1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Debuginfod/HTTPClient.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/ProfileData/InstrProfCorrelator.h" 20 #include "llvm/ProfileData/InstrProfReader.h" 21 #include "llvm/ProfileData/InstrProfWriter.h" 22 #include "llvm/ProfileData/MemProf.h" 23 #include "llvm/ProfileData/MemProfReader.h" 24 #include "llvm/ProfileData/MemProfYAML.h" 25 #include "llvm/ProfileData/ProfileCommon.h" 26 #include "llvm/ProfileData/SampleProfReader.h" 27 #include "llvm/ProfileData/SampleProfWriter.h" 28 #include "llvm/Support/BalancedPartitioning.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Discriminator.h" 31 #include "llvm/Support/Errc.h" 32 #include "llvm/Support/FileSystem.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/FormattedStream.h" 35 #include "llvm/Support/LLVMDriver.h" 36 #include "llvm/Support/MD5.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Support/Regex.h" 40 #include "llvm/Support/ThreadPool.h" 41 #include "llvm/Support/Threading.h" 42 #include "llvm/Support/VirtualFileSystem.h" 43 #include "llvm/Support/WithColor.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <algorithm> 46 #include <cmath> 47 #include <optional> 48 #include <queue> 49 50 using namespace llvm; 51 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 52 53 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 54 // on each subcommand. 55 cl::SubCommand ShowSubcommand( 56 "show", 57 "Takes a profile data file and displays the profiles. See detailed " 58 "documentation in " 59 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 60 cl::SubCommand OrderSubcommand( 61 "order", 62 "Reads temporal profiling traces from a profile and outputs a function " 63 "order that reduces the number of page faults for those traces. See " 64 "detailed documentation in " 65 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 66 cl::SubCommand OverlapSubcommand( 67 "overlap", 68 "Computes and displays the overlap between two profiles. See detailed " 69 "documentation in " 70 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 71 cl::SubCommand MergeSubcommand( 72 "merge", 73 "Takes several profiles and merge them together. See detailed " 74 "documentation in " 75 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 76 77 namespace { 78 enum ProfileKinds { instr, sample, memory }; 79 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 80 81 enum ProfileFormat { 82 PF_None = 0, 83 PF_Text, 84 PF_Compact_Binary, // Deprecated 85 PF_Ext_Binary, 86 PF_GCC, 87 PF_Binary 88 }; 89 90 enum class ShowFormat { Text, Json, Yaml }; 91 } // namespace 92 93 // Common options. 94 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 95 cl::init("-"), cl::desc("Output file"), 96 cl::sub(ShowSubcommand), 97 cl::sub(OrderSubcommand), 98 cl::sub(OverlapSubcommand), 99 cl::sub(MergeSubcommand)); 100 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 101 // will be used. llvm::cl::alias::done() method asserts this condition. 102 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 103 cl::aliasopt(OutputFilename)); 104 105 // Options common to at least two commands. 106 cl::opt<ProfileKinds> ProfileKind( 107 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 108 cl::sub(OverlapSubcommand), cl::init(instr), 109 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 110 clEnumVal(sample, "Sample profile"))); 111 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 112 cl::sub(ShowSubcommand), 113 cl::sub(OrderSubcommand)); 114 cl::opt<unsigned> MaxDbgCorrelationWarnings( 115 "max-debug-info-correlation-warnings", 116 cl::desc("The maximum number of warnings to emit when correlating " 117 "profile from debug info (0 = no limit)"), 118 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 119 cl::opt<std::string> ProfiledBinary( 120 "profiled-binary", cl::init(""), 121 cl::desc("Path to binary from which the profile was collected."), 122 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 123 cl::opt<std::string> DebugInfoFilename( 124 "debug-info", cl::init(""), 125 cl::desc( 126 "For show, read and extract profile metadata from debug info and show " 127 "the functions it found. For merge, use the provided debug info to " 128 "correlate the raw profile."), 129 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 130 cl::opt<std::string> 131 BinaryFilename("binary-file", cl::init(""), 132 cl::desc("For merge, use the provided unstripped bianry to " 133 "correlate the raw profile."), 134 cl::sub(MergeSubcommand)); 135 cl::list<std::string> DebugFileDirectory( 136 "debug-file-directory", 137 cl::desc("Directories to search for object files by build ID")); 138 cl::opt<bool> DebugInfod("debuginfod", cl::init(false), cl::Hidden, 139 cl::sub(MergeSubcommand), 140 cl::desc("Enable debuginfod")); 141 cl::opt<ProfCorrelatorKind> BIDFetcherProfileCorrelate( 142 "correlate", 143 cl::desc("Use debug-info or binary correlation to correlate profiles with " 144 "build id fetcher"), 145 cl::init(InstrProfCorrelator::NONE), 146 cl::values(clEnumValN(InstrProfCorrelator::NONE, "", 147 "No profile correlation"), 148 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info", 149 "Use debug info to correlate"), 150 clEnumValN(InstrProfCorrelator::BINARY, "binary", 151 "Use binary to correlate"))); 152 cl::opt<std::string> FuncNameFilter( 153 "function", 154 cl::desc("Only functions matching the filter are shown in the output. For " 155 "overlapping CSSPGO, this takes a function name with calling " 156 "context."), 157 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand), 158 cl::sub(MergeSubcommand)); 159 160 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 161 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 162 // options. 163 164 // Options specific to merge subcommand. 165 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 166 cl::desc("<filename...>")); 167 cl::list<std::string> WeightedInputFilenames("weighted-input", 168 cl::sub(MergeSubcommand), 169 cl::desc("<weight>,<filename>")); 170 cl::opt<ProfileFormat> OutputFormat( 171 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 172 cl::init(PF_Ext_Binary), 173 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 174 clEnumValN(PF_Ext_Binary, "extbinary", 175 "Extensible binary encoding " 176 "(default)"), 177 clEnumValN(PF_Text, "text", "Text encoding"), 178 clEnumValN(PF_GCC, "gcc", 179 "GCC encoding (only meaningful for -sample)"))); 180 cl::opt<std::string> 181 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 182 cl::desc("Path to file containing newline-separated " 183 "[<weight>,]<filename> entries")); 184 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 185 cl::aliasopt(InputFilenamesFile)); 186 cl::opt<bool> DumpInputFileList( 187 "dump-input-file-list", cl::init(false), cl::Hidden, 188 cl::sub(MergeSubcommand), 189 cl::desc("Dump the list of input files and their weights, then exit")); 190 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 191 cl::sub(MergeSubcommand), 192 cl::desc("Symbol remapping file")); 193 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 194 cl::aliasopt(RemappingFile)); 195 cl::opt<bool> 196 UseMD5("use-md5", cl::init(false), cl::Hidden, 197 cl::desc("Choose to use MD5 to represent string in name table (only " 198 "meaningful for -extbinary)"), 199 cl::sub(MergeSubcommand)); 200 cl::opt<bool> CompressAllSections( 201 "compress-all-sections", cl::init(false), cl::Hidden, 202 cl::sub(MergeSubcommand), 203 cl::desc("Compress all sections when writing the profile (only " 204 "meaningful for -extbinary)")); 205 cl::opt<bool> SampleMergeColdContext( 206 "sample-merge-cold-context", cl::init(false), cl::Hidden, 207 cl::sub(MergeSubcommand), 208 cl::desc( 209 "Merge context sample profiles whose count is below cold threshold")); 210 cl::opt<bool> SampleTrimColdContext( 211 "sample-trim-cold-context", cl::init(false), cl::Hidden, 212 cl::sub(MergeSubcommand), 213 cl::desc( 214 "Trim context sample profiles whose count is below cold threshold")); 215 cl::opt<uint32_t> SampleColdContextFrameDepth( 216 "sample-frame-depth-for-cold-context", cl::init(1), 217 cl::sub(MergeSubcommand), 218 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 219 "context-less base profile")); 220 cl::opt<size_t> OutputSizeLimit( 221 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 222 cl::desc("Trim cold functions until profile size is below specified " 223 "limit in bytes. This uses a heursitic and functions may be " 224 "excessively trimmed")); 225 cl::opt<bool> GenPartialProfile( 226 "gen-partial-profile", cl::init(false), cl::Hidden, 227 cl::sub(MergeSubcommand), 228 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 229 cl::opt<bool> SplitLayout( 230 "split-layout", cl::init(false), cl::Hidden, 231 cl::sub(MergeSubcommand), 232 cl::desc("Split the profile to two sections with one containing sample " 233 "profiles with inlined functions and the other without (only " 234 "meaningful for -extbinary)")); 235 cl::opt<std::string> SupplInstrWithSample( 236 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 237 cl::sub(MergeSubcommand), 238 cl::desc("Supplement an instr profile with sample profile, to correct " 239 "the profile unrepresentativeness issue. The sample " 240 "profile is the input of the flag. Output will be in instr " 241 "format (The flag only works with -instr)")); 242 cl::opt<float> ZeroCounterThreshold( 243 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 244 cl::sub(MergeSubcommand), 245 cl::desc("For the function which is cold in instr profile but hot in " 246 "sample profile, if the ratio of the number of zero counters " 247 "divided by the total number of counters is above the " 248 "threshold, the profile of the function will be regarded as " 249 "being harmful for performance and will be dropped.")); 250 cl::opt<unsigned> SupplMinSizeThreshold( 251 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 252 cl::sub(MergeSubcommand), 253 cl::desc("If the size of a function is smaller than the threshold, " 254 "assume it can be inlined by PGO early inliner and it won't " 255 "be adjusted based on sample profile.")); 256 cl::opt<unsigned> InstrProfColdThreshold( 257 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 258 cl::sub(MergeSubcommand), 259 cl::desc("User specified cold threshold for instr profile which will " 260 "override the cold threshold got from profile summary. ")); 261 // WARNING: This reservoir size value is propagated to any input indexed 262 // profiles for simplicity. Changing this value between invocations could 263 // result in sample bias. 264 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 265 "temporal-profile-trace-reservoir-size", cl::init(100), 266 cl::sub(MergeSubcommand), 267 cl::desc("The maximum number of stored temporal profile traces (default: " 268 "100)")); 269 cl::opt<uint64_t> TemporalProfMaxTraceLength( 270 "temporal-profile-max-trace-length", cl::init(10000), 271 cl::sub(MergeSubcommand), 272 cl::desc("The maximum length of a single temporal profile trace " 273 "(default: 10000)")); 274 cl::opt<std::string> FuncNameNegativeFilter( 275 "no-function", cl::init(""), 276 cl::sub(MergeSubcommand), 277 cl::desc("Exclude functions matching the filter from the output.")); 278 279 cl::opt<FailureMode> 280 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 281 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 282 cl::values(clEnumValN(warnOnly, "warn", 283 "Do not fail and just print warnings."), 284 clEnumValN(failIfAnyAreInvalid, "any", 285 "Fail if any profile is invalid."), 286 clEnumValN(failIfAllAreInvalid, "all", 287 "Fail only if all profiles are invalid."))); 288 289 cl::opt<bool> OutputSparse( 290 "sparse", cl::init(false), cl::sub(MergeSubcommand), 291 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 292 cl::opt<unsigned> NumThreads( 293 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 294 cl::desc("Number of merge threads to use (default: autodetect)")); 295 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 296 cl::aliasopt(NumThreads)); 297 298 cl::opt<std::string> ProfileSymbolListFile( 299 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 300 cl::desc("Path to file containing the list of function symbols " 301 "used to populate profile symbol list")); 302 303 cl::opt<SampleProfileLayout> ProfileLayout( 304 "convert-sample-profile-layout", 305 cl::desc("Convert the generated profile to a profile with a new layout"), 306 cl::sub(MergeSubcommand), cl::init(SPL_None), 307 cl::values( 308 clEnumValN(SPL_Nest, "nest", 309 "Nested profile, the input should be CS flat profile"), 310 clEnumValN(SPL_Flat, "flat", 311 "Profile with nested inlinee flatten out"))); 312 313 cl::opt<bool> DropProfileSymbolList( 314 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 315 cl::sub(MergeSubcommand), 316 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 317 "(only meaningful for -sample)")); 318 319 cl::opt<bool> KeepVTableSymbols( 320 "keep-vtable-symbols", cl::init(false), cl::Hidden, 321 cl::sub(MergeSubcommand), 322 cl::desc("If true, keep the vtable symbols in indexed profiles")); 323 324 // Temporary support for writing the previous version of the format, to enable 325 // some forward compatibility. 326 // TODO: Consider enabling this with future version changes as well, to ease 327 // deployment of newer versions of llvm-profdata. 328 cl::opt<bool> DoWritePrevVersion( 329 "write-prev-version", cl::init(false), cl::Hidden, 330 cl::desc("Write the previous version of indexed format, to enable " 331 "some forward compatibility.")); 332 333 cl::opt<memprof::IndexedVersion> MemProfVersionRequested( 334 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand), 335 cl::desc("Specify the version of the memprof format to use"), 336 cl::init(memprof::Version3), 337 cl::values(clEnumValN(memprof::Version2, "2", "version 2"), 338 clEnumValN(memprof::Version3, "3", "version 3"))); 339 340 cl::opt<bool> MemProfFullSchema( 341 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand), 342 cl::desc("Use the full schema for serialization"), cl::init(false)); 343 344 static cl::opt<bool> 345 MemprofGenerateRandomHotness("memprof-random-hotness", cl::init(false), 346 cl::Hidden, cl::sub(MergeSubcommand), 347 cl::desc("Generate random hotness values")); 348 static cl::opt<unsigned> MemprofGenerateRandomHotnessSeed( 349 "memprof-random-hotness-seed", cl::init(0), cl::Hidden, 350 cl::sub(MergeSubcommand), 351 cl::desc("Random hotness seed to use (0 to generate new seed)")); 352 353 // Options specific to overlap subcommand. 354 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 355 cl::desc("<base profile file>"), 356 cl::sub(OverlapSubcommand)); 357 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 358 cl::desc("<test profile file>"), 359 cl::sub(OverlapSubcommand)); 360 361 cl::opt<unsigned long long> SimilarityCutoff( 362 "similarity-cutoff", cl::init(0), 363 cl::desc("For sample profiles, list function names (with calling context " 364 "for csspgo) for overlapped functions " 365 "with similarities below the cutoff (percentage times 10000)."), 366 cl::sub(OverlapSubcommand)); 367 368 cl::opt<bool> IsCS( 369 "cs", cl::init(false), 370 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 371 cl::sub(OverlapSubcommand)); 372 373 cl::opt<unsigned long long> OverlapValueCutoff( 374 "value-cutoff", cl::init(-1), 375 cl::desc( 376 "Function level overlap information for every function (with calling " 377 "context for csspgo) in test " 378 "profile with max count value greater than the parameter value"), 379 cl::sub(OverlapSubcommand)); 380 381 // Options specific to show subcommand. 382 cl::opt<bool> ShowCounts("counts", cl::init(false), 383 cl::desc("Show counter values for shown functions"), 384 cl::sub(ShowSubcommand)); 385 cl::opt<ShowFormat> 386 SFormat("show-format", cl::init(ShowFormat::Text), 387 cl::desc("Emit output in the selected format if supported"), 388 cl::sub(ShowSubcommand), 389 cl::values(clEnumValN(ShowFormat::Text, "text", 390 "emit normal text output (default)"), 391 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 392 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 393 // TODO: Consider replacing this with `--show-format=text-encoding`. 394 cl::opt<bool> 395 TextFormat("text", cl::init(false), 396 cl::desc("Show instr profile data in text dump format"), 397 cl::sub(ShowSubcommand)); 398 cl::opt<bool> 399 JsonFormat("json", 400 cl::desc("Show sample profile data in the JSON format " 401 "(deprecated, please use --show-format=json)"), 402 cl::sub(ShowSubcommand)); 403 cl::opt<bool> ShowIndirectCallTargets( 404 "ic-targets", cl::init(false), 405 cl::desc("Show indirect call site target values for shown functions"), 406 cl::sub(ShowSubcommand)); 407 cl::opt<bool> ShowVTables("show-vtables", cl::init(false), 408 cl::desc("Show vtable names for shown functions"), 409 cl::sub(ShowSubcommand)); 410 cl::opt<bool> ShowMemOPSizes( 411 "memop-sizes", cl::init(false), 412 cl::desc("Show the profiled sizes of the memory intrinsic calls " 413 "for shown functions"), 414 cl::sub(ShowSubcommand)); 415 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 416 cl::desc("Show detailed profile summary"), 417 cl::sub(ShowSubcommand)); 418 cl::list<uint32_t> DetailedSummaryCutoffs( 419 cl::CommaSeparated, "detailed-summary-cutoffs", 420 cl::desc( 421 "Cutoff percentages (times 10000) for generating detailed summary"), 422 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 423 cl::opt<bool> 424 ShowHotFuncList("hot-func-list", cl::init(false), 425 cl::desc("Show profile summary of a list of hot functions"), 426 cl::sub(ShowSubcommand)); 427 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 428 cl::desc("Details for each and every function"), 429 cl::sub(ShowSubcommand)); 430 cl::opt<bool> ShowCS("showcs", cl::init(false), 431 cl::desc("Show context sensitive counts"), 432 cl::sub(ShowSubcommand)); 433 cl::opt<ProfileKinds> ShowProfileKind( 434 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 435 cl::init(instr), 436 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 437 clEnumVal(sample, "Sample profile"), 438 clEnumVal(memory, "MemProf memory access profile"))); 439 cl::opt<uint32_t> TopNFunctions( 440 "topn", cl::init(0), 441 cl::desc("Show the list of functions with the largest internal counts"), 442 cl::sub(ShowSubcommand)); 443 cl::opt<uint32_t> ShowValueCutoff( 444 "value-cutoff", cl::init(0), 445 cl::desc("Set the count value cutoff. Functions with the maximum count " 446 "less than this value will not be printed out. (Default is 0)"), 447 cl::sub(ShowSubcommand)); 448 cl::opt<bool> OnlyListBelow( 449 "list-below-cutoff", cl::init(false), 450 cl::desc("Only output names of functions whose max count values are " 451 "below the cutoff value"), 452 cl::sub(ShowSubcommand)); 453 cl::opt<bool> ShowProfileSymbolList( 454 "show-prof-sym-list", cl::init(false), 455 cl::desc("Show profile symbol list if it exists in the profile. "), 456 cl::sub(ShowSubcommand)); 457 cl::opt<bool> ShowSectionInfoOnly( 458 "show-sec-info-only", cl::init(false), 459 cl::desc("Show the information of each section in the sample profile. " 460 "The flag is only usable when the sample profile is in " 461 "extbinary format"), 462 cl::sub(ShowSubcommand)); 463 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 464 cl::desc("Show binary ids in the profile. "), 465 cl::sub(ShowSubcommand)); 466 cl::opt<bool> ShowTemporalProfTraces( 467 "temporal-profile-traces", 468 cl::desc("Show temporal profile traces in the profile."), 469 cl::sub(ShowSubcommand)); 470 471 cl::opt<bool> 472 ShowCovered("covered", cl::init(false), 473 cl::desc("Show only the functions that have been executed."), 474 cl::sub(ShowSubcommand)); 475 476 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 477 cl::desc("Show profile version. "), 478 cl::sub(ShowSubcommand)); 479 480 // Options specific to order subcommand. 481 cl::opt<unsigned> 482 NumTestTraces("num-test-traces", cl::init(0), 483 cl::desc("Keep aside the last <num-test-traces> traces in " 484 "the profile when computing the function order and " 485 "instead use them to evaluate that order"), 486 cl::sub(OrderSubcommand)); 487 488 // We use this string to indicate that there are 489 // multiple static functions map to the same name. 490 const std::string DuplicateNameStr = "----"; 491 492 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") { 493 WithColor::warning(); 494 if (!Whence.empty()) 495 errs() << Whence << ": "; 496 errs() << Message << "\n"; 497 if (!Hint.empty()) 498 WithColor::note() << Hint << "\n"; 499 } 500 501 static void warn(Error E, StringRef Whence = "") { 502 if (E.isA<InstrProfError>()) { 503 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 504 warn(IPE.message(), Whence); 505 }); 506 } 507 } 508 509 static void exitWithError(Twine Message, StringRef Whence = "", 510 StringRef Hint = "") { 511 WithColor::error(); 512 if (!Whence.empty()) 513 errs() << Whence << ": "; 514 errs() << Message << "\n"; 515 if (!Hint.empty()) 516 WithColor::note() << Hint << "\n"; 517 ::exit(1); 518 } 519 520 static void exitWithError(Error E, StringRef Whence = "") { 521 if (E.isA<InstrProfError>()) { 522 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 523 instrprof_error instrError = IPE.get(); 524 StringRef Hint = ""; 525 if (instrError == instrprof_error::unrecognized_format) { 526 // Hint in case user missed specifying the profile type. 527 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 528 } 529 exitWithError(IPE.message(), Whence, Hint); 530 }); 531 return; 532 } 533 534 exitWithError(toString(std::move(E)), Whence); 535 } 536 537 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 538 exitWithError(EC.message(), Whence); 539 } 540 541 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 542 StringRef Whence = "") { 543 if (FailMode == failIfAnyAreInvalid) 544 exitWithErrorCode(EC, Whence); 545 else 546 warn(EC.message(), Whence); 547 } 548 549 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 550 StringRef WhenceFunction = "", 551 bool ShowHint = true) { 552 if (!WhenceFile.empty()) 553 errs() << WhenceFile << ": "; 554 if (!WhenceFunction.empty()) 555 errs() << WhenceFunction << ": "; 556 557 auto IPE = instrprof_error::success; 558 E = handleErrors(std::move(E), 559 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 560 IPE = E->get(); 561 return Error(std::move(E)); 562 }); 563 errs() << toString(std::move(E)) << "\n"; 564 565 if (ShowHint) { 566 StringRef Hint = ""; 567 if (IPE != instrprof_error::success) { 568 switch (IPE) { 569 case instrprof_error::hash_mismatch: 570 case instrprof_error::count_mismatch: 571 case instrprof_error::value_site_count_mismatch: 572 Hint = "Make sure that all profile data to be merged is generated " 573 "from the same binary."; 574 break; 575 default: 576 break; 577 } 578 } 579 580 if (!Hint.empty()) 581 errs() << Hint << "\n"; 582 } 583 } 584 585 namespace { 586 /// A remapper from original symbol names to new symbol names based on a file 587 /// containing a list of mappings from old name to new name. 588 class SymbolRemapper { 589 std::unique_ptr<MemoryBuffer> File; 590 DenseMap<StringRef, StringRef> RemappingTable; 591 592 public: 593 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 594 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 595 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 596 if (!BufOrError) 597 exitWithErrorCode(BufOrError.getError(), InputFile); 598 599 auto Remapper = std::make_unique<SymbolRemapper>(); 600 Remapper->File = std::move(BufOrError.get()); 601 602 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 603 !LineIt.is_at_eof(); ++LineIt) { 604 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 605 if (Parts.first.empty() || Parts.second.empty() || 606 Parts.second.count(' ')) { 607 exitWithError("unexpected line in remapping file", 608 (InputFile + ":" + Twine(LineIt.line_number())).str(), 609 "expected 'old_symbol new_symbol'"); 610 } 611 Remapper->RemappingTable.insert(Parts); 612 } 613 return Remapper; 614 } 615 616 /// Attempt to map the given old symbol into a new symbol. 617 /// 618 /// \return The new symbol, or \p Name if no such symbol was found. 619 StringRef operator()(StringRef Name) { 620 StringRef New = RemappingTable.lookup(Name); 621 return New.empty() ? Name : New; 622 } 623 624 FunctionId operator()(FunctionId Name) { 625 // MD5 name cannot be remapped. 626 if (!Name.isStringRef()) 627 return Name; 628 StringRef New = RemappingTable.lookup(Name.stringRef()); 629 return New.empty() ? Name : FunctionId(New); 630 } 631 }; 632 } 633 634 struct WeightedFile { 635 std::string Filename; 636 uint64_t Weight; 637 }; 638 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 639 640 /// Keep track of merged data and reported errors. 641 struct WriterContext { 642 std::mutex Lock; 643 InstrProfWriter Writer; 644 std::vector<std::pair<Error, std::string>> Errors; 645 std::mutex &ErrLock; 646 SmallSet<instrprof_error, 4> &WriterErrorCodes; 647 648 WriterContext(bool IsSparse, std::mutex &ErrLock, 649 SmallSet<instrprof_error, 4> &WriterErrorCodes, 650 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 651 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion, 652 MemProfVersionRequested, MemProfFullSchema, 653 MemprofGenerateRandomHotness, MemprofGenerateRandomHotnessSeed), 654 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {} 655 }; 656 657 /// Computer the overlap b/w profile BaseFilename and TestFileName, 658 /// and store the program level result to Overlap. 659 static void overlapInput(const std::string &BaseFilename, 660 const std::string &TestFilename, WriterContext *WC, 661 OverlapStats &Overlap, 662 const OverlapFuncFilters &FuncFilter, 663 raw_fd_ostream &OS, bool IsCS) { 664 auto FS = vfs::getRealFileSystem(); 665 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 666 if (Error E = ReaderOrErr.takeError()) { 667 // Skip the empty profiles by returning sliently. 668 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 669 if (ErrorCode != instrprof_error::empty_raw_profile) 670 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 671 TestFilename); 672 return; 673 } 674 675 auto Reader = std::move(ReaderOrErr.get()); 676 for (auto &I : *Reader) { 677 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 678 FuncOverlap.setFuncInfo(I.Name, I.Hash); 679 680 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 681 FuncOverlap.dump(OS); 682 } 683 } 684 685 /// Load an input into a writer context. 686 static void 687 loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 688 const InstrProfCorrelator *Correlator, const StringRef ProfiledBinary, 689 WriterContext *WC, const object::BuildIDFetcher *BIDFetcher = nullptr, 690 const ProfCorrelatorKind *BIDFetcherCorrelatorKind = nullptr) { 691 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 692 693 // Copy the filename, because llvm::ThreadPool copied the input "const 694 // WeightedFile &" by value, making a reference to the filename within it 695 // invalid outside of this packaged task. 696 std::string Filename = Input.Filename; 697 698 using ::llvm::memprof::RawMemProfReader; 699 if (RawMemProfReader::hasFormat(Input.Filename)) { 700 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 701 if (!ReaderOrErr) { 702 exitWithError(ReaderOrErr.takeError(), Input.Filename); 703 } 704 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 705 // Check if the profile types can be merged, e.g. clang frontend profiles 706 // should not be merged with memprof profiles. 707 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 708 consumeError(std::move(E)); 709 WC->Errors.emplace_back( 710 make_error<StringError>( 711 "Cannot merge MemProf profile with Clang generated profile.", 712 std::error_code()), 713 Filename); 714 return; 715 } 716 717 auto MemProfError = [&](Error E) { 718 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 719 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 720 Filename); 721 }; 722 723 WC->Writer.addMemProfData(Reader->takeMemProfData(), MemProfError); 724 return; 725 } 726 727 using ::llvm::memprof::YAMLMemProfReader; 728 if (YAMLMemProfReader::hasFormat(Input.Filename)) { 729 auto ReaderOrErr = YAMLMemProfReader::create(Input.Filename); 730 if (!ReaderOrErr) 731 exitWithError(ReaderOrErr.takeError(), Input.Filename); 732 std::unique_ptr<YAMLMemProfReader> Reader = std::move(ReaderOrErr.get()); 733 // Check if the profile types can be merged, e.g. clang frontend profiles 734 // should not be merged with memprof profiles. 735 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 736 consumeError(std::move(E)); 737 WC->Errors.emplace_back( 738 make_error<StringError>( 739 "Cannot merge MemProf profile with incompatible profile.", 740 std::error_code()), 741 Filename); 742 return; 743 } 744 745 auto MemProfError = [&](Error E) { 746 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 747 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 748 Filename); 749 }; 750 751 auto MemProfData = Reader->takeMemProfData(); 752 753 // Check for the empty input in case the YAML file is invalid. 754 if (MemProfData.Records.empty()) { 755 WC->Errors.emplace_back( 756 make_error<StringError>("The profile is empty.", std::error_code()), 757 Filename); 758 } 759 760 WC->Writer.addMemProfData(std::move(MemProfData), MemProfError); 761 return; 762 } 763 764 auto FS = vfs::getRealFileSystem(); 765 // TODO: This only saves the first non-fatal error from InstrProfReader, and 766 // then added to WriterContext::Errors. However, this is not extensible, if 767 // we have more non-fatal errors from InstrProfReader in the future. How 768 // should this interact with different -failure-mode? 769 std::optional<std::pair<Error, std::string>> ReaderWarning; 770 auto Warn = [&](Error E) { 771 if (ReaderWarning) { 772 consumeError(std::move(E)); 773 return; 774 } 775 // Only show the first time an error occurs in this file. 776 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 777 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 778 }; 779 780 const ProfCorrelatorKind CorrelatorKind = BIDFetcherCorrelatorKind 781 ? *BIDFetcherCorrelatorKind 782 : ProfCorrelatorKind::NONE; 783 auto ReaderOrErr = InstrProfReader::create(Input.Filename, *FS, Correlator, 784 BIDFetcher, CorrelatorKind, Warn); 785 if (Error E = ReaderOrErr.takeError()) { 786 // Skip the empty profiles by returning silently. 787 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 788 if (ErrCode != instrprof_error::empty_raw_profile) 789 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 790 Filename); 791 return; 792 } 793 794 auto Reader = std::move(ReaderOrErr.get()); 795 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 796 consumeError(std::move(E)); 797 WC->Errors.emplace_back( 798 make_error<StringError>( 799 "Merge IR generated profile with Clang generated profile.", 800 std::error_code()), 801 Filename); 802 return; 803 } 804 805 for (auto &I : *Reader) { 806 if (Remapper) 807 I.Name = (*Remapper)(I.Name); 808 const StringRef FuncName = I.Name; 809 bool Reported = false; 810 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 811 if (Reported) { 812 consumeError(std::move(E)); 813 return; 814 } 815 Reported = true; 816 // Only show hint the first time an error occurs. 817 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 818 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 819 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 820 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 821 Input.Filename, FuncName, firstTime); 822 }); 823 } 824 825 if (KeepVTableSymbols) { 826 const InstrProfSymtab &symtab = Reader->getSymtab(); 827 const auto &VTableNames = symtab.getVTableNames(); 828 829 for (const auto &kv : VTableNames) 830 WC->Writer.addVTableName(kv.getKey()); 831 } 832 833 if (Reader->hasTemporalProfile()) { 834 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 835 if (!Traces.empty()) 836 WC->Writer.addTemporalProfileTraces( 837 Traces, Reader->getTemporalProfTraceStreamSize()); 838 } 839 if (Reader->hasError()) { 840 if (Error E = Reader->getError()) { 841 WC->Errors.emplace_back(std::move(E), Filename); 842 return; 843 } 844 } 845 846 std::vector<llvm::object::BuildID> BinaryIds; 847 if (Error E = Reader->readBinaryIds(BinaryIds)) { 848 WC->Errors.emplace_back(std::move(E), Filename); 849 return; 850 } 851 WC->Writer.addBinaryIds(BinaryIds); 852 853 if (ReaderWarning) { 854 WC->Errors.emplace_back(std::move(ReaderWarning->first), 855 ReaderWarning->second); 856 } 857 } 858 859 /// Merge the \p Src writer context into \p Dst. 860 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 861 for (auto &ErrorPair : Src->Errors) 862 Dst->Errors.push_back(std::move(ErrorPair)); 863 Src->Errors.clear(); 864 865 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 866 exitWithError(std::move(E)); 867 868 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 869 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 870 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 871 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 872 if (firstTime) 873 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 874 }); 875 } 876 877 static StringRef 878 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) { 879 return Val.first(); 880 } 881 882 static std::string 883 getFuncName(const SampleProfileMap::value_type &Val) { 884 return Val.second.getContext().toString(); 885 } 886 887 template <typename T> 888 static void filterFunctions(T &ProfileMap) { 889 bool hasFilter = !FuncNameFilter.empty(); 890 bool hasNegativeFilter = !FuncNameNegativeFilter.empty(); 891 if (!hasFilter && !hasNegativeFilter) 892 return; 893 894 // If filter starts with '?' it is MSVC mangled name, not a regex. 895 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+"); 896 if (hasFilter && FuncNameFilter[0] == '?' && 897 ProbablyMSVCMangledName.match(FuncNameFilter)) 898 FuncNameFilter = llvm::Regex::escape(FuncNameFilter); 899 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' && 900 ProbablyMSVCMangledName.match(FuncNameNegativeFilter)) 901 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter); 902 903 size_t Count = ProfileMap.size(); 904 llvm::Regex Pattern(FuncNameFilter); 905 llvm::Regex NegativePattern(FuncNameNegativeFilter); 906 std::string Error; 907 if (hasFilter && !Pattern.isValid(Error)) 908 exitWithError(Error); 909 if (hasNegativeFilter && !NegativePattern.isValid(Error)) 910 exitWithError(Error); 911 912 // Handle MD5 profile, so it is still able to match using the original name. 913 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter)); 914 std::string NegativeMD5Name = 915 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter)); 916 917 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { 918 auto Tmp = I++; 919 const auto &FuncName = getFuncName(*Tmp); 920 // Negative filter has higher precedence than positive filter. 921 if ((hasNegativeFilter && 922 (NegativePattern.match(FuncName) || 923 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) || 924 (hasFilter && !(Pattern.match(FuncName) || 925 (FunctionSamples::UseMD5 && MD5Name == FuncName)))) 926 ProfileMap.erase(Tmp); 927 } 928 929 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions " 930 << "in the original profile are filtered.\n"; 931 } 932 933 static void writeInstrProfile(StringRef OutputFilename, 934 ProfileFormat OutputFormat, 935 InstrProfWriter &Writer) { 936 std::error_code EC; 937 raw_fd_ostream Output(OutputFilename.data(), EC, 938 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 939 : sys::fs::OF_None); 940 if (EC) 941 exitWithErrorCode(EC, OutputFilename); 942 943 if (OutputFormat == PF_Text) { 944 if (Error E = Writer.writeText(Output)) 945 warn(std::move(E)); 946 } else { 947 if (Output.is_displayed()) 948 exitWithError("cannot write a non-text format profile to the terminal"); 949 if (Error E = Writer.write(Output)) 950 warn(std::move(E)); 951 } 952 } 953 954 static void mergeInstrProfile(const WeightedFileVector &Inputs, 955 SymbolRemapper *Remapper, 956 int MaxDbgCorrelationWarnings, 957 const StringRef ProfiledBinary) { 958 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 959 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 960 if (OutputFormat == PF_Compact_Binary) 961 exitWithError("Compact Binary is deprecated"); 962 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 963 OutputFormat != PF_Text) 964 exitWithError("unknown format is specified"); 965 966 // TODO: Maybe we should support correlation with mixture of different 967 // correlation modes(w/wo debug-info/object correlation). 968 if (DebugInfoFilename.empty()) { 969 if (!BinaryFilename.empty() && (DebugInfod || !DebugFileDirectory.empty())) 970 exitWithError("Expected only one of -binary-file, -debuginfod or " 971 "-debug-file-directory"); 972 } else if (!BinaryFilename.empty() || DebugInfod || 973 !DebugFileDirectory.empty()) { 974 exitWithError("Expected only one of -debug-info, -binary-file, -debuginfod " 975 "or -debug-file-directory"); 976 } 977 std::string CorrelateFilename; 978 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 979 if (!DebugInfoFilename.empty()) { 980 CorrelateFilename = DebugInfoFilename; 981 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 982 } else if (!BinaryFilename.empty()) { 983 CorrelateFilename = BinaryFilename; 984 CorrelateKind = ProfCorrelatorKind::BINARY; 985 } 986 987 std::unique_ptr<InstrProfCorrelator> Correlator; 988 if (CorrelateKind != InstrProfCorrelator::NONE) { 989 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 990 .moveInto(Correlator)) 991 exitWithError(std::move(Err), CorrelateFilename); 992 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 993 exitWithError(std::move(Err), CorrelateFilename); 994 } 995 996 ProfCorrelatorKind BIDFetcherCorrelateKind = ProfCorrelatorKind::NONE; 997 std::unique_ptr<object::BuildIDFetcher> BIDFetcher; 998 if (DebugInfod) { 999 llvm::HTTPClient::initialize(); 1000 BIDFetcher = std::make_unique<DebuginfodFetcher>(DebugFileDirectory); 1001 if (!BIDFetcherProfileCorrelate) 1002 exitWithError("Expected --correlate when --debuginfod is provided"); 1003 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 1004 } else if (!DebugFileDirectory.empty()) { 1005 BIDFetcher = std::make_unique<object::BuildIDFetcher>(DebugFileDirectory); 1006 if (!BIDFetcherProfileCorrelate) 1007 exitWithError("Expected --correlate when --debug-file-directory " 1008 "is provided"); 1009 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 1010 } else if (BIDFetcherProfileCorrelate) { 1011 exitWithError("Expected --debuginfod or --debug-file-directory when " 1012 "--correlate is provided"); 1013 } 1014 1015 std::mutex ErrorLock; 1016 SmallSet<instrprof_error, 4> WriterErrorCodes; 1017 1018 // If NumThreads is not specified, auto-detect a good default. 1019 if (NumThreads == 0) 1020 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 1021 unsigned((Inputs.size() + 1) / 2)); 1022 1023 // Initialize the writer contexts. 1024 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 1025 for (unsigned I = 0; I < NumThreads; ++I) 1026 Contexts.emplace_back(std::make_unique<WriterContext>( 1027 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 1028 MaxTraceLength)); 1029 1030 if (NumThreads == 1) { 1031 for (const auto &Input : Inputs) 1032 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 1033 Contexts[0].get(), BIDFetcher.get(), &BIDFetcherCorrelateKind); 1034 } else { 1035 DefaultThreadPool Pool(hardware_concurrency(NumThreads)); 1036 1037 // Load the inputs in parallel (N/NumThreads serial steps). 1038 unsigned Ctx = 0; 1039 for (const auto &Input : Inputs) { 1040 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 1041 Contexts[Ctx].get(), BIDFetcher.get(), 1042 &BIDFetcherCorrelateKind); 1043 Ctx = (Ctx + 1) % NumThreads; 1044 } 1045 Pool.wait(); 1046 1047 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 1048 unsigned Mid = Contexts.size() / 2; 1049 unsigned End = Contexts.size(); 1050 assert(Mid > 0 && "Expected more than one context"); 1051 do { 1052 for (unsigned I = 0; I < Mid; ++I) 1053 Pool.async(mergeWriterContexts, Contexts[I].get(), 1054 Contexts[I + Mid].get()); 1055 Pool.wait(); 1056 if (End & 1) { 1057 Pool.async(mergeWriterContexts, Contexts[0].get(), 1058 Contexts[End - 1].get()); 1059 Pool.wait(); 1060 } 1061 End = Mid; 1062 Mid /= 2; 1063 } while (Mid > 0); 1064 } 1065 1066 // Handle deferred errors encountered during merging. If the number of errors 1067 // is equal to the number of inputs the merge failed. 1068 unsigned NumErrors = 0; 1069 for (std::unique_ptr<WriterContext> &WC : Contexts) { 1070 for (auto &ErrorPair : WC->Errors) { 1071 ++NumErrors; 1072 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 1073 } 1074 } 1075 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 1076 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 1077 exitWithError("no profile can be merged"); 1078 1079 filterFunctions(Contexts[0]->Writer.getProfileData()); 1080 1081 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 1082 } 1083 1084 /// The profile entry for a function in instrumentation profile. 1085 struct InstrProfileEntry { 1086 uint64_t MaxCount = 0; 1087 uint64_t NumEdgeCounters = 0; 1088 float ZeroCounterRatio = 0.0; 1089 InstrProfRecord *ProfRecord; 1090 InstrProfileEntry(InstrProfRecord *Record); 1091 InstrProfileEntry() = default; 1092 }; 1093 1094 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 1095 ProfRecord = Record; 1096 uint64_t CntNum = Record->Counts.size(); 1097 uint64_t ZeroCntNum = 0; 1098 for (size_t I = 0; I < CntNum; ++I) { 1099 MaxCount = std::max(MaxCount, Record->Counts[I]); 1100 ZeroCntNum += !Record->Counts[I]; 1101 } 1102 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 1103 NumEdgeCounters = CntNum; 1104 } 1105 1106 /// Either set all the counters in the instr profile entry \p IFE to 1107 /// -1 / -2 /in order to drop the profile or scale up the 1108 /// counters in \p IFP to be above hot / cold threshold. We use 1109 /// the ratio of zero counters in the profile of a function to 1110 /// decide the profile is helpful or harmful for performance, 1111 /// and to choose whether to scale up or drop it. 1112 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 1113 uint64_t HotInstrThreshold, 1114 uint64_t ColdInstrThreshold, 1115 float ZeroCounterThreshold) { 1116 InstrProfRecord *ProfRecord = IFE.ProfRecord; 1117 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 1118 // If all or most of the counters of the function are zero, the 1119 // profile is unaccountable and should be dropped. Reset all the 1120 // counters to be -1 / -2 and PGO profile-use will drop the profile. 1121 // All counters being -1 also implies that the function is hot so 1122 // PGO profile-use will also set the entry count metadata to be 1123 // above hot threshold. 1124 // All counters being -2 implies that the function is warm so 1125 // PGO profile-use will also set the entry count metadata to be 1126 // above cold threshold. 1127 auto Kind = 1128 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 1129 ProfRecord->setPseudoCount(Kind); 1130 return; 1131 } 1132 1133 // Scale up the MaxCount to be multiple times above hot / cold threshold. 1134 const unsigned MultiplyFactor = 3; 1135 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 1136 uint64_t Numerator = Threshold * MultiplyFactor; 1137 1138 // Make sure Threshold for warm counters is below the HotInstrThreshold. 1139 if (!SetToHot && Threshold >= HotInstrThreshold) { 1140 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 1141 } 1142 1143 uint64_t Denominator = IFE.MaxCount; 1144 if (Numerator <= Denominator) 1145 return; 1146 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 1147 warn(toString(make_error<InstrProfError>(E))); 1148 }); 1149 } 1150 1151 const uint64_t ColdPercentileIdx = 15; 1152 const uint64_t HotPercentileIdx = 11; 1153 1154 using sampleprof::FSDiscriminatorPass; 1155 1156 // Internal options to set FSDiscriminatorPass. Used in merge and show 1157 // commands. 1158 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 1159 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 1160 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 1161 "pass beyond this value. The enum values are defined in " 1162 "Support/Discriminator.h"), 1163 cl::values(clEnumVal(Base, "Use base discriminators only"), 1164 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 1165 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 1166 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 1167 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 1168 1169 static unsigned getDiscriminatorMask() { 1170 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 1171 } 1172 1173 /// Adjust the instr profile in \p WC based on the sample profile in 1174 /// \p Reader. 1175 static void 1176 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 1177 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 1178 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 1179 unsigned InstrProfColdThreshold) { 1180 // Function to its entry in instr profile. 1181 StringMap<InstrProfileEntry> InstrProfileMap; 1182 StringMap<StringRef> StaticFuncMap; 1183 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 1184 1185 auto checkSampleProfileHasFUnique = [&Reader]() { 1186 for (const auto &PD : Reader->getProfiles()) { 1187 auto &FContext = PD.second.getContext(); 1188 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 1189 std::string::npos) { 1190 return true; 1191 } 1192 } 1193 return false; 1194 }; 1195 1196 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 1197 1198 auto buildStaticFuncMap = [&StaticFuncMap, 1199 SampleProfileHasFUnique](const StringRef Name) { 1200 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1201 size_t PrefixPos = StringRef::npos; 1202 for (auto &FilePrefix : FilePrefixes) { 1203 std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter; 1204 PrefixPos = Name.find_insensitive(NamePrefix); 1205 if (PrefixPos == StringRef::npos) 1206 continue; 1207 PrefixPos += NamePrefix.size(); 1208 break; 1209 } 1210 1211 if (PrefixPos == StringRef::npos) { 1212 return; 1213 } 1214 1215 StringRef NewName = Name.drop_front(PrefixPos); 1216 StringRef FName = Name.substr(0, PrefixPos - 1); 1217 if (NewName.size() == 0) { 1218 return; 1219 } 1220 1221 // This name should have a static linkage. 1222 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1223 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1224 1225 // If sample profile and instrumented profile do not agree on symbol 1226 // uniqification. 1227 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1228 // If instrumented profile uses -funique-internal-linkage-symbols, 1229 // we need to trim the name. 1230 if (ProfileHasFUnique) { 1231 NewName = NewName.substr(0, PostfixPos); 1232 } else { 1233 // If sample profile uses -funique-internal-linkage-symbols, 1234 // we build the map. 1235 std::string NStr = 1236 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1237 NewName = StringRef(NStr); 1238 StaticFuncMap[NewName] = Name; 1239 return; 1240 } 1241 } 1242 1243 auto [It, Inserted] = StaticFuncMap.try_emplace(NewName, Name); 1244 if (!Inserted) 1245 It->second = DuplicateNameStr; 1246 }; 1247 1248 // We need to flatten the SampleFDO profile as the InstrFDO 1249 // profile does not have inlined callsite profiles. 1250 // One caveat is the pre-inlined function -- their samples 1251 // should be collapsed into the caller function. 1252 // Here we do a DFS traversal to get the flatten profile 1253 // info: the sum of entrycount and the max of maxcount. 1254 // Here is the algorithm: 1255 // recursive (FS, root_name) { 1256 // name = FS->getName(); 1257 // get samples for FS; 1258 // if (InstrProf.find(name) { 1259 // root_name = name; 1260 // } else { 1261 // if (name is in static_func map) { 1262 // root_name = static_name; 1263 // } 1264 // } 1265 // update the Map entry for root_name; 1266 // for (subfs: FS) { 1267 // recursive(subfs, root_name); 1268 // } 1269 // } 1270 // 1271 // Here is an example. 1272 // 1273 // SampleProfile: 1274 // foo:12345:1000 1275 // 1: 1000 1276 // 2.1: 1000 1277 // 15: 5000 1278 // 4: bar:1000 1279 // 1: 1000 1280 // 2: goo:3000 1281 // 1: 3000 1282 // 8: bar:40000 1283 // 1: 10000 1284 // 2: goo:30000 1285 // 1: 30000 1286 // 1287 // InstrProfile has two entries: 1288 // foo 1289 // bar.cc;bar 1290 // 1291 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1292 // {"foo", {1000, 5000}} 1293 // {"bar.cc;bar", {11000, 30000}} 1294 // 1295 // foo's has an entry count of 1000, and max body count of 5000. 1296 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1297 // 10000), and max count of 30000 (from the callsite in line 8). 1298 // 1299 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1300 // entry in InstrProfile. 1301 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1302 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1303 &InstrProfileMap](const FunctionSamples &FS, 1304 const StringRef &RootName) { 1305 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1306 const StringRef &RootName, 1307 auto &BuildImpl) -> void { 1308 std::string NameStr = FS.getFunction().str(); 1309 const StringRef Name = NameStr; 1310 const StringRef *NewRootName = &RootName; 1311 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1312 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1313 1314 auto It = InstrProfileMap.find(Name); 1315 if (It != InstrProfileMap.end()) { 1316 NewRootName = &Name; 1317 } else { 1318 auto NewName = StaticFuncMap.find(Name); 1319 if (NewName != StaticFuncMap.end()) { 1320 It = InstrProfileMap.find(NewName->second); 1321 if (NewName->second != DuplicateNameStr) { 1322 NewRootName = &NewName->second; 1323 } 1324 } else { 1325 // Here the EntrySample is of an inlined function, so we should not 1326 // update the EntrySample in the map. 1327 EntrySample = 0; 1328 } 1329 } 1330 EntrySample += FlattenSampleMap[*NewRootName].first; 1331 MaxBodySample = 1332 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1333 FlattenSampleMap[*NewRootName] = 1334 std::make_pair(EntrySample, MaxBodySample); 1335 1336 for (const auto &C : FS.getCallsiteSamples()) 1337 for (const auto &F : C.second) 1338 BuildImpl(F.second, *NewRootName, BuildImpl); 1339 }; 1340 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1341 }; 1342 1343 for (auto &PD : WC->Writer.getProfileData()) { 1344 // Populate IPBuilder. 1345 for (const auto &PDV : PD.getValue()) { 1346 InstrProfRecord Record = PDV.second; 1347 IPBuilder.addRecord(Record); 1348 } 1349 1350 // If a function has multiple entries in instr profile, skip it. 1351 if (PD.getValue().size() != 1) 1352 continue; 1353 1354 // Initialize InstrProfileMap. 1355 InstrProfRecord *R = &PD.getValue().begin()->second; 1356 StringRef FullName = PD.getKey(); 1357 InstrProfileMap[FullName] = InstrProfileEntry(R); 1358 buildStaticFuncMap(FullName); 1359 } 1360 1361 for (auto &PD : Reader->getProfiles()) { 1362 sampleprof::FunctionSamples &FS = PD.second; 1363 std::string Name = FS.getFunction().str(); 1364 BuildMaxSampleMap(FS, Name); 1365 } 1366 1367 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1368 ProfileSummary SamplePS = Reader->getSummary(); 1369 1370 // Compute cold thresholds for instr profile and sample profile. 1371 uint64_t HotSampleThreshold = 1372 ProfileSummaryBuilder::getEntryForPercentile( 1373 SamplePS.getDetailedSummary(), 1374 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1375 .MinCount; 1376 uint64_t ColdSampleThreshold = 1377 ProfileSummaryBuilder::getEntryForPercentile( 1378 SamplePS.getDetailedSummary(), 1379 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1380 .MinCount; 1381 uint64_t HotInstrThreshold = 1382 ProfileSummaryBuilder::getEntryForPercentile( 1383 InstrPS.getDetailedSummary(), 1384 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1385 .MinCount; 1386 uint64_t ColdInstrThreshold = 1387 InstrProfColdThreshold 1388 ? InstrProfColdThreshold 1389 : ProfileSummaryBuilder::getEntryForPercentile( 1390 InstrPS.getDetailedSummary(), 1391 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1392 .MinCount; 1393 1394 // Find hot/warm functions in sample profile which is cold in instr profile 1395 // and adjust the profiles of those functions in the instr profile. 1396 for (const auto &E : FlattenSampleMap) { 1397 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1398 if (SampleMaxCount < ColdSampleThreshold) 1399 continue; 1400 StringRef Name = E.first(); 1401 auto It = InstrProfileMap.find(Name); 1402 if (It == InstrProfileMap.end()) { 1403 auto NewName = StaticFuncMap.find(Name); 1404 if (NewName != StaticFuncMap.end()) { 1405 It = InstrProfileMap.find(NewName->second); 1406 if (NewName->second == DuplicateNameStr) { 1407 WithColor::warning() 1408 << "Static function " << Name 1409 << " has multiple promoted names, cannot adjust profile.\n"; 1410 } 1411 } 1412 } 1413 if (It == InstrProfileMap.end() || 1414 It->second.MaxCount > ColdInstrThreshold || 1415 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1416 continue; 1417 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1418 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1419 ColdInstrThreshold, ZeroCounterThreshold); 1420 } 1421 } 1422 1423 /// The main function to supplement instr profile with sample profile. 1424 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1425 /// sample profile. \p OutputFilename specifies the output profile name. 1426 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1427 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1428 /// specifies the minimal size for the functions whose profile will be 1429 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1430 /// a function contains too many zero counters and whether its profile 1431 /// should be dropped. \p InstrProfColdThreshold is the user specified 1432 /// cold threshold which will override the cold threshold got from the 1433 /// instr profile summary. 1434 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1435 StringRef SampleFilename, bool OutputSparse, 1436 unsigned SupplMinSizeThreshold, 1437 float ZeroCounterThreshold, 1438 unsigned InstrProfColdThreshold) { 1439 if (OutputFilename == "-") 1440 exitWithError("cannot write indexed profdata format to stdout"); 1441 if (Inputs.size() != 1) 1442 exitWithError("expect one input to be an instr profile"); 1443 if (Inputs[0].Weight != 1) 1444 exitWithError("expect instr profile doesn't have weight"); 1445 1446 StringRef InstrFilename = Inputs[0].Filename; 1447 1448 // Read sample profile. 1449 LLVMContext Context; 1450 auto FS = vfs::getRealFileSystem(); 1451 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1452 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1453 if (std::error_code EC = ReaderOrErr.getError()) 1454 exitWithErrorCode(EC, SampleFilename); 1455 auto Reader = std::move(ReaderOrErr.get()); 1456 if (std::error_code EC = Reader->read()) 1457 exitWithErrorCode(EC, SampleFilename); 1458 1459 // Read instr profile. 1460 std::mutex ErrorLock; 1461 SmallSet<instrprof_error, 4> WriterErrorCodes; 1462 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1463 WriterErrorCodes); 1464 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1465 if (WC->Errors.size() > 0) 1466 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1467 1468 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1469 InstrProfColdThreshold); 1470 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1471 } 1472 1473 /// Make a copy of the given function samples with all symbol names remapped 1474 /// by the provided symbol remapper. 1475 static sampleprof::FunctionSamples 1476 remapSamples(const sampleprof::FunctionSamples &Samples, 1477 SymbolRemapper &Remapper, sampleprof_error &Error) { 1478 sampleprof::FunctionSamples Result; 1479 Result.setFunction(Remapper(Samples.getFunction())); 1480 Result.addTotalSamples(Samples.getTotalSamples()); 1481 Result.addHeadSamples(Samples.getHeadSamples()); 1482 for (const auto &BodySample : Samples.getBodySamples()) { 1483 uint32_t MaskedDiscriminator = 1484 BodySample.first.Discriminator & getDiscriminatorMask(); 1485 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1486 BodySample.second.getSamples()); 1487 for (const auto &Target : BodySample.second.getCallTargets()) { 1488 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1489 MaskedDiscriminator, 1490 Remapper(Target.first), Target.second); 1491 } 1492 } 1493 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1494 sampleprof::FunctionSamplesMap &Target = 1495 Result.functionSamplesAt(CallsiteSamples.first); 1496 for (const auto &Callsite : CallsiteSamples.second) { 1497 sampleprof::FunctionSamples Remapped = 1498 remapSamples(Callsite.second, Remapper, Error); 1499 mergeSampleProfErrors(Error, 1500 Target[Remapped.getFunction()].merge(Remapped)); 1501 } 1502 } 1503 return Result; 1504 } 1505 1506 static sampleprof::SampleProfileFormat FormatMap[] = { 1507 sampleprof::SPF_None, 1508 sampleprof::SPF_Text, 1509 sampleprof::SPF_None, 1510 sampleprof::SPF_Ext_Binary, 1511 sampleprof::SPF_GCC, 1512 sampleprof::SPF_Binary}; 1513 1514 static std::unique_ptr<MemoryBuffer> 1515 getInputFileBuf(const StringRef &InputFile) { 1516 if (InputFile == "") 1517 return {}; 1518 1519 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1520 if (!BufOrError) 1521 exitWithErrorCode(BufOrError.getError(), InputFile); 1522 1523 return std::move(*BufOrError); 1524 } 1525 1526 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1527 sampleprof::ProfileSymbolList &PSL) { 1528 if (!Buffer) 1529 return; 1530 1531 SmallVector<StringRef, 32> SymbolVec; 1532 StringRef Data = Buffer->getBuffer(); 1533 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1534 1535 for (StringRef SymbolStr : SymbolVec) 1536 PSL.add(SymbolStr.trim()); 1537 } 1538 1539 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1540 ProfileFormat OutputFormat, 1541 MemoryBuffer *Buffer, 1542 sampleprof::ProfileSymbolList &WriterList, 1543 bool CompressAllSections, bool UseMD5, 1544 bool GenPartialProfile) { 1545 if (SplitLayout) { 1546 if (OutputFormat == PF_Binary) 1547 warn("-split-layout is ignored. Specify -extbinary to enable it"); 1548 else 1549 Writer.setUseCtxSplitLayout(); 1550 } 1551 1552 populateProfileSymbolList(Buffer, WriterList); 1553 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1554 warn("Profile Symbol list is not empty but the output format is not " 1555 "ExtBinary format. The list will be lost in the output. "); 1556 1557 Writer.setProfileSymbolList(&WriterList); 1558 1559 if (CompressAllSections) { 1560 if (OutputFormat != PF_Ext_Binary) 1561 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1562 else 1563 Writer.setToCompressAllSections(); 1564 } 1565 if (UseMD5) { 1566 if (OutputFormat != PF_Ext_Binary) 1567 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1568 else 1569 Writer.setUseMD5(); 1570 } 1571 if (GenPartialProfile) { 1572 if (OutputFormat != PF_Ext_Binary) 1573 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1574 else 1575 Writer.setPartialProfile(); 1576 } 1577 } 1578 1579 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1580 SymbolRemapper *Remapper, 1581 StringRef ProfileSymbolListFile, 1582 size_t OutputSizeLimit) { 1583 using namespace sampleprof; 1584 SampleProfileMap ProfileMap; 1585 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1586 LLVMContext Context; 1587 sampleprof::ProfileSymbolList WriterList; 1588 std::optional<bool> ProfileIsProbeBased; 1589 std::optional<bool> ProfileIsCS; 1590 for (const auto &Input : Inputs) { 1591 auto FS = vfs::getRealFileSystem(); 1592 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1593 FSDiscriminatorPassOption); 1594 if (std::error_code EC = ReaderOrErr.getError()) { 1595 warnOrExitGivenError(FailMode, EC, Input.Filename); 1596 continue; 1597 } 1598 1599 // We need to keep the readers around until after all the files are 1600 // read so that we do not lose the function names stored in each 1601 // reader's memory. The function names are needed to write out the 1602 // merged profile map. 1603 Readers.push_back(std::move(ReaderOrErr.get())); 1604 const auto Reader = Readers.back().get(); 1605 if (std::error_code EC = Reader->read()) { 1606 warnOrExitGivenError(FailMode, EC, Input.Filename); 1607 Readers.pop_back(); 1608 continue; 1609 } 1610 1611 SampleProfileMap &Profiles = Reader->getProfiles(); 1612 if (ProfileIsProbeBased && 1613 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1614 exitWithError( 1615 "cannot merge probe-based profile with non-probe-based profile"); 1616 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1617 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1618 exitWithError("cannot merge CS profile with non-CS profile"); 1619 ProfileIsCS = FunctionSamples::ProfileIsCS; 1620 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1621 I != E; ++I) { 1622 sampleprof_error Result = sampleprof_error::success; 1623 FunctionSamples Remapped = 1624 Remapper ? remapSamples(I->second, *Remapper, Result) 1625 : FunctionSamples(); 1626 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1627 SampleContext FContext = Samples.getContext(); 1628 mergeSampleProfErrors(Result, 1629 ProfileMap[FContext].merge(Samples, Input.Weight)); 1630 if (Result != sampleprof_error::success) { 1631 std::error_code EC = make_error_code(Result); 1632 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1633 FContext.toString()); 1634 } 1635 } 1636 1637 if (!DropProfileSymbolList) { 1638 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1639 Reader->getProfileSymbolList(); 1640 if (ReaderList) 1641 WriterList.merge(*ReaderList); 1642 } 1643 } 1644 1645 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1646 // Use threshold calculated from profile summary unless specified. 1647 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1648 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1649 uint64_t SampleProfColdThreshold = 1650 ProfileSummaryBuilder::getColdCountThreshold( 1651 (Summary->getDetailedSummary())); 1652 1653 // Trim and merge cold context profile using cold threshold above; 1654 SampleContextTrimmer(ProfileMap) 1655 .trimAndMergeColdContextProfiles( 1656 SampleProfColdThreshold, SampleTrimColdContext, 1657 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1658 } 1659 1660 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1661 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1662 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1663 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1664 ProfileConverter CSConverter(ProfileMap); 1665 CSConverter.convertCSProfiles(); 1666 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1667 } 1668 1669 filterFunctions(ProfileMap); 1670 1671 auto WriterOrErr = 1672 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1673 if (std::error_code EC = WriterOrErr.getError()) 1674 exitWithErrorCode(EC, OutputFilename); 1675 1676 auto Writer = std::move(WriterOrErr.get()); 1677 // WriterList will have StringRef refering to string in Buffer. 1678 // Make sure Buffer lives as long as WriterList. 1679 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1680 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1681 CompressAllSections, UseMD5, GenPartialProfile); 1682 1683 // If OutputSizeLimit is 0 (default), it is the same as write(). 1684 if (std::error_code EC = 1685 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1686 exitWithErrorCode(EC); 1687 } 1688 1689 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1690 StringRef WeightStr, FileName; 1691 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1692 1693 uint64_t Weight; 1694 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1695 exitWithError("input weight must be a positive integer"); 1696 1697 return {std::string(FileName), Weight}; 1698 } 1699 1700 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1701 StringRef Filename = WF.Filename; 1702 uint64_t Weight = WF.Weight; 1703 1704 // If it's STDIN just pass it on. 1705 if (Filename == "-") { 1706 WNI.push_back({std::string(Filename), Weight}); 1707 return; 1708 } 1709 1710 llvm::sys::fs::file_status Status; 1711 llvm::sys::fs::status(Filename, Status); 1712 if (!llvm::sys::fs::exists(Status)) 1713 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1714 Filename); 1715 // If it's a source file, collect it. 1716 if (llvm::sys::fs::is_regular_file(Status)) { 1717 WNI.push_back({std::string(Filename), Weight}); 1718 return; 1719 } 1720 1721 if (llvm::sys::fs::is_directory(Status)) { 1722 std::error_code EC; 1723 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1724 F != E && !EC; F.increment(EC)) { 1725 if (llvm::sys::fs::is_regular_file(F->path())) { 1726 addWeightedInput(WNI, {F->path(), Weight}); 1727 } 1728 } 1729 if (EC) 1730 exitWithErrorCode(EC, Filename); 1731 } 1732 } 1733 1734 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1735 WeightedFileVector &WFV) { 1736 if (!Buffer) 1737 return; 1738 1739 SmallVector<StringRef, 8> Entries; 1740 StringRef Data = Buffer->getBuffer(); 1741 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1742 for (const StringRef &FileWeightEntry : Entries) { 1743 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1744 // Skip comments. 1745 if (SanitizedEntry.starts_with("#")) 1746 continue; 1747 // If there's no comma, it's an unweighted profile. 1748 else if (!SanitizedEntry.contains(',')) 1749 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1750 else 1751 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1752 } 1753 } 1754 1755 static int merge_main(StringRef ProgName) { 1756 WeightedFileVector WeightedInputs; 1757 for (StringRef Filename : InputFilenames) 1758 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1759 for (StringRef WeightedFilename : WeightedInputFilenames) 1760 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1761 1762 // Make sure that the file buffer stays alive for the duration of the 1763 // weighted input vector's lifetime. 1764 auto Buffer = getInputFileBuf(InputFilenamesFile); 1765 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1766 1767 if (WeightedInputs.empty()) 1768 exitWithError("no input files specified. See " + ProgName + " merge -help"); 1769 1770 if (DumpInputFileList) { 1771 for (auto &WF : WeightedInputs) 1772 outs() << WF.Weight << "," << WF.Filename << "\n"; 1773 return 0; 1774 } 1775 1776 std::unique_ptr<SymbolRemapper> Remapper; 1777 if (!RemappingFile.empty()) 1778 Remapper = SymbolRemapper::create(RemappingFile); 1779 1780 if (!SupplInstrWithSample.empty()) { 1781 if (ProfileKind != instr) 1782 exitWithError( 1783 "-supplement-instr-with-sample can only work with -instr. "); 1784 1785 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1786 SupplMinSizeThreshold, ZeroCounterThreshold, 1787 InstrProfColdThreshold); 1788 return 0; 1789 } 1790 1791 if (ProfileKind == instr) 1792 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1793 ProfiledBinary); 1794 else 1795 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1796 OutputSizeLimit); 1797 return 0; 1798 } 1799 1800 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1801 static void overlapInstrProfile(const std::string &BaseFilename, 1802 const std::string &TestFilename, 1803 const OverlapFuncFilters &FuncFilter, 1804 raw_fd_ostream &OS, bool IsCS) { 1805 std::mutex ErrorLock; 1806 SmallSet<instrprof_error, 4> WriterErrorCodes; 1807 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1808 WeightedFile WeightedInput{BaseFilename, 1}; 1809 OverlapStats Overlap; 1810 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1811 if (E) 1812 exitWithError(std::move(E), "error in getting profile count sums"); 1813 if (Overlap.Base.CountSum < 1.0f) { 1814 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1815 exit(0); 1816 } 1817 if (Overlap.Test.CountSum < 1.0f) { 1818 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1819 exit(0); 1820 } 1821 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1822 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1823 IsCS); 1824 Overlap.dump(OS); 1825 } 1826 1827 namespace { 1828 struct SampleOverlapStats { 1829 SampleContext BaseName; 1830 SampleContext TestName; 1831 // Number of overlap units 1832 uint64_t OverlapCount = 0; 1833 // Total samples of overlap units 1834 uint64_t OverlapSample = 0; 1835 // Number of and total samples of units that only present in base or test 1836 // profile 1837 uint64_t BaseUniqueCount = 0; 1838 uint64_t BaseUniqueSample = 0; 1839 uint64_t TestUniqueCount = 0; 1840 uint64_t TestUniqueSample = 0; 1841 // Number of units and total samples in base or test profile 1842 uint64_t BaseCount = 0; 1843 uint64_t BaseSample = 0; 1844 uint64_t TestCount = 0; 1845 uint64_t TestSample = 0; 1846 // Number of and total samples of units that present in at least one profile 1847 uint64_t UnionCount = 0; 1848 uint64_t UnionSample = 0; 1849 // Weighted similarity 1850 double Similarity = 0.0; 1851 // For SampleOverlapStats instances representing functions, weights of the 1852 // function in base and test profiles 1853 double BaseWeight = 0.0; 1854 double TestWeight = 0.0; 1855 1856 SampleOverlapStats() = default; 1857 }; 1858 } // end anonymous namespace 1859 1860 namespace { 1861 struct FuncSampleStats { 1862 uint64_t SampleSum = 0; 1863 uint64_t MaxSample = 0; 1864 uint64_t HotBlockCount = 0; 1865 FuncSampleStats() = default; 1866 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1867 uint64_t HotBlockCount) 1868 : SampleSum(SampleSum), MaxSample(MaxSample), 1869 HotBlockCount(HotBlockCount) {} 1870 }; 1871 } // end anonymous namespace 1872 1873 namespace { 1874 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1875 1876 // Class for updating merging steps for two sorted maps. The class should be 1877 // instantiated with a map iterator type. 1878 template <class T> class MatchStep { 1879 public: 1880 MatchStep() = delete; 1881 1882 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1883 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1884 SecondEnd(SecondEnd), Status(MS_None) {} 1885 1886 bool areBothFinished() const { 1887 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1888 } 1889 1890 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1891 1892 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1893 1894 /// Advance one step based on the previous match status unless the previous 1895 /// status is MS_None. Then update Status based on the comparison between two 1896 /// container iterators at the current step. If the previous status is 1897 /// MS_None, it means two iterators are at the beginning and no comparison has 1898 /// been made, so we simply update Status without advancing the iterators. 1899 void updateOneStep(); 1900 1901 T getFirstIter() const { return FirstIter; } 1902 1903 T getSecondIter() const { return SecondIter; } 1904 1905 MatchStatus getMatchStatus() const { return Status; } 1906 1907 private: 1908 // Current iterator and end iterator of the first container. 1909 T FirstIter; 1910 T FirstEnd; 1911 // Current iterator and end iterator of the second container. 1912 T SecondIter; 1913 T SecondEnd; 1914 // Match status of the current step. 1915 MatchStatus Status; 1916 }; 1917 } // end anonymous namespace 1918 1919 template <class T> void MatchStep<T>::updateOneStep() { 1920 switch (Status) { 1921 case MS_Match: 1922 ++FirstIter; 1923 ++SecondIter; 1924 break; 1925 case MS_FirstUnique: 1926 ++FirstIter; 1927 break; 1928 case MS_SecondUnique: 1929 ++SecondIter; 1930 break; 1931 case MS_None: 1932 break; 1933 } 1934 1935 // Update Status according to iterators at the current step. 1936 if (areBothFinished()) 1937 return; 1938 if (FirstIter != FirstEnd && 1939 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1940 Status = MS_FirstUnique; 1941 else if (SecondIter != SecondEnd && 1942 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1943 Status = MS_SecondUnique; 1944 else 1945 Status = MS_Match; 1946 } 1947 1948 // Return the sum of line/block samples, the max line/block sample, and the 1949 // number of line/block samples above the given threshold in a function 1950 // including its inlinees. 1951 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1952 FuncSampleStats &FuncStats, 1953 uint64_t HotThreshold) { 1954 for (const auto &L : Func.getBodySamples()) { 1955 uint64_t Sample = L.second.getSamples(); 1956 FuncStats.SampleSum += Sample; 1957 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1958 if (Sample >= HotThreshold) 1959 ++FuncStats.HotBlockCount; 1960 } 1961 1962 for (const auto &C : Func.getCallsiteSamples()) { 1963 for (const auto &F : C.second) 1964 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1965 } 1966 } 1967 1968 /// Predicate that determines if a function is hot with a given threshold. We 1969 /// keep it separate from its callsites for possible extension in the future. 1970 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1971 uint64_t HotThreshold) { 1972 // We intentionally compare the maximum sample count in a function with the 1973 // HotThreshold to get an approximate determination on hot functions. 1974 return (FuncStats.MaxSample >= HotThreshold); 1975 } 1976 1977 namespace { 1978 class SampleOverlapAggregator { 1979 public: 1980 SampleOverlapAggregator(const std::string &BaseFilename, 1981 const std::string &TestFilename, 1982 double LowSimilarityThreshold, double Epsilon, 1983 const OverlapFuncFilters &FuncFilter) 1984 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1985 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1986 FuncFilter(FuncFilter) {} 1987 1988 /// Detect 0-sample input profile and report to output stream. This interface 1989 /// should be called after loadProfiles(). 1990 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1991 1992 /// Write out function-level similarity statistics for functions specified by 1993 /// options --function, --value-cutoff, and --similarity-cutoff. 1994 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1995 1996 /// Write out program-level similarity and overlap statistics. 1997 void dumpProgramSummary(raw_fd_ostream &OS) const; 1998 1999 /// Write out hot-function and hot-block statistics for base_profile, 2000 /// test_profile, and their overlap. For both cases, the overlap HO is 2001 /// calculated as follows: 2002 /// Given the number of functions (or blocks) that are hot in both profiles 2003 /// HCommon and the number of functions (or blocks) that are hot in at 2004 /// least one profile HUnion, HO = HCommon / HUnion. 2005 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 2006 2007 /// This function tries matching functions in base and test profiles. For each 2008 /// pair of matched functions, it aggregates the function-level 2009 /// similarity into a profile-level similarity. It also dump function-level 2010 /// similarity information of functions specified by --function, 2011 /// --value-cutoff, and --similarity-cutoff options. The program-level 2012 /// similarity PS is computed as follows: 2013 /// Given function-level similarity FS(A) for all function A, the 2014 /// weight of function A in base profile WB(A), and the weight of function 2015 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 2016 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 2017 /// meaning no-overlap. 2018 void computeSampleProfileOverlap(raw_fd_ostream &OS); 2019 2020 /// Initialize ProfOverlap with the sum of samples in base and test 2021 /// profiles. This function also computes and keeps the sum of samples and 2022 /// max sample counts of each function in BaseStats and TestStats for later 2023 /// use to avoid re-computations. 2024 void initializeSampleProfileOverlap(); 2025 2026 /// Load profiles specified by BaseFilename and TestFilename. 2027 std::error_code loadProfiles(); 2028 2029 using FuncSampleStatsMap = 2030 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 2031 2032 private: 2033 SampleOverlapStats ProfOverlap; 2034 SampleOverlapStats HotFuncOverlap; 2035 SampleOverlapStats HotBlockOverlap; 2036 std::string BaseFilename; 2037 std::string TestFilename; 2038 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 2039 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 2040 // BaseStats and TestStats hold FuncSampleStats for each function, with 2041 // function name as the key. 2042 FuncSampleStatsMap BaseStats; 2043 FuncSampleStatsMap TestStats; 2044 // Low similarity threshold in floating point number 2045 double LowSimilarityThreshold; 2046 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 2047 // for tracking hot blocks. 2048 uint64_t BaseHotThreshold; 2049 uint64_t TestHotThreshold; 2050 // A small threshold used to round the results of floating point accumulations 2051 // to resolve imprecision. 2052 const double Epsilon; 2053 std::multimap<double, SampleOverlapStats, std::greater<double>> 2054 FuncSimilarityDump; 2055 // FuncFilter carries specifications in options --value-cutoff and 2056 // --function. 2057 OverlapFuncFilters FuncFilter; 2058 // Column offsets for printing the function-level details table. 2059 static const unsigned int TestWeightCol = 15; 2060 static const unsigned int SimilarityCol = 30; 2061 static const unsigned int OverlapCol = 43; 2062 static const unsigned int BaseUniqueCol = 53; 2063 static const unsigned int TestUniqueCol = 67; 2064 static const unsigned int BaseSampleCol = 81; 2065 static const unsigned int TestSampleCol = 96; 2066 static const unsigned int FuncNameCol = 111; 2067 2068 /// Return a similarity of two line/block sample counters in the same 2069 /// function in base and test profiles. The line/block-similarity BS(i) is 2070 /// computed as follows: 2071 /// For an offsets i, given the sample count at i in base profile BB(i), 2072 /// the sample count at i in test profile BT(i), the sum of sample counts 2073 /// in this function in base profile SB, and the sum of sample counts in 2074 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 2075 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 2076 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 2077 const SampleOverlapStats &FuncOverlap) const; 2078 2079 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 2080 uint64_t HotBlockCount); 2081 2082 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 2083 FuncSampleStatsMap &HotFunc, 2084 uint64_t HotThreshold) const; 2085 2086 void computeHotFuncOverlap(); 2087 2088 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2089 /// Difference for two sample units in a matched function according to the 2090 /// given match status. 2091 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 2092 uint64_t HotBlockCount, 2093 SampleOverlapStats &FuncOverlap, 2094 double &Difference, MatchStatus Status); 2095 2096 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2097 /// Difference for unmatched callees that only present in one profile in a 2098 /// matched caller function. 2099 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 2100 SampleOverlapStats &FuncOverlap, 2101 double &Difference, MatchStatus Status); 2102 2103 /// This function updates sample overlap statistics of an overlap function in 2104 /// base and test profile. It also calculates a function-internal similarity 2105 /// FIS as follows: 2106 /// For offsets i that have samples in at least one profile in this 2107 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 2108 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 2109 /// 0.0 meaning no overlap. 2110 double computeSampleFunctionInternalOverlap( 2111 const sampleprof::FunctionSamples &BaseFunc, 2112 const sampleprof::FunctionSamples &TestFunc, 2113 SampleOverlapStats &FuncOverlap); 2114 2115 /// Function-level similarity (FS) is a weighted value over function internal 2116 /// similarity (FIS). This function computes a function's FS from its FIS by 2117 /// applying the weight. 2118 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 2119 uint64_t TestFuncSample) const; 2120 2121 /// The function-level similarity FS(A) for a function A is computed as 2122 /// follows: 2123 /// Compute a function-internal similarity FIS(A) by 2124 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 2125 /// function A in base profile WB(A), and the weight of function A in test 2126 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 2127 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 2128 double 2129 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 2130 const sampleprof::FunctionSamples *TestFunc, 2131 SampleOverlapStats *FuncOverlap, 2132 uint64_t BaseFuncSample, 2133 uint64_t TestFuncSample); 2134 2135 /// Profile-level similarity (PS) is a weighted aggregate over function-level 2136 /// similarities (FS). This method weights the FS value by the function 2137 /// weights in the base and test profiles for the aggregation. 2138 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 2139 uint64_t TestFuncSample) const; 2140 }; 2141 } // end anonymous namespace 2142 2143 bool SampleOverlapAggregator::detectZeroSampleProfile( 2144 raw_fd_ostream &OS) const { 2145 bool HaveZeroSample = false; 2146 if (ProfOverlap.BaseSample == 0) { 2147 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 2148 HaveZeroSample = true; 2149 } 2150 if (ProfOverlap.TestSample == 0) { 2151 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 2152 HaveZeroSample = true; 2153 } 2154 return HaveZeroSample; 2155 } 2156 2157 double SampleOverlapAggregator::computeBlockSimilarity( 2158 uint64_t BaseSample, uint64_t TestSample, 2159 const SampleOverlapStats &FuncOverlap) const { 2160 double BaseFrac = 0.0; 2161 double TestFrac = 0.0; 2162 if (FuncOverlap.BaseSample > 0) 2163 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 2164 if (FuncOverlap.TestSample > 0) 2165 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 2166 return 1.0 - std::fabs(BaseFrac - TestFrac); 2167 } 2168 2169 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 2170 uint64_t TestSample, 2171 uint64_t HotBlockCount) { 2172 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 2173 bool IsTestHot = (TestSample >= TestHotThreshold); 2174 if (!IsBaseHot && !IsTestHot) 2175 return; 2176 2177 HotBlockOverlap.UnionCount += HotBlockCount; 2178 if (IsBaseHot) 2179 HotBlockOverlap.BaseCount += HotBlockCount; 2180 if (IsTestHot) 2181 HotBlockOverlap.TestCount += HotBlockCount; 2182 if (IsBaseHot && IsTestHot) 2183 HotBlockOverlap.OverlapCount += HotBlockCount; 2184 } 2185 2186 void SampleOverlapAggregator::getHotFunctions( 2187 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 2188 uint64_t HotThreshold) const { 2189 for (const auto &F : ProfStats) { 2190 if (isFunctionHot(F.second, HotThreshold)) 2191 HotFunc.emplace(F.first, F.second); 2192 } 2193 } 2194 2195 void SampleOverlapAggregator::computeHotFuncOverlap() { 2196 FuncSampleStatsMap BaseHotFunc; 2197 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 2198 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 2199 2200 FuncSampleStatsMap TestHotFunc; 2201 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 2202 HotFuncOverlap.TestCount = TestHotFunc.size(); 2203 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 2204 2205 for (const auto &F : BaseHotFunc) { 2206 if (TestHotFunc.count(F.first)) 2207 ++HotFuncOverlap.OverlapCount; 2208 else 2209 ++HotFuncOverlap.UnionCount; 2210 } 2211 } 2212 2213 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2214 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2215 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2216 assert(Status != MS_None && 2217 "Match status should be updated before updating overlap statistics"); 2218 if (Status == MS_FirstUnique) { 2219 TestSample = 0; 2220 FuncOverlap.BaseUniqueSample += BaseSample; 2221 } else if (Status == MS_SecondUnique) { 2222 BaseSample = 0; 2223 FuncOverlap.TestUniqueSample += TestSample; 2224 } else { 2225 ++FuncOverlap.OverlapCount; 2226 } 2227 2228 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2229 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2230 Difference += 2231 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2232 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2233 } 2234 2235 void SampleOverlapAggregator::updateForUnmatchedCallee( 2236 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2237 double &Difference, MatchStatus Status) { 2238 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2239 "Status must be either of the two unmatched cases"); 2240 FuncSampleStats FuncStats; 2241 if (Status == MS_FirstUnique) { 2242 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2243 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2244 FuncStats.HotBlockCount, FuncOverlap, 2245 Difference, Status); 2246 } else { 2247 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2248 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2249 FuncStats.HotBlockCount, FuncOverlap, 2250 Difference, Status); 2251 } 2252 } 2253 2254 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2255 const sampleprof::FunctionSamples &BaseFunc, 2256 const sampleprof::FunctionSamples &TestFunc, 2257 SampleOverlapStats &FuncOverlap) { 2258 2259 using namespace sampleprof; 2260 2261 double Difference = 0; 2262 2263 // Accumulate Difference for regular line/block samples in the function. 2264 // We match them through sort-merge join algorithm because 2265 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2266 // by their offsets. 2267 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2268 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2269 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2270 BlockIterStep.updateOneStep(); 2271 while (!BlockIterStep.areBothFinished()) { 2272 uint64_t BaseSample = 2273 BlockIterStep.isFirstFinished() 2274 ? 0 2275 : BlockIterStep.getFirstIter()->second.getSamples(); 2276 uint64_t TestSample = 2277 BlockIterStep.isSecondFinished() 2278 ? 0 2279 : BlockIterStep.getSecondIter()->second.getSamples(); 2280 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2281 Difference, BlockIterStep.getMatchStatus()); 2282 2283 BlockIterStep.updateOneStep(); 2284 } 2285 2286 // Accumulate Difference for callsite lines in the function. We match 2287 // them through sort-merge algorithm because 2288 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2289 // ordered by their offsets. 2290 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2291 BaseFunc.getCallsiteSamples().cbegin(), 2292 BaseFunc.getCallsiteSamples().cend(), 2293 TestFunc.getCallsiteSamples().cbegin(), 2294 TestFunc.getCallsiteSamples().cend()); 2295 CallsiteIterStep.updateOneStep(); 2296 while (!CallsiteIterStep.areBothFinished()) { 2297 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2298 assert(CallsiteStepStatus != MS_None && 2299 "Match status should be updated before entering loop body"); 2300 2301 if (CallsiteStepStatus != MS_Match) { 2302 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2303 ? CallsiteIterStep.getFirstIter() 2304 : CallsiteIterStep.getSecondIter(); 2305 for (const auto &F : Callsite->second) 2306 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2307 CallsiteStepStatus); 2308 } else { 2309 // There may be multiple inlinees at the same offset, so we need to try 2310 // matching all of them. This match is implemented through sort-merge 2311 // algorithm because callsite records at the same offset are ordered by 2312 // function names. 2313 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2314 CallsiteIterStep.getFirstIter()->second.cbegin(), 2315 CallsiteIterStep.getFirstIter()->second.cend(), 2316 CallsiteIterStep.getSecondIter()->second.cbegin(), 2317 CallsiteIterStep.getSecondIter()->second.cend()); 2318 CalleeIterStep.updateOneStep(); 2319 while (!CalleeIterStep.areBothFinished()) { 2320 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2321 if (CalleeStepStatus != MS_Match) { 2322 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2323 ? CalleeIterStep.getFirstIter() 2324 : CalleeIterStep.getSecondIter(); 2325 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2326 CalleeStepStatus); 2327 } else { 2328 // An inlined function can contain other inlinees inside, so compute 2329 // the Difference recursively. 2330 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2331 CalleeIterStep.getFirstIter()->second, 2332 CalleeIterStep.getSecondIter()->second, 2333 FuncOverlap); 2334 } 2335 CalleeIterStep.updateOneStep(); 2336 } 2337 } 2338 CallsiteIterStep.updateOneStep(); 2339 } 2340 2341 // Difference reflects the total differences of line/block samples in this 2342 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2343 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2344 return (2.0 - Difference) / 2; 2345 } 2346 2347 double SampleOverlapAggregator::weightForFuncSimilarity( 2348 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2349 uint64_t TestFuncSample) const { 2350 // Compute the weight as the distance between the function weights in two 2351 // profiles. 2352 double BaseFrac = 0.0; 2353 double TestFrac = 0.0; 2354 assert(ProfOverlap.BaseSample > 0 && 2355 "Total samples in base profile should be greater than 0"); 2356 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2357 assert(ProfOverlap.TestSample > 0 && 2358 "Total samples in test profile should be greater than 0"); 2359 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2360 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2361 2362 // Take WeightDistance into the similarity. 2363 return FuncInternalSimilarity * (1 - WeightDistance); 2364 } 2365 2366 double 2367 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2368 uint64_t BaseFuncSample, 2369 uint64_t TestFuncSample) const { 2370 2371 double BaseFrac = 0.0; 2372 double TestFrac = 0.0; 2373 assert(ProfOverlap.BaseSample > 0 && 2374 "Total samples in base profile should be greater than 0"); 2375 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2376 assert(ProfOverlap.TestSample > 0 && 2377 "Total samples in test profile should be greater than 0"); 2378 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2379 return FuncSimilarity * (BaseFrac + TestFrac); 2380 } 2381 2382 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2383 const sampleprof::FunctionSamples *BaseFunc, 2384 const sampleprof::FunctionSamples *TestFunc, 2385 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2386 uint64_t TestFuncSample) { 2387 // Default function internal similarity before weighted, meaning two functions 2388 // has no overlap. 2389 const double DefaultFuncInternalSimilarity = 0; 2390 double FuncSimilarity; 2391 double FuncInternalSimilarity; 2392 2393 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2394 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2395 // similarity. 2396 if (!BaseFunc || !TestFunc) { 2397 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2398 } else { 2399 assert(FuncOverlap != nullptr && 2400 "FuncOverlap should be provided in this case"); 2401 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2402 *BaseFunc, *TestFunc, *FuncOverlap); 2403 // Now, FuncInternalSimilarity may be a little less than 0 due to 2404 // imprecision of floating point accumulations. Make it zero if the 2405 // difference is below Epsilon. 2406 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2407 ? 0 2408 : FuncInternalSimilarity; 2409 } 2410 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2411 BaseFuncSample, TestFuncSample); 2412 return FuncSimilarity; 2413 } 2414 2415 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2416 using namespace sampleprof; 2417 2418 std::unordered_map<SampleContext, const FunctionSamples *, 2419 SampleContext::Hash> 2420 BaseFuncProf; 2421 const auto &BaseProfiles = BaseReader->getProfiles(); 2422 for (const auto &BaseFunc : BaseProfiles) { 2423 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2424 } 2425 ProfOverlap.UnionCount = BaseFuncProf.size(); 2426 2427 const auto &TestProfiles = TestReader->getProfiles(); 2428 for (const auto &TestFunc : TestProfiles) { 2429 SampleOverlapStats FuncOverlap; 2430 FuncOverlap.TestName = TestFunc.second.getContext(); 2431 assert(TestStats.count(FuncOverlap.TestName) && 2432 "TestStats should have records for all functions in test profile " 2433 "except inlinees"); 2434 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2435 2436 bool Matched = false; 2437 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2438 if (Match == BaseFuncProf.end()) { 2439 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2440 ++ProfOverlap.TestUniqueCount; 2441 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2442 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2443 2444 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2445 2446 double FuncSimilarity = computeSampleFunctionOverlap( 2447 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2448 ProfOverlap.Similarity += 2449 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2450 2451 ++ProfOverlap.UnionCount; 2452 ProfOverlap.UnionSample += FuncStats.SampleSum; 2453 } else { 2454 ++ProfOverlap.OverlapCount; 2455 2456 // Two functions match with each other. Compute function-level overlap and 2457 // aggregate them into profile-level overlap. 2458 FuncOverlap.BaseName = Match->second->getContext(); 2459 assert(BaseStats.count(FuncOverlap.BaseName) && 2460 "BaseStats should have records for all functions in base profile " 2461 "except inlinees"); 2462 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2463 2464 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2465 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2466 FuncOverlap.TestSample); 2467 ProfOverlap.Similarity += 2468 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2469 FuncOverlap.TestSample); 2470 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2471 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2472 2473 // Accumulate the percentage of base unique and test unique samples into 2474 // ProfOverlap. 2475 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2476 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2477 2478 // Remove matched base functions for later reporting functions not found 2479 // in test profile. 2480 BaseFuncProf.erase(Match); 2481 Matched = true; 2482 } 2483 2484 // Print function-level similarity information if specified by options. 2485 assert(TestStats.count(FuncOverlap.TestName) && 2486 "TestStats should have records for all functions in test profile " 2487 "except inlinees"); 2488 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2489 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2490 (Matched && !FuncFilter.NameFilter.empty() && 2491 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2492 std::string::npos)) { 2493 assert(ProfOverlap.BaseSample > 0 && 2494 "Total samples in base profile should be greater than 0"); 2495 FuncOverlap.BaseWeight = 2496 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2497 assert(ProfOverlap.TestSample > 0 && 2498 "Total samples in test profile should be greater than 0"); 2499 FuncOverlap.TestWeight = 2500 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2501 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2502 } 2503 } 2504 2505 // Traverse through functions in base profile but not in test profile. 2506 for (const auto &F : BaseFuncProf) { 2507 assert(BaseStats.count(F.second->getContext()) && 2508 "BaseStats should have records for all functions in base profile " 2509 "except inlinees"); 2510 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2511 ++ProfOverlap.BaseUniqueCount; 2512 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2513 2514 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2515 2516 double FuncSimilarity = computeSampleFunctionOverlap( 2517 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2518 ProfOverlap.Similarity += 2519 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2520 2521 ProfOverlap.UnionSample += FuncStats.SampleSum; 2522 } 2523 2524 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2525 // of floating point accumulations. Make it 1.0 if the difference is below 2526 // Epsilon. 2527 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2528 ? 1 2529 : ProfOverlap.Similarity; 2530 2531 computeHotFuncOverlap(); 2532 } 2533 2534 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2535 const auto &BaseProf = BaseReader->getProfiles(); 2536 for (const auto &I : BaseProf) { 2537 ++ProfOverlap.BaseCount; 2538 FuncSampleStats FuncStats; 2539 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2540 ProfOverlap.BaseSample += FuncStats.SampleSum; 2541 BaseStats.emplace(I.second.getContext(), FuncStats); 2542 } 2543 2544 const auto &TestProf = TestReader->getProfiles(); 2545 for (const auto &I : TestProf) { 2546 ++ProfOverlap.TestCount; 2547 FuncSampleStats FuncStats; 2548 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2549 ProfOverlap.TestSample += FuncStats.SampleSum; 2550 TestStats.emplace(I.second.getContext(), FuncStats); 2551 } 2552 2553 ProfOverlap.BaseName = StringRef(BaseFilename); 2554 ProfOverlap.TestName = StringRef(TestFilename); 2555 } 2556 2557 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2558 using namespace sampleprof; 2559 2560 if (FuncSimilarityDump.empty()) 2561 return; 2562 2563 formatted_raw_ostream FOS(OS); 2564 FOS << "Function-level details:\n"; 2565 FOS << "Base weight"; 2566 FOS.PadToColumn(TestWeightCol); 2567 FOS << "Test weight"; 2568 FOS.PadToColumn(SimilarityCol); 2569 FOS << "Similarity"; 2570 FOS.PadToColumn(OverlapCol); 2571 FOS << "Overlap"; 2572 FOS.PadToColumn(BaseUniqueCol); 2573 FOS << "Base unique"; 2574 FOS.PadToColumn(TestUniqueCol); 2575 FOS << "Test unique"; 2576 FOS.PadToColumn(BaseSampleCol); 2577 FOS << "Base samples"; 2578 FOS.PadToColumn(TestSampleCol); 2579 FOS << "Test samples"; 2580 FOS.PadToColumn(FuncNameCol); 2581 FOS << "Function name\n"; 2582 for (const auto &F : FuncSimilarityDump) { 2583 double OverlapPercent = 2584 F.second.UnionSample > 0 2585 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2586 : 0; 2587 double BaseUniquePercent = 2588 F.second.BaseSample > 0 2589 ? static_cast<double>(F.second.BaseUniqueSample) / 2590 F.second.BaseSample 2591 : 0; 2592 double TestUniquePercent = 2593 F.second.TestSample > 0 2594 ? static_cast<double>(F.second.TestUniqueSample) / 2595 F.second.TestSample 2596 : 0; 2597 2598 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2599 FOS.PadToColumn(TestWeightCol); 2600 FOS << format("%.2f%%", F.second.TestWeight * 100); 2601 FOS.PadToColumn(SimilarityCol); 2602 FOS << format("%.2f%%", F.second.Similarity * 100); 2603 FOS.PadToColumn(OverlapCol); 2604 FOS << format("%.2f%%", OverlapPercent * 100); 2605 FOS.PadToColumn(BaseUniqueCol); 2606 FOS << format("%.2f%%", BaseUniquePercent * 100); 2607 FOS.PadToColumn(TestUniqueCol); 2608 FOS << format("%.2f%%", TestUniquePercent * 100); 2609 FOS.PadToColumn(BaseSampleCol); 2610 FOS << F.second.BaseSample; 2611 FOS.PadToColumn(TestSampleCol); 2612 FOS << F.second.TestSample; 2613 FOS.PadToColumn(FuncNameCol); 2614 FOS << F.second.TestName.toString() << "\n"; 2615 } 2616 } 2617 2618 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2619 OS << "Profile overlap infomation for base_profile: " 2620 << ProfOverlap.BaseName.toString() 2621 << " and test_profile: " << ProfOverlap.TestName.toString() 2622 << "\nProgram level:\n"; 2623 2624 OS << " Whole program profile similarity: " 2625 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2626 2627 assert(ProfOverlap.UnionSample > 0 && 2628 "Total samples in two profile should be greater than 0"); 2629 double OverlapPercent = 2630 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2631 assert(ProfOverlap.BaseSample > 0 && 2632 "Total samples in base profile should be greater than 0"); 2633 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2634 ProfOverlap.BaseSample; 2635 assert(ProfOverlap.TestSample > 0 && 2636 "Total samples in test profile should be greater than 0"); 2637 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2638 ProfOverlap.TestSample; 2639 2640 OS << " Whole program sample overlap: " 2641 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2642 OS << " percentage of samples unique in base profile: " 2643 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2644 OS << " percentage of samples unique in test profile: " 2645 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2646 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2647 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2648 2649 assert(ProfOverlap.UnionCount > 0 && 2650 "There should be at least one function in two input profiles"); 2651 double FuncOverlapPercent = 2652 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2653 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2654 << "\n"; 2655 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2656 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2657 << "\n"; 2658 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2659 << "\n"; 2660 } 2661 2662 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2663 raw_fd_ostream &OS) const { 2664 assert(HotFuncOverlap.UnionCount > 0 && 2665 "There should be at least one hot function in two input profiles"); 2666 OS << " Hot-function overlap: " 2667 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2668 HotFuncOverlap.UnionCount * 100) 2669 << "\n"; 2670 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2671 OS << " hot functions unique in base profile: " 2672 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2673 OS << " hot functions unique in test profile: " 2674 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2675 2676 assert(HotBlockOverlap.UnionCount > 0 && 2677 "There should be at least one hot block in two input profiles"); 2678 OS << " Hot-block overlap: " 2679 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2680 HotBlockOverlap.UnionCount * 100) 2681 << "\n"; 2682 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2683 OS << " hot blocks unique in base profile: " 2684 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2685 OS << " hot blocks unique in test profile: " 2686 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2687 } 2688 2689 std::error_code SampleOverlapAggregator::loadProfiles() { 2690 using namespace sampleprof; 2691 2692 LLVMContext Context; 2693 auto FS = vfs::getRealFileSystem(); 2694 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2695 FSDiscriminatorPassOption); 2696 if (std::error_code EC = BaseReaderOrErr.getError()) 2697 exitWithErrorCode(EC, BaseFilename); 2698 2699 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2700 FSDiscriminatorPassOption); 2701 if (std::error_code EC = TestReaderOrErr.getError()) 2702 exitWithErrorCode(EC, TestFilename); 2703 2704 BaseReader = std::move(BaseReaderOrErr.get()); 2705 TestReader = std::move(TestReaderOrErr.get()); 2706 2707 if (std::error_code EC = BaseReader->read()) 2708 exitWithErrorCode(EC, BaseFilename); 2709 if (std::error_code EC = TestReader->read()) 2710 exitWithErrorCode(EC, TestFilename); 2711 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2712 exitWithError( 2713 "cannot compare probe-based profile with non-probe-based profile"); 2714 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2715 exitWithError("cannot compare CS profile with non-CS profile"); 2716 2717 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2718 // profile summary. 2719 ProfileSummary &BasePS = BaseReader->getSummary(); 2720 ProfileSummary &TestPS = TestReader->getSummary(); 2721 BaseHotThreshold = 2722 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2723 TestHotThreshold = 2724 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2725 2726 return std::error_code(); 2727 } 2728 2729 void overlapSampleProfile(const std::string &BaseFilename, 2730 const std::string &TestFilename, 2731 const OverlapFuncFilters &FuncFilter, 2732 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2733 using namespace sampleprof; 2734 2735 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2736 // report 2--3 places after decimal point in percentage numbers. 2737 SampleOverlapAggregator OverlapAggr( 2738 BaseFilename, TestFilename, 2739 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2740 if (std::error_code EC = OverlapAggr.loadProfiles()) 2741 exitWithErrorCode(EC); 2742 2743 OverlapAggr.initializeSampleProfileOverlap(); 2744 if (OverlapAggr.detectZeroSampleProfile(OS)) 2745 return; 2746 2747 OverlapAggr.computeSampleProfileOverlap(OS); 2748 2749 OverlapAggr.dumpProgramSummary(OS); 2750 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2751 OverlapAggr.dumpFuncSimilarity(OS); 2752 } 2753 2754 static int overlap_main() { 2755 std::error_code EC; 2756 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2757 if (EC) 2758 exitWithErrorCode(EC, OutputFilename); 2759 2760 if (ProfileKind == instr) 2761 overlapInstrProfile(BaseFilename, TestFilename, 2762 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2763 OS, IsCS); 2764 else 2765 overlapSampleProfile(BaseFilename, TestFilename, 2766 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2767 SimilarityCutoff, OS); 2768 2769 return 0; 2770 } 2771 2772 namespace { 2773 struct ValueSitesStats { 2774 ValueSitesStats() = default; 2775 uint64_t TotalNumValueSites = 0; 2776 uint64_t TotalNumValueSitesWithValueProfile = 0; 2777 uint64_t TotalNumValues = 0; 2778 std::vector<unsigned> ValueSitesHistogram; 2779 }; 2780 } // namespace 2781 2782 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2783 ValueSitesStats &Stats, raw_fd_ostream &OS, 2784 InstrProfSymtab *Symtab) { 2785 uint32_t NS = Func.getNumValueSites(VK); 2786 Stats.TotalNumValueSites += NS; 2787 for (size_t I = 0; I < NS; ++I) { 2788 auto VD = Func.getValueArrayForSite(VK, I); 2789 uint32_t NV = VD.size(); 2790 if (NV == 0) 2791 continue; 2792 Stats.TotalNumValues += NV; 2793 Stats.TotalNumValueSitesWithValueProfile++; 2794 if (NV > Stats.ValueSitesHistogram.size()) 2795 Stats.ValueSitesHistogram.resize(NV, 0); 2796 Stats.ValueSitesHistogram[NV - 1]++; 2797 2798 uint64_t SiteSum = 0; 2799 for (const auto &V : VD) 2800 SiteSum += V.Count; 2801 if (SiteSum == 0) 2802 SiteSum = 1; 2803 2804 for (const auto &V : VD) { 2805 OS << "\t[ " << format("%2u", I) << ", "; 2806 if (Symtab == nullptr) 2807 OS << format("%4" PRIu64, V.Value); 2808 else 2809 OS << Symtab->getFuncOrVarName(V.Value); 2810 OS << ", " << format("%10" PRId64, V.Count) << " ] (" 2811 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n"; 2812 } 2813 } 2814 } 2815 2816 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2817 ValueSitesStats &Stats) { 2818 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2819 OS << " Total number of sites with values: " 2820 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2821 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2822 2823 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2824 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2825 if (Stats.ValueSitesHistogram[I] > 0) 2826 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2827 } 2828 } 2829 2830 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2831 if (SFormat == ShowFormat::Json) 2832 exitWithError("JSON output is not supported for instr profiles"); 2833 if (SFormat == ShowFormat::Yaml) 2834 exitWithError("YAML output is not supported for instr profiles"); 2835 auto FS = vfs::getRealFileSystem(); 2836 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2837 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2838 if (ShowDetailedSummary && Cutoffs.empty()) { 2839 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2840 } 2841 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2842 if (Error E = ReaderOrErr.takeError()) 2843 exitWithError(std::move(E), Filename); 2844 2845 auto Reader = std::move(ReaderOrErr.get()); 2846 bool IsIRInstr = Reader->isIRLevelProfile(); 2847 size_t ShownFunctions = 0; 2848 size_t BelowCutoffFunctions = 0; 2849 int NumVPKind = IPVK_Last - IPVK_First + 1; 2850 std::vector<ValueSitesStats> VPStats(NumVPKind); 2851 2852 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2853 const std::pair<std::string, uint64_t> &v2) { 2854 return v1.second > v2.second; 2855 }; 2856 2857 std::priority_queue<std::pair<std::string, uint64_t>, 2858 std::vector<std::pair<std::string, uint64_t>>, 2859 decltype(MinCmp)> 2860 HottestFuncs(MinCmp); 2861 2862 if (!TextFormat && OnlyListBelow) { 2863 OS << "The list of functions with the maximum counter less than " 2864 << ShowValueCutoff << ":\n"; 2865 } 2866 2867 // Add marker so that IR-level instrumentation round-trips properly. 2868 if (TextFormat && IsIRInstr) 2869 OS << ":ir\n"; 2870 2871 for (const auto &Func : *Reader) { 2872 if (Reader->isIRLevelProfile()) { 2873 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2874 if (FuncIsCS != ShowCS) 2875 continue; 2876 } 2877 bool Show = ShowAllFunctions || 2878 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2879 2880 bool doTextFormatDump = (Show && TextFormat); 2881 2882 if (doTextFormatDump) { 2883 InstrProfSymtab &Symtab = Reader->getSymtab(); 2884 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2885 OS); 2886 continue; 2887 } 2888 2889 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2890 Builder.addRecord(Func); 2891 2892 if (ShowCovered) { 2893 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2894 OS << Func.Name << "\n"; 2895 continue; 2896 } 2897 2898 uint64_t FuncMax = 0; 2899 uint64_t FuncSum = 0; 2900 2901 auto PseudoKind = Func.getCountPseudoKind(); 2902 if (PseudoKind != InstrProfRecord::NotPseudo) { 2903 if (Show) { 2904 if (!ShownFunctions) 2905 OS << "Counters:\n"; 2906 ++ShownFunctions; 2907 OS << " " << Func.Name << ":\n" 2908 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2909 << " Counters: " << Func.Counts.size(); 2910 if (PseudoKind == InstrProfRecord::PseudoHot) 2911 OS << " <PseudoHot>\n"; 2912 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2913 OS << " <PseudoWarm>\n"; 2914 else 2915 llvm_unreachable("Unknown PseudoKind"); 2916 } 2917 continue; 2918 } 2919 2920 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2921 FuncMax = std::max(FuncMax, Func.Counts[I]); 2922 FuncSum += Func.Counts[I]; 2923 } 2924 2925 if (FuncMax < ShowValueCutoff) { 2926 ++BelowCutoffFunctions; 2927 if (OnlyListBelow) { 2928 OS << " " << Func.Name << ": (Max = " << FuncMax 2929 << " Sum = " << FuncSum << ")\n"; 2930 } 2931 continue; 2932 } else if (OnlyListBelow) 2933 continue; 2934 2935 if (TopNFunctions) { 2936 if (HottestFuncs.size() == TopNFunctions) { 2937 if (HottestFuncs.top().second < FuncMax) { 2938 HottestFuncs.pop(); 2939 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2940 } 2941 } else 2942 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2943 } 2944 2945 if (Show) { 2946 if (!ShownFunctions) 2947 OS << "Counters:\n"; 2948 2949 ++ShownFunctions; 2950 2951 OS << " " << Func.Name << ":\n" 2952 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2953 << " Counters: " << Func.Counts.size() << "\n"; 2954 if (!IsIRInstr) 2955 OS << " Function count: " << Func.Counts[0] << "\n"; 2956 2957 if (ShowIndirectCallTargets) 2958 OS << " Indirect Call Site Count: " 2959 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2960 2961 if (ShowVTables) 2962 OS << " Number of instrumented vtables: " 2963 << Func.getNumValueSites(IPVK_VTableTarget) << "\n"; 2964 2965 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2966 if (ShowMemOPSizes && NumMemOPCalls > 0) 2967 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2968 << "\n"; 2969 2970 if (ShowCounts) { 2971 OS << " Block counts: ["; 2972 size_t Start = (IsIRInstr ? 0 : 1); 2973 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2974 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2975 } 2976 OS << "]\n"; 2977 } 2978 2979 if (ShowIndirectCallTargets) { 2980 OS << " Indirect Target Results:\n"; 2981 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2982 VPStats[IPVK_IndirectCallTarget], OS, 2983 &(Reader->getSymtab())); 2984 } 2985 2986 if (ShowVTables) { 2987 OS << " VTable Results:\n"; 2988 traverseAllValueSites(Func, IPVK_VTableTarget, 2989 VPStats[IPVK_VTableTarget], OS, 2990 &(Reader->getSymtab())); 2991 } 2992 2993 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2994 OS << " Memory Intrinsic Size Results:\n"; 2995 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2996 nullptr); 2997 } 2998 } 2999 } 3000 if (Reader->hasError()) 3001 exitWithError(Reader->getError(), Filename); 3002 3003 if (TextFormat || ShowCovered) 3004 return 0; 3005 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 3006 bool IsIR = Reader->isIRLevelProfile(); 3007 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 3008 if (IsIR) { 3009 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 3010 OS << " instrument_loop_entries = " << Reader->instrLoopEntriesEnabled(); 3011 } 3012 OS << "\n"; 3013 if (ShowAllFunctions || !FuncNameFilter.empty()) 3014 OS << "Functions shown: " << ShownFunctions << "\n"; 3015 PS->printSummary(OS); 3016 if (ShowValueCutoff > 0) { 3017 OS << "Number of functions with maximum count (< " << ShowValueCutoff 3018 << "): " << BelowCutoffFunctions << "\n"; 3019 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 3020 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 3021 } 3022 3023 if (TopNFunctions) { 3024 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 3025 while (!HottestFuncs.empty()) { 3026 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 3027 HottestFuncs.pop(); 3028 } 3029 OS << "Top " << TopNFunctions 3030 << " functions with the largest internal block counts: \n"; 3031 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 3032 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 3033 } 3034 3035 if (ShownFunctions && ShowIndirectCallTargets) { 3036 OS << "Statistics for indirect call sites profile:\n"; 3037 showValueSitesStats(OS, IPVK_IndirectCallTarget, 3038 VPStats[IPVK_IndirectCallTarget]); 3039 } 3040 3041 if (ShownFunctions && ShowVTables) { 3042 OS << "Statistics for vtable profile:\n"; 3043 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]); 3044 } 3045 3046 if (ShownFunctions && ShowMemOPSizes) { 3047 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 3048 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 3049 } 3050 3051 if (ShowDetailedSummary) 3052 PS->printDetailedSummary(OS); 3053 3054 if (ShowBinaryIds) 3055 if (Error E = Reader->printBinaryIds(OS)) 3056 exitWithError(std::move(E), Filename); 3057 3058 if (ShowProfileVersion) 3059 OS << "Profile version: " << Reader->getVersion() << "\n"; 3060 3061 if (ShowTemporalProfTraces) { 3062 auto &Traces = Reader->getTemporalProfTraces(); 3063 OS << "Temporal Profile Traces (samples=" << Traces.size() 3064 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 3065 for (unsigned i = 0; i < Traces.size(); i++) { 3066 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 3067 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 3068 for (auto &NameRef : Traces[i].FunctionNameRefs) 3069 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 3070 } 3071 } 3072 3073 return 0; 3074 } 3075 3076 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 3077 raw_fd_ostream &OS) { 3078 if (!Reader->dumpSectionInfo(OS)) { 3079 WithColor::warning() << "-show-sec-info-only is only supported for " 3080 << "sample profile in extbinary format and is " 3081 << "ignored for other formats.\n"; 3082 return; 3083 } 3084 } 3085 3086 namespace { 3087 struct HotFuncInfo { 3088 std::string FuncName; 3089 uint64_t TotalCount = 0; 3090 double TotalCountPercent = 0.0f; 3091 uint64_t MaxCount = 0; 3092 uint64_t EntryCount = 0; 3093 3094 HotFuncInfo() = default; 3095 3096 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 3097 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 3098 MaxCount(MS), EntryCount(ES) {} 3099 }; 3100 } // namespace 3101 3102 // Print out detailed information about hot functions in PrintValues vector. 3103 // Users specify titles and offset of every columns through ColumnTitle and 3104 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 3105 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 3106 // print out or let it be an empty string. 3107 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 3108 const std::vector<int> &ColumnOffset, 3109 const std::vector<HotFuncInfo> &PrintValues, 3110 uint64_t HotFuncCount, uint64_t TotalFuncCount, 3111 uint64_t HotProfCount, uint64_t TotalProfCount, 3112 const std::string &HotFuncMetric, 3113 uint32_t TopNFunctions, raw_fd_ostream &OS) { 3114 assert(ColumnOffset.size() == ColumnTitle.size() && 3115 "ColumnOffset and ColumnTitle should have the same size"); 3116 assert(ColumnTitle.size() >= 4 && 3117 "ColumnTitle should have at least 4 elements"); 3118 assert(TotalFuncCount > 0 && 3119 "There should be at least one function in the profile"); 3120 double TotalProfPercent = 0; 3121 if (TotalProfCount > 0) 3122 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 3123 3124 formatted_raw_ostream FOS(OS); 3125 FOS << HotFuncCount << " out of " << TotalFuncCount 3126 << " functions with profile (" 3127 << format("%.2f%%", 3128 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 3129 << ") are considered hot functions"; 3130 if (!HotFuncMetric.empty()) 3131 FOS << " (" << HotFuncMetric << ")"; 3132 FOS << ".\n"; 3133 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 3134 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 3135 3136 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 3137 FOS.PadToColumn(ColumnOffset[I]); 3138 FOS << ColumnTitle[I]; 3139 } 3140 FOS << "\n"; 3141 3142 uint32_t Count = 0; 3143 for (const auto &R : PrintValues) { 3144 if (TopNFunctions && (Count++ == TopNFunctions)) 3145 break; 3146 FOS.PadToColumn(ColumnOffset[0]); 3147 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 3148 FOS.PadToColumn(ColumnOffset[1]); 3149 FOS << R.MaxCount; 3150 FOS.PadToColumn(ColumnOffset[2]); 3151 FOS << R.EntryCount; 3152 FOS.PadToColumn(ColumnOffset[3]); 3153 FOS << R.FuncName << "\n"; 3154 } 3155 } 3156 3157 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 3158 ProfileSummary &PS, uint32_t TopN, 3159 raw_fd_ostream &OS) { 3160 using namespace sampleprof; 3161 3162 const uint32_t HotFuncCutoff = 990000; 3163 auto &SummaryVector = PS.getDetailedSummary(); 3164 uint64_t MinCountThreshold = 0; 3165 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 3166 if (SummaryEntry.Cutoff == HotFuncCutoff) { 3167 MinCountThreshold = SummaryEntry.MinCount; 3168 break; 3169 } 3170 } 3171 3172 // Traverse all functions in the profile and keep only hot functions. 3173 // The following loop also calculates the sum of total samples of all 3174 // functions. 3175 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 3176 std::greater<uint64_t>> 3177 HotFunc; 3178 uint64_t ProfileTotalSample = 0; 3179 uint64_t HotFuncSample = 0; 3180 uint64_t HotFuncCount = 0; 3181 3182 for (const auto &I : Profiles) { 3183 FuncSampleStats FuncStats; 3184 const FunctionSamples &FuncProf = I.second; 3185 ProfileTotalSample += FuncProf.getTotalSamples(); 3186 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 3187 3188 if (isFunctionHot(FuncStats, MinCountThreshold)) { 3189 HotFunc.emplace(FuncProf.getTotalSamples(), 3190 std::make_pair(&(I.second), FuncStats.MaxSample)); 3191 HotFuncSample += FuncProf.getTotalSamples(); 3192 ++HotFuncCount; 3193 } 3194 } 3195 3196 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 3197 "Entry sample", "Function name"}; 3198 std::vector<int> ColumnOffset{0, 24, 42, 58}; 3199 std::string Metric = 3200 std::string("max sample >= ") + std::to_string(MinCountThreshold); 3201 std::vector<HotFuncInfo> PrintValues; 3202 for (const auto &FuncPair : HotFunc) { 3203 const FunctionSamples &Func = *FuncPair.second.first; 3204 double TotalSamplePercent = 3205 (ProfileTotalSample > 0) 3206 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 3207 : 0; 3208 PrintValues.emplace_back( 3209 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 3210 TotalSamplePercent, FuncPair.second.second, 3211 Func.getHeadSamplesEstimate())); 3212 } 3213 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 3214 Profiles.size(), HotFuncSample, ProfileTotalSample, 3215 Metric, TopN, OS); 3216 3217 return 0; 3218 } 3219 3220 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3221 if (SFormat == ShowFormat::Yaml) 3222 exitWithError("YAML output is not supported for sample profiles"); 3223 using namespace sampleprof; 3224 LLVMContext Context; 3225 auto FS = vfs::getRealFileSystem(); 3226 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3227 FSDiscriminatorPassOption); 3228 if (std::error_code EC = ReaderOrErr.getError()) 3229 exitWithErrorCode(EC, Filename); 3230 3231 auto Reader = std::move(ReaderOrErr.get()); 3232 if (ShowSectionInfoOnly) { 3233 showSectionInfo(Reader.get(), OS); 3234 return 0; 3235 } 3236 3237 if (std::error_code EC = Reader->read()) 3238 exitWithErrorCode(EC, Filename); 3239 3240 if (ShowAllFunctions || FuncNameFilter.empty()) { 3241 if (SFormat == ShowFormat::Json) 3242 Reader->dumpJson(OS); 3243 else 3244 Reader->dump(OS); 3245 } else { 3246 if (SFormat == ShowFormat::Json) 3247 exitWithError( 3248 "the JSON format is supported only when all functions are to " 3249 "be printed"); 3250 3251 // TODO: parse context string to support filtering by contexts. 3252 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3253 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3254 } 3255 3256 if (ShowProfileSymbolList) { 3257 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3258 Reader->getProfileSymbolList(); 3259 ReaderList->dump(OS); 3260 } 3261 3262 if (ShowDetailedSummary) { 3263 auto &PS = Reader->getSummary(); 3264 PS.printSummary(OS); 3265 PS.printDetailedSummary(OS); 3266 } 3267 3268 if (ShowHotFuncList || TopNFunctions) 3269 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3270 TopNFunctions, OS); 3271 3272 return 0; 3273 } 3274 3275 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3276 if (SFormat == ShowFormat::Json) 3277 exitWithError("JSON output is not supported for MemProf"); 3278 3279 // Show the raw profile in YAML. 3280 if (memprof::RawMemProfReader::hasFormat(Filename)) { 3281 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3282 Filename, ProfiledBinary, /*KeepNames=*/true); 3283 if (Error E = ReaderOr.takeError()) { 3284 // Since the error can be related to the profile or the binary we do not 3285 // pass whence. Instead additional context is provided where necessary in 3286 // the error message. 3287 exitWithError(std::move(E), /*Whence*/ ""); 3288 } 3289 3290 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3291 ReaderOr.get().release()); 3292 3293 Reader->printYAML(OS); 3294 return 0; 3295 } 3296 3297 // Show the indexed MemProf profile in YAML. 3298 auto FS = vfs::getRealFileSystem(); 3299 auto ReaderOrErr = IndexedInstrProfReader::create(Filename, *FS); 3300 if (Error E = ReaderOrErr.takeError()) 3301 exitWithError(std::move(E), Filename); 3302 3303 auto Reader = std::move(ReaderOrErr.get()); 3304 memprof::AllMemProfData Data = Reader->getAllMemProfData(); 3305 // Construct yaml::Output with the maximum column width of 80 so that each 3306 // Frame fits in one line. 3307 yaml::Output Yout(OS, nullptr, 80); 3308 Yout << Data; 3309 3310 return 0; 3311 } 3312 3313 static int showDebugInfoCorrelation(const std::string &Filename, 3314 ShowFormat SFormat, raw_fd_ostream &OS) { 3315 if (SFormat == ShowFormat::Json) 3316 exitWithError("JSON output is not supported for debug info correlation"); 3317 std::unique_ptr<InstrProfCorrelator> Correlator; 3318 if (auto Err = 3319 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3320 .moveInto(Correlator)) 3321 exitWithError(std::move(Err), Filename); 3322 if (SFormat == ShowFormat::Yaml) { 3323 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3324 exitWithError(std::move(Err), Filename); 3325 return 0; 3326 } 3327 3328 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3329 exitWithError(std::move(Err), Filename); 3330 3331 InstrProfSymtab Symtab; 3332 if (auto Err = Symtab.create( 3333 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3334 exitWithError(std::move(Err), Filename); 3335 3336 if (ShowProfileSymbolList) 3337 Symtab.dumpNames(OS); 3338 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3339 // counters the section holds. 3340 if (ShowDetailedSummary) 3341 OS << "Counters section size: 0x" 3342 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3343 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3344 3345 return 0; 3346 } 3347 3348 static int show_main(StringRef ProgName) { 3349 if (Filename.empty() && DebugInfoFilename.empty()) 3350 exitWithError( 3351 "the positional argument '<profdata-file>' is required unless '--" + 3352 DebugInfoFilename.ArgStr + "' is provided"); 3353 3354 if (Filename == OutputFilename) { 3355 errs() << ProgName 3356 << " show: Input file name cannot be the same as the output file " 3357 "name!\n"; 3358 return 1; 3359 } 3360 if (JsonFormat) 3361 SFormat = ShowFormat::Json; 3362 3363 std::error_code EC; 3364 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3365 if (EC) 3366 exitWithErrorCode(EC, OutputFilename); 3367 3368 if (ShowAllFunctions && !FuncNameFilter.empty()) 3369 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3370 3371 if (!DebugInfoFilename.empty()) 3372 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3373 3374 if (ShowProfileKind == instr) 3375 return showInstrProfile(SFormat, OS); 3376 if (ShowProfileKind == sample) 3377 return showSampleProfile(SFormat, OS); 3378 return showMemProfProfile(SFormat, OS); 3379 } 3380 3381 static int order_main() { 3382 std::error_code EC; 3383 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3384 if (EC) 3385 exitWithErrorCode(EC, OutputFilename); 3386 auto FS = vfs::getRealFileSystem(); 3387 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3388 if (Error E = ReaderOrErr.takeError()) 3389 exitWithError(std::move(E), Filename); 3390 3391 auto Reader = std::move(ReaderOrErr.get()); 3392 for (auto &I : *Reader) { 3393 // Read all entries 3394 (void)I; 3395 } 3396 ArrayRef Traces = Reader->getTemporalProfTraces(); 3397 if (NumTestTraces && NumTestTraces >= Traces.size()) 3398 exitWithError( 3399 "--" + NumTestTraces.ArgStr + 3400 " must be smaller than the total number of traces: expected: < " + 3401 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces)); 3402 ArrayRef TestTraces = Traces.take_back(NumTestTraces); 3403 Traces = Traces.drop_back(NumTestTraces); 3404 3405 std::vector<BPFunctionNode> Nodes; 3406 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes); 3407 BalancedPartitioningConfig Config; 3408 BalancedPartitioning BP(Config); 3409 BP.run(Nodes); 3410 3411 OS << "# Ordered " << Nodes.size() << " functions\n"; 3412 if (!TestTraces.empty()) { 3413 // Since we don't know the symbol sizes, we assume 32 functions per page. 3414 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber; 3415 for (auto &Node : Nodes) 3416 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32; 3417 3418 SmallSet<unsigned, 0> TouchedPages; 3419 unsigned Area = 0; 3420 for (auto &Trace : TestTraces) { 3421 for (auto Id : Trace.FunctionNameRefs) { 3422 auto It = IdToPageNumber.find(Id); 3423 if (It == IdToPageNumber.end()) 3424 continue; 3425 TouchedPages.insert(It->getSecond()); 3426 Area += TouchedPages.size(); 3427 } 3428 TouchedPages.clear(); 3429 } 3430 OS << "# Total area under the page fault curve: " << (float)Area << "\n"; 3431 } 3432 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3433 "linkage and this output does not take that into account. Some " 3434 "post-processing may be required before passing to the linker via " 3435 "-order_file.\n"; 3436 for (auto &N : Nodes) { 3437 auto [Filename, ParsedFuncName] = 3438 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3439 if (!Filename.empty()) 3440 OS << "# " << Filename << "\n"; 3441 OS << ParsedFuncName << "\n"; 3442 } 3443 return 0; 3444 } 3445 3446 int llvm_profdata_main(int argc, char **argvNonConst, 3447 const llvm::ToolContext &) { 3448 const char **argv = const_cast<const char **>(argvNonConst); 3449 3450 StringRef ProgName(sys::path::filename(argv[0])); 3451 3452 if (argc < 2) { 3453 errs() 3454 << ProgName 3455 << ": No subcommand specified! Run llvm-profdata --help for usage.\n"; 3456 return 1; 3457 } 3458 3459 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3460 3461 if (ShowSubcommand) 3462 return show_main(ProgName); 3463 3464 if (OrderSubcommand) 3465 return order_main(); 3466 3467 if (OverlapSubcommand) 3468 return overlap_main(); 3469 3470 if (MergeSubcommand) 3471 return merge_main(ProgName); 3472 3473 errs() << ProgName 3474 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3475 return 1; 3476 } 3477