Yaml) 3188 exitWithError("YAML output is not supported for sample profiles"); 3189 using namespace sampleprof; 3190 LLVMContext Context; 3191 auto FS = vfs::getRealFileSystem(); 3192 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3193 FSDiscriminatorPassOption); 3194 if (std::error_code EC = ReaderOrErr.getError()) 3195 exitWithErrorCode(EC, Filename); 3196 3197 auto Reader = std::move(ReaderOrErr.get()); 3198 if (ShowSectionInfoOnly) { 3199 showSectionInfo(Reader.get(), OS); 3200 return 0; 3201 } 3202 3203 if (std::error_code EC = Reader->read()) 3204 exitWithErrorCode(EC, Filename); 3205 3206 if (ShowAllFunctions || FuncNameFilter.empty()) { 3207 if (SFormat == ShowFormat::Json) 3208 Reader->dumpJson(OS); 3209 else 3210 Reader->dump(OS); 3211 } else { 3212 if (SFormat == ShowFormat::Json) 3213 exitWithError( 3214 "the JSON format is supported only when all functions are to " 3215 "be printed"); 3216 3217 // TODO: parse context string to support filtering by contexts. 3218 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3219 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3220 } 3221 3222 if (ShowProfileSymbolList) { 3223 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3224 Reader->getProfileSymbolList(); 3225 ReaderList->dump(OS); 3226 } 3227 3228 if (ShowDetailedSummary) { 3229 auto &PS = Reader->getSummary(); 3230 PS.printSummary(OS); 3231 PS.printDetailedSummary(OS); 3232 } 3233 3234 if (ShowHotFuncList || TopNFunctions) 3235 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3236 TopNFunctions, OS); 3237 3238 return 0; 3239 } 3240 3241 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3242 if (SFormat == ShowFormat::Json) 3243 exitWithError("JSON output is not supported for MemProf"); 3244 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3245 Filename, ProfiledBinary, /*KeepNames=*/true); 3246 if (Error E = ReaderOr.takeError()) 3247 // Since the error can be related to the profile or the binary we do not 3248 // pass whence. Instead additional context is provided where necessary in 3249 // the error message. 3250 exitWithError(std::move(E), /*Whence*/ ""); 3251 3252 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3253 ReaderOr.get().release()); 3254 3255 Reader->printYAML(OS); 3256 return 0; 3257 } 3258 3259 static int showDebugInfoCorrelation(const std::string &Filename, 3260 ShowFormat SFormat, raw_fd_ostream &OS) { 3261 if (SFormat == ShowFormat::Json) 3262 exitWithError("JSON output is not supported for debug info correlation"); 3263 std::unique_ptr<InstrProfCorrelator> Correlator; 3264 if (auto Err = 3265 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3266 .moveInto(Correlator)) 3267 exitWithError(std::move(Err), Filename); 3268 if (SFormat == ShowFormat::Yaml) { 3269 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3270 exitWithError(std::move(Err), Filename); 3271 return 0; 3272 } 3273 3274 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3275 exitWithError(std::move(Err), Filename); 3276 3277 InstrProfSymtab Symtab; 3278 if (auto Err = Symtab.create( 3279 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3280 exitWithError(std::move(Err), Filename); 3281 3282 if (ShowProfileSymbolList) 3283 Symtab.dumpNames(OS); 3284 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3285 // counters the section holds. 3286 if (ShowDetailedSummary) 3287 OS << "Counters section size: 0x" 3288 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3289 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3290 3291 return 0; 3292 } 3293 3294 static int show_main(StringRef ProgName) { 3295 if (Filename.empty() && DebugInfoFilename.empty()) 3296 exitWithError( 3297 "the positional argument '<profdata-file>' is required unless '--" + 3298 DebugInfoFilename.ArgStr + "' is provided"); 3299 3300 if (Filename == OutputFilename) { 3301 errs() << ProgName 3302 << " show: Input file name cannot be the same as the output file " 3303 "name!\n"; 3304 return 1; 3305 } 3306 if (JsonFormat) 3307 SFormat = ShowFormat::Json; 3308 3309 std::error_code EC; 3310 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3311 if (EC) 3312 exitWithErrorCode(EC, OutputFilename); 3313 3314 if (ShowAllFunctions && !FuncNameFilter.empty()) 3315 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3316 3317 if (!DebugInfoFilename.empty()) 3318 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3319 3320 if (ShowProfileKind == instr) 3321 return showInstrProfile(SFormat, OS); 3322 if (ShowProfileKind == sample) 3323 return showSampleProfile(SFormat, OS); 3324 return showMemProfProfile(SFormat, OS); 3325 } 3326 3327 static int order_main() { 3328 std::error_code EC; 3329 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3330 if (EC) 3331 exitWithErrorCode(EC, OutputFilename); 3332 auto FS = vfs::getRealFileSystem(); 3333 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3334 if (Error E = ReaderOrErr.takeError()) 3335 exitWithError(std::move(E), Filename); 3336 3337 auto Reader = std::move(ReaderOrErr.get()); 3338 for (auto &I : *Reader) { 3339 // Read all entries 3340 (void)I; 3341 } 3342 ArrayRef Traces = Reader->getTemporalProfTraces(); 3343 if (NumTestTraces && NumTestTraces >= Traces.size()) 3344 exitWithError( 3345 "--" + NumTestTraces.ArgStr + 3346 " must be smaller than the total number of traces: expected: < " + 3347 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces)); 3348 ArrayRef TestTraces = Traces.take_back(NumTestTraces); 3349 Traces = Traces.drop_back(NumTestTraces); 3350 3351 std::vector<BPFunctionNode> Nodes; 3352 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes); 3353 BalancedPartitioningConfig Config; 3354 BalancedPartitioning BP(Config); 3355 BP.run(Nodes); 3356 3357 OS << "# Ordered " << Nodes.size() << " functions\n"; 3358 if (!TestTraces.empty()) { 3359 // Since we don't know the symbol sizes, we assume 32 functions per page. 3360 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber; 3361 for (auto &Node : Nodes) 3362 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32; 3363 3364 SmallSet<unsigned, 0> TouchedPages; 3365 unsigned Area = 0; 3366 for (auto &Trace : TestTraces) { 3367 for (auto Id : Trace.FunctionNameRefs) { 3368 auto It = IdToPageNumber.find(Id); 3369 if (It == IdToPageNumber.end()) 3370 continue; 3371 TouchedPages.insert(It->getSecond()); 3372 Area += TouchedPages.size(); 3373 } 3374 TouchedPages.clear(); 3375 } 3376 OS << "# Total area under the page fault curve: " << (float)Area << "\n"; 3377 } 3378 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3379 "linkage and this output does not take that into account. Some " 3380 "post-processing may be required before passing to the linker via " 3381 "-order_file.\n"; 3382 for (auto &N : Nodes) { 3383 auto [Filename, ParsedFuncName] = 3384 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3385 if (!Filename.empty()) 3386 OS << "# " << Filename << "\n"; 3387 OS << ParsedFuncName << "\n"; 3388 } 3389 return 0; 3390 } 3391 3392 int llvm_profdata_main(int argc, char **argvNonConst, 3393 const llvm::ToolContext &) { 3394 const char **argv = const_cast<const char **>(argvNonConst); 3395 3396 StringRef ProgName(sys::path::filename(argv[0])); 3397 3398 if (argc < 2) { 3399 errs() 3400 << ProgName 3401 << ": No subcommand specified! Run llvm-profdata --help for usage.\n"; 3402 return 1; 3403 } 3404 3405 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3406 3407 if (ShowSubcommand) 3408 return show_main(ProgName); 3409 3410 if (OrderSubcommand) 3411 return order_main(); 3412 3413 if (OverlapSubcommand) 3414 return overlap_main(); 3415 3416 if (MergeSubcommand) 3417 return merge_main(ProgName); 3418 3419 errs() << ProgName 3420 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3421 return 1; 3422 } 3423