1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Debuginfod/HTTPClient.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/ProfileData/InstrProfCorrelator.h" 20 #include "llvm/ProfileData/InstrProfReader.h" 21 #include "llvm/ProfileData/InstrProfWriter.h" 22 #include "llvm/ProfileData/MemProf.h" 23 #include "llvm/ProfileData/MemProfReader.h" 24 #include "llvm/ProfileData/ProfileCommon.h" 25 #include "llvm/ProfileData/SampleProfReader.h" 26 #include "llvm/ProfileData/SampleProfWriter.h" 27 #include "llvm/Support/BalancedPartitioning.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Discriminator.h" 30 #include "llvm/Support/Errc.h" 31 #include "llvm/Support/FileSystem.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/FormattedStream.h" 34 #include "llvm/Support/LLVMDriver.h" 35 #include "llvm/Support/MD5.h" 36 #include "llvm/Support/MemoryBuffer.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Support/Regex.h" 39 #include "llvm/Support/ThreadPool.h" 40 #include "llvm/Support/Threading.h" 41 #include "llvm/Support/VirtualFileSystem.h" 42 #include "llvm/Support/WithColor.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cmath> 46 #include <optional> 47 #include <queue> 48 49 using namespace llvm; 50 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 51 52 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 53 // on each subcommand. 54 cl::SubCommand ShowSubcommand( 55 "show", 56 "Takes a profile data file and displays the profiles. See detailed " 57 "documentation in " 58 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 59 cl::SubCommand OrderSubcommand( 60 "order", 61 "Reads temporal profiling traces from a profile and outputs a function " 62 "order that reduces the number of page faults for those traces. See " 63 "detailed documentation in " 64 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 65 cl::SubCommand OverlapSubcommand( 66 "overlap", 67 "Computes and displays the overlap between two profiles. See detailed " 68 "documentation in " 69 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 70 cl::SubCommand MergeSubcommand( 71 "merge", 72 "Takes several profiles and merge them together. See detailed " 73 "documentation in " 74 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 75 76 namespace { 77 enum ProfileKinds { instr, sample, memory }; 78 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 79 80 enum ProfileFormat { 81 PF_None = 0, 82 PF_Text, 83 PF_Compact_Binary, // Deprecated 84 PF_Ext_Binary, 85 PF_GCC, 86 PF_Binary 87 }; 88 89 enum class ShowFormat { Text, Json, Yaml }; 90 } // namespace 91 92 // Common options. 93 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 94 cl::init("-"), cl::desc("Output file"), 95 cl::sub(ShowSubcommand), 96 cl::sub(OrderSubcommand), 97 cl::sub(OverlapSubcommand), 98 cl::sub(MergeSubcommand)); 99 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 100 // will be used. llvm::cl::alias::done() method asserts this condition. 101 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 102 cl::aliasopt(OutputFilename)); 103 104 // Options common to at least two commands. 105 cl::opt<ProfileKinds> ProfileKind( 106 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 107 cl::sub(OverlapSubcommand), cl::init(instr), 108 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 109 clEnumVal(sample, "Sample profile"))); 110 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 111 cl::sub(ShowSubcommand), 112 cl::sub(OrderSubcommand)); 113 cl::opt<unsigned> MaxDbgCorrelationWarnings( 114 "max-debug-info-correlation-warnings", 115 cl::desc("The maximum number of warnings to emit when correlating " 116 "profile from debug info (0 = no limit)"), 117 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 118 cl::opt<std::string> ProfiledBinary( 119 "profiled-binary", cl::init(""), 120 cl::desc("Path to binary from which the profile was collected."), 121 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 122 cl::opt<std::string> DebugInfoFilename( 123 "debug-info", cl::init(""), 124 cl::desc( 125 "For show, read and extract profile metadata from debug info and show " 126 "the functions it found. For merge, use the provided debug info to " 127 "correlate the raw profile."), 128 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 129 cl::opt<std::string> 130 BinaryFilename("binary-file", cl::init(""), 131 cl::desc("For merge, use the provided unstripped bianry to " 132 "correlate the raw profile."), 133 cl::sub(MergeSubcommand)); 134 cl::list<std::string> DebugFileDirectory( 135 "debug-file-directory", 136 cl::desc("Directories to search for object files by build ID")); 137 cl::opt<bool> DebugInfod("debuginfod", cl::init(false), cl::Hidden, 138 cl::sub(MergeSubcommand), 139 cl::desc("Enable debuginfod")); 140 cl::opt<ProfCorrelatorKind> BIDFetcherProfileCorrelate( 141 "correlate", 142 cl::desc("Use debug-info or binary correlation to correlate profiles with " 143 "build id fetcher"), 144 cl::init(InstrProfCorrelator::NONE), 145 cl::values(clEnumValN(InstrProfCorrelator::NONE, "", 146 "No profile correlation"), 147 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info", 148 "Use debug info to correlate"), 149 clEnumValN(InstrProfCorrelator::BINARY, "binary", 150 "Use binary to correlate"))); 151 cl::opt<std::string> FuncNameFilter( 152 "function", 153 cl::desc("Only functions matching the filter are shown in the output. For " 154 "overlapping CSSPGO, this takes a function name with calling " 155 "context."), 156 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand), 157 cl::sub(MergeSubcommand)); 158 159 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 160 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 161 // options. 162 163 // Options specific to merge subcommand. 164 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 165 cl::desc("<filename...>")); 166 cl::list<std::string> WeightedInputFilenames("weighted-input", 167 cl::sub(MergeSubcommand), 168 cl::desc("<weight>,<filename>")); 169 cl::opt<ProfileFormat> OutputFormat( 170 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 171 cl::init(PF_Ext_Binary), 172 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 173 clEnumValN(PF_Ext_Binary, "extbinary", 174 "Extensible binary encoding " 175 "(default)"), 176 clEnumValN(PF_Text, "text", "Text encoding"), 177 clEnumValN(PF_GCC, "gcc", 178 "GCC encoding (only meaningful for -sample)"))); 179 cl::opt<std::string> 180 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 181 cl::desc("Path to file containing newline-separated " 182 "[<weight>,]<filename> entries")); 183 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 184 cl::aliasopt(InputFilenamesFile)); 185 cl::opt<bool> DumpInputFileList( 186 "dump-input-file-list", cl::init(false), cl::Hidden, 187 cl::sub(MergeSubcommand), 188 cl::desc("Dump the list of input files and their weights, then exit")); 189 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 190 cl::sub(MergeSubcommand), 191 cl::desc("Symbol remapping file")); 192 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 193 cl::aliasopt(RemappingFile)); 194 cl::opt<bool> 195 UseMD5("use-md5", cl::init(false), cl::Hidden, 196 cl::desc("Choose to use MD5 to represent string in name table (only " 197 "meaningful for -extbinary)"), 198 cl::sub(MergeSubcommand)); 199 cl::opt<bool> CompressAllSections( 200 "compress-all-sections", cl::init(false), cl::Hidden, 201 cl::sub(MergeSubcommand), 202 cl::desc("Compress all sections when writing the profile (only " 203 "meaningful for -extbinary)")); 204 cl::opt<bool> SampleMergeColdContext( 205 "sample-merge-cold-context", cl::init(false), cl::Hidden, 206 cl::sub(MergeSubcommand), 207 cl::desc( 208 "Merge context sample profiles whose count is below cold threshold")); 209 cl::opt<bool> SampleTrimColdContext( 210 "sample-trim-cold-context", cl::init(false), cl::Hidden, 211 cl::sub(MergeSubcommand), 212 cl::desc( 213 "Trim context sample profiles whose count is below cold threshold")); 214 cl::opt<uint32_t> SampleColdContextFrameDepth( 215 "sample-frame-depth-for-cold-context", cl::init(1), 216 cl::sub(MergeSubcommand), 217 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 218 "context-less base profile")); 219 cl::opt<size_t> OutputSizeLimit( 220 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 221 cl::desc("Trim cold functions until profile size is below specified " 222 "limit in bytes. This uses a heursitic and functions may be " 223 "excessively trimmed")); 224 cl::opt<bool> GenPartialProfile( 225 "gen-partial-profile", cl::init(false), cl::Hidden, 226 cl::sub(MergeSubcommand), 227 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 228 cl::opt<bool> SplitLayout( 229 "split-layout", cl::init(false), cl::Hidden, 230 cl::sub(MergeSubcommand), 231 cl::desc("Split the profile to two sections with one containing sample " 232 "profiles with inlined functions and the other without (only " 233 "meaningful for -extbinary)")); 234 cl::opt<std::string> SupplInstrWithSample( 235 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 236 cl::sub(MergeSubcommand), 237 cl::desc("Supplement an instr profile with sample profile, to correct " 238 "the profile unrepresentativeness issue. The sample " 239 "profile is the input of the flag. Output will be in instr " 240 "format (The flag only works with -instr)")); 241 cl::opt<float> ZeroCounterThreshold( 242 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 243 cl::sub(MergeSubcommand), 244 cl::desc("For the function which is cold in instr profile but hot in " 245 "sample profile, if the ratio of the number of zero counters " 246 "divided by the total number of counters is above the " 247 "threshold, the profile of the function will be regarded as " 248 "being harmful for performance and will be dropped.")); 249 cl::opt<unsigned> SupplMinSizeThreshold( 250 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 251 cl::sub(MergeSubcommand), 252 cl::desc("If the size of a function is smaller than the threshold, " 253 "assume it can be inlined by PGO early inliner and it won't " 254 "be adjusted based on sample profile.")); 255 cl::opt<unsigned> InstrProfColdThreshold( 256 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 257 cl::sub(MergeSubcommand), 258 cl::desc("User specified cold threshold for instr profile which will " 259 "override the cold threshold got from profile summary. ")); 260 // WARNING: This reservoir size value is propagated to any input indexed 261 // profiles for simplicity. Changing this value between invocations could 262 // result in sample bias. 263 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 264 "temporal-profile-trace-reservoir-size", cl::init(100), 265 cl::sub(MergeSubcommand), 266 cl::desc("The maximum number of stored temporal profile traces (default: " 267 "100)")); 268 cl::opt<uint64_t> TemporalProfMaxTraceLength( 269 "temporal-profile-max-trace-length", cl::init(10000), 270 cl::sub(MergeSubcommand), 271 cl::desc("The maximum length of a single temporal profile trace " 272 "(default: 10000)")); 273 cl::opt<std::string> FuncNameNegativeFilter( 274 "no-function", cl::init(""), 275 cl::sub(MergeSubcommand), 276 cl::desc("Exclude functions matching the filter from the output.")); 277 278 cl::opt<FailureMode> 279 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 280 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 281 cl::values(clEnumValN(warnOnly, "warn", 282 "Do not fail and just print warnings."), 283 clEnumValN(failIfAnyAreInvalid, "any", 284 "Fail if any profile is invalid."), 285 clEnumValN(failIfAllAreInvalid, "all", 286 "Fail only if all profiles are invalid."))); 287 288 cl::opt<bool> OutputSparse( 289 "sparse", cl::init(false), cl::sub(MergeSubcommand), 290 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 291 cl::opt<unsigned> NumThreads( 292 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 293 cl::desc("Number of merge threads to use (default: autodetect)")); 294 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 295 cl::aliasopt(NumThreads)); 296 297 cl::opt<std::string> ProfileSymbolListFile( 298 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 299 cl::desc("Path to file containing the list of function symbols " 300 "used to populate profile symbol list")); 301 302 cl::opt<SampleProfileLayout> ProfileLayout( 303 "convert-sample-profile-layout", 304 cl::desc("Convert the generated profile to a profile with a new layout"), 305 cl::sub(MergeSubcommand), cl::init(SPL_None), 306 cl::values( 307 clEnumValN(SPL_Nest, "nest", 308 "Nested profile, the input should be CS flat profile"), 309 clEnumValN(SPL_Flat, "flat", 310 "Profile with nested inlinee flatten out"))); 311 312 cl::opt<bool> DropProfileSymbolList( 313 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 314 cl::sub(MergeSubcommand), 315 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 316 "(only meaningful for -sample)")); 317 318 cl::opt<bool> KeepVTableSymbols( 319 "keep-vtable-symbols", cl::init(false), cl::Hidden, 320 cl::sub(MergeSubcommand), 321 cl::desc("If true, keep the vtable symbols in indexed profiles")); 322 323 // Temporary support for writing the previous version of the format, to enable 324 // some forward compatibility. 325 // TODO: Consider enabling this with future version changes as well, to ease 326 // deployment of newer versions of llvm-profdata. 327 cl::opt<bool> DoWritePrevVersion( 328 "write-prev-version", cl::init(false), cl::Hidden, 329 cl::desc("Write the previous version of indexed format, to enable " 330 "some forward compatibility.")); 331 332 cl::opt<memprof::IndexedVersion> MemProfVersionRequested( 333 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand), 334 cl::desc("Specify the version of the memprof format to use"), 335 cl::init(memprof::Version3), 336 cl::values(clEnumValN(memprof::Version2, "2", "version 2"), 337 clEnumValN(memprof::Version3, "3", "version 3"))); 338 339 cl::opt<bool> MemProfFullSchema( 340 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand), 341 cl::desc("Use the full schema for serialization"), cl::init(false)); 342 343 static cl::opt<bool> 344 MemprofGenerateRandomHotness("memprof-random-hotness", cl::init(false), 345 cl::Hidden, cl::sub(MergeSubcommand), 346 cl::desc("Generate random hotness values")); 347 static cl::opt<unsigned> MemprofGenerateRandomHotnessSeed( 348 "memprof-random-hotness-seed", cl::init(0), cl::Hidden, 349 cl::sub(MergeSubcommand), 350 cl::desc("Random hotness seed to use (0 to generate new seed)")); 351 352 // Options specific to overlap subcommand. 353 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 354 cl::desc("<base profile file>"), 355 cl::sub(OverlapSubcommand)); 356 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 357 cl::desc("<test profile file>"), 358 cl::sub(OverlapSubcommand)); 359 360 cl::opt<unsigned long long> SimilarityCutoff( 361 "similarity-cutoff", cl::init(0), 362 cl::desc("For sample profiles, list function names (with calling context " 363 "for csspgo) for overlapped functions " 364 "with similarities below the cutoff (percentage times 10000)."), 365 cl::sub(OverlapSubcommand)); 366 367 cl::opt<bool> IsCS( 368 "cs", cl::init(false), 369 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 370 cl::sub(OverlapSubcommand)); 371 372 cl::opt<unsigned long long> OverlapValueCutoff( 373 "value-cutoff", cl::init(-1), 374 cl::desc( 375 "Function level overlap information for every function (with calling " 376 "context for csspgo) in test " 377 "profile with max count value greater than the parameter value"), 378 cl::sub(OverlapSubcommand)); 379 380 // Options specific to show subcommand. 381 cl::opt<bool> ShowCounts("counts", cl::init(false), 382 cl::desc("Show counter values for shown functions"), 383 cl::sub(ShowSubcommand)); 384 cl::opt<ShowFormat> 385 SFormat("show-format", cl::init(ShowFormat::Text), 386 cl::desc("Emit output in the selected format if supported"), 387 cl::sub(ShowSubcommand), 388 cl::values(clEnumValN(ShowFormat::Text, "text", 389 "emit normal text output (default)"), 390 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 391 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 392 // TODO: Consider replacing this with `--show-format=text-encoding`. 393 cl::opt<bool> 394 TextFormat("text", cl::init(false), 395 cl::desc("Show instr profile data in text dump format"), 396 cl::sub(ShowSubcommand)); 397 cl::opt<bool> 398 JsonFormat("json", 399 cl::desc("Show sample profile data in the JSON format " 400 "(deprecated, please use --show-format=json)"), 401 cl::sub(ShowSubcommand)); 402 cl::opt<bool> ShowIndirectCallTargets( 403 "ic-targets", cl::init(false), 404 cl::desc("Show indirect call site target values for shown functions"), 405 cl::sub(ShowSubcommand)); 406 cl::opt<bool> ShowVTables("show-vtables", cl::init(false), 407 cl::desc("Show vtable names for shown functions"), 408 cl::sub(ShowSubcommand)); 409 cl::opt<bool> ShowMemOPSizes( 410 "memop-sizes", cl::init(false), 411 cl::desc("Show the profiled sizes of the memory intrinsic calls " 412 "for shown functions"), 413 cl::sub(ShowSubcommand)); 414 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 415 cl::desc("Show detailed profile summary"), 416 cl::sub(ShowSubcommand)); 417 cl::list<uint32_t> DetailedSummaryCutoffs( 418 cl::CommaSeparated, "detailed-summary-cutoffs", 419 cl::desc( 420 "Cutoff percentages (times 10000) for generating detailed summary"), 421 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 422 cl::opt<bool> 423 ShowHotFuncList("hot-func-list", cl::init(false), 424 cl::desc("Show profile summary of a list of hot functions"), 425 cl::sub(ShowSubcommand)); 426 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 427 cl::desc("Details for each and every function"), 428 cl::sub(ShowSubcommand)); 429 cl::opt<bool> ShowCS("showcs", cl::init(false), 430 cl::desc("Show context sensitive counts"), 431 cl::sub(ShowSubcommand)); 432 cl::opt<ProfileKinds> ShowProfileKind( 433 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 434 cl::init(instr), 435 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 436 clEnumVal(sample, "Sample profile"), 437 clEnumVal(memory, "MemProf memory access profile"))); 438 cl::opt<uint32_t> TopNFunctions( 439 "topn", cl::init(0), 440 cl::desc("Show the list of functions with the largest internal counts"), 441 cl::sub(ShowSubcommand)); 442 cl::opt<uint32_t> ShowValueCutoff( 443 "value-cutoff", cl::init(0), 444 cl::desc("Set the count value cutoff. Functions with the maximum count " 445 "less than this value will not be printed out. (Default is 0)"), 446 cl::sub(ShowSubcommand)); 447 cl::opt<bool> OnlyListBelow( 448 "list-below-cutoff", cl::init(false), 449 cl::desc("Only output names of functions whose max count values are " 450 "below the cutoff value"), 451 cl::sub(ShowSubcommand)); 452 cl::opt<bool> ShowProfileSymbolList( 453 "show-prof-sym-list", cl::init(false), 454 cl::desc("Show profile symbol list if it exists in the profile. "), 455 cl::sub(ShowSubcommand)); 456 cl::opt<bool> ShowSectionInfoOnly( 457 "show-sec-info-only", cl::init(false), 458 cl::desc("Show the information of each section in the sample profile. " 459 "The flag is only usable when the sample profile is in " 460 "extbinary format"), 461 cl::sub(ShowSubcommand)); 462 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 463 cl::desc("Show binary ids in the profile. "), 464 cl::sub(ShowSubcommand)); 465 cl::opt<bool> ShowTemporalProfTraces( 466 "temporal-profile-traces", 467 cl::desc("Show temporal profile traces in the profile."), 468 cl::sub(ShowSubcommand)); 469 470 cl::opt<bool> 471 ShowCovered("covered", cl::init(false), 472 cl::desc("Show only the functions that have been executed."), 473 cl::sub(ShowSubcommand)); 474 475 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 476 cl::desc("Show profile version. "), 477 cl::sub(ShowSubcommand)); 478 479 // Options specific to order subcommand. 480 cl::opt<unsigned> 481 NumTestTraces("num-test-traces", cl::init(0), 482 cl::desc("Keep aside the last <num-test-traces> traces in " 483 "the profile when computing the function order and " 484 "instead use them to evaluate that order"), 485 cl::sub(OrderSubcommand)); 486 487 // We use this string to indicate that there are 488 // multiple static functions map to the same name. 489 const std::string DuplicateNameStr = "----"; 490 491 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") { 492 WithColor::warning(); 493 if (!Whence.empty()) 494 errs() << Whence << ": "; 495 errs() << Message << "\n"; 496 if (!Hint.empty()) 497 WithColor::note() << Hint << "\n"; 498 } 499 500 static void warn(Error E, StringRef Whence = "") { 501 if (E.isA<InstrProfError>()) { 502 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 503 warn(IPE.message(), Whence); 504 }); 505 } 506 } 507 508 static void exitWithError(Twine Message, StringRef Whence = "", 509 StringRef Hint = "") { 510 WithColor::error(); 511 if (!Whence.empty()) 512 errs() << Whence << ": "; 513 errs() << Message << "\n"; 514 if (!Hint.empty()) 515 WithColor::note() << Hint << "\n"; 516 ::exit(1); 517 } 518 519 static void exitWithError(Error E, StringRef Whence = "") { 520 if (E.isA<InstrProfError>()) { 521 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 522 instrprof_error instrError = IPE.get(); 523 StringRef Hint = ""; 524 if (instrError == instrprof_error::unrecognized_format) { 525 // Hint in case user missed specifying the profile type. 526 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 527 } 528 exitWithError(IPE.message(), Whence, Hint); 529 }); 530 return; 531 } 532 533 exitWithError(toString(std::move(E)), Whence); 534 } 535 536 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 537 exitWithError(EC.message(), Whence); 538 } 539 540 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 541 StringRef Whence = "") { 542 if (FailMode == failIfAnyAreInvalid) 543 exitWithErrorCode(EC, Whence); 544 else 545 warn(EC.message(), Whence); 546 } 547 548 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 549 StringRef WhenceFunction = "", 550 bool ShowHint = true) { 551 if (!WhenceFile.empty()) 552 errs() << WhenceFile << ": "; 553 if (!WhenceFunction.empty()) 554 errs() << WhenceFunction << ": "; 555 556 auto IPE = instrprof_error::success; 557 E = handleErrors(std::move(E), 558 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 559 IPE = E->get(); 560 return Error(std::move(E)); 561 }); 562 errs() << toString(std::move(E)) << "\n"; 563 564 if (ShowHint) { 565 StringRef Hint = ""; 566 if (IPE != instrprof_error::success) { 567 switch (IPE) { 568 case instrprof_error::hash_mismatch: 569 case instrprof_error::count_mismatch: 570 case instrprof_error::value_site_count_mismatch: 571 Hint = "Make sure that all profile data to be merged is generated " 572 "from the same binary."; 573 break; 574 default: 575 break; 576 } 577 } 578 579 if (!Hint.empty()) 580 errs() << Hint << "\n"; 581 } 582 } 583 584 namespace { 585 /// A remapper from original symbol names to new symbol names based on a file 586 /// containing a list of mappings from old name to new name. 587 class SymbolRemapper { 588 std::unique_ptr<MemoryBuffer> File; 589 DenseMap<StringRef, StringRef> RemappingTable; 590 591 public: 592 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 593 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 594 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 595 if (!BufOrError) 596 exitWithErrorCode(BufOrError.getError(), InputFile); 597 598 auto Remapper = std::make_unique<SymbolRemapper>(); 599 Remapper->File = std::move(BufOrError.get()); 600 601 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 602 !LineIt.is_at_eof(); ++LineIt) { 603 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 604 if (Parts.first.empty() || Parts.second.empty() || 605 Parts.second.count(' ')) { 606 exitWithError("unexpected line in remapping file", 607 (InputFile + ":" + Twine(LineIt.line_number())).str(), 608 "expected 'old_symbol new_symbol'"); 609 } 610 Remapper->RemappingTable.insert(Parts); 611 } 612 return Remapper; 613 } 614 615 /// Attempt to map the given old symbol into a new symbol. 616 /// 617 /// \return The new symbol, or \p Name if no such symbol was found. 618 StringRef operator()(StringRef Name) { 619 StringRef New = RemappingTable.lookup(Name); 620 return New.empty() ? Name : New; 621 } 622 623 FunctionId operator()(FunctionId Name) { 624 // MD5 name cannot be remapped. 625 if (!Name.isStringRef()) 626 return Name; 627 StringRef New = RemappingTable.lookup(Name.stringRef()); 628 return New.empty() ? Name : FunctionId(New); 629 } 630 }; 631 } 632 633 struct WeightedFile { 634 std::string Filename; 635 uint64_t Weight; 636 }; 637 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 638 639 /// Keep track of merged data and reported errors. 640 struct WriterContext { 641 std::mutex Lock; 642 InstrProfWriter Writer; 643 std::vector<std::pair<Error, std::string>> Errors; 644 std::mutex &ErrLock; 645 SmallSet<instrprof_error, 4> &WriterErrorCodes; 646 647 WriterContext(bool IsSparse, std::mutex &ErrLock, 648 SmallSet<instrprof_error, 4> &WriterErrorCodes, 649 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 650 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion, 651 MemProfVersionRequested, MemProfFullSchema, 652 MemprofGenerateRandomHotness, MemprofGenerateRandomHotnessSeed), 653 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {} 654 }; 655 656 /// Computer the overlap b/w profile BaseFilename and TestFileName, 657 /// and store the program level result to Overlap. 658 static void overlapInput(const std::string &BaseFilename, 659 const std::string &TestFilename, WriterContext *WC, 660 OverlapStats &Overlap, 661 const OverlapFuncFilters &FuncFilter, 662 raw_fd_ostream &OS, bool IsCS) { 663 auto FS = vfs::getRealFileSystem(); 664 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 665 if (Error E = ReaderOrErr.takeError()) { 666 // Skip the empty profiles by returning sliently. 667 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 668 if (ErrorCode != instrprof_error::empty_raw_profile) 669 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 670 TestFilename); 671 return; 672 } 673 674 auto Reader = std::move(ReaderOrErr.get()); 675 for (auto &I : *Reader) { 676 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 677 FuncOverlap.setFuncInfo(I.Name, I.Hash); 678 679 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 680 FuncOverlap.dump(OS); 681 } 682 } 683 684 /// Load an input into a writer context. 685 static void 686 loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 687 const InstrProfCorrelator *Correlator, const StringRef ProfiledBinary, 688 WriterContext *WC, const object::BuildIDFetcher *BIDFetcher = nullptr, 689 const ProfCorrelatorKind *BIDFetcherCorrelatorKind = nullptr) { 690 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 691 692 // Copy the filename, because llvm::ThreadPool copied the input "const 693 // WeightedFile &" by value, making a reference to the filename within it 694 // invalid outside of this packaged task. 695 std::string Filename = Input.Filename; 696 697 using ::llvm::memprof::RawMemProfReader; 698 if (RawMemProfReader::hasFormat(Input.Filename)) { 699 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 700 if (!ReaderOrErr) { 701 exitWithError(ReaderOrErr.takeError(), Input.Filename); 702 } 703 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 704 // Check if the profile types can be merged, e.g. clang frontend profiles 705 // should not be merged with memprof profiles. 706 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 707 consumeError(std::move(E)); 708 WC->Errors.emplace_back( 709 make_error<StringError>( 710 "Cannot merge MemProf profile with Clang generated profile.", 711 std::error_code()), 712 Filename); 713 return; 714 } 715 716 auto MemProfError = [&](Error E) { 717 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 718 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 719 Filename); 720 }; 721 722 WC->Writer.addMemProfData(Reader->takeMemProfData(), MemProfError); 723 return; 724 } 725 726 auto FS = vfs::getRealFileSystem(); 727 // TODO: This only saves the first non-fatal error from InstrProfReader, and 728 // then added to WriterContext::Errors. However, this is not extensible, if 729 // we have more non-fatal errors from InstrProfReader in the future. How 730 // should this interact with different -failure-mode? 731 std::optional<std::pair<Error, std::string>> ReaderWarning; 732 auto Warn = [&](Error E) { 733 if (ReaderWarning) { 734 consumeError(std::move(E)); 735 return; 736 } 737 // Only show the first time an error occurs in this file. 738 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 739 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 740 }; 741 742 const ProfCorrelatorKind CorrelatorKind = BIDFetcherCorrelatorKind 743 ? *BIDFetcherCorrelatorKind 744 : ProfCorrelatorKind::NONE; 745 auto ReaderOrErr = InstrProfReader::create(Input.Filename, *FS, Correlator, 746 BIDFetcher, CorrelatorKind, Warn); 747 if (Error E = ReaderOrErr.takeError()) { 748 // Skip the empty profiles by returning silently. 749 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 750 if (ErrCode != instrprof_error::empty_raw_profile) 751 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 752 Filename); 753 return; 754 } 755 756 auto Reader = std::move(ReaderOrErr.get()); 757 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 758 consumeError(std::move(E)); 759 WC->Errors.emplace_back( 760 make_error<StringError>( 761 "Merge IR generated profile with Clang generated profile.", 762 std::error_code()), 763 Filename); 764 return; 765 } 766 767 for (auto &I : *Reader) { 768 if (Remapper) 769 I.Name = (*Remapper)(I.Name); 770 const StringRef FuncName = I.Name; 771 bool Reported = false; 772 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 773 if (Reported) { 774 consumeError(std::move(E)); 775 return; 776 } 777 Reported = true; 778 // Only show hint the first time an error occurs. 779 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 780 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 781 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 782 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 783 Input.Filename, FuncName, firstTime); 784 }); 785 } 786 787 if (KeepVTableSymbols) { 788 const InstrProfSymtab &symtab = Reader->getSymtab(); 789 const auto &VTableNames = symtab.getVTableNames(); 790 791 for (const auto &kv : VTableNames) 792 WC->Writer.addVTableName(kv.getKey()); 793 } 794 795 if (Reader->hasTemporalProfile()) { 796 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 797 if (!Traces.empty()) 798 WC->Writer.addTemporalProfileTraces( 799 Traces, Reader->getTemporalProfTraceStreamSize()); 800 } 801 if (Reader->hasError()) { 802 if (Error E = Reader->getError()) { 803 WC->Errors.emplace_back(std::move(E), Filename); 804 return; 805 } 806 } 807 808 std::vector<llvm::object::BuildID> BinaryIds; 809 if (Error E = Reader->readBinaryIds(BinaryIds)) { 810 WC->Errors.emplace_back(std::move(E), Filename); 811 return; 812 } 813 WC->Writer.addBinaryIds(BinaryIds); 814 815 if (ReaderWarning) { 816 WC->Errors.emplace_back(std::move(ReaderWarning->first), 817 ReaderWarning->second); 818 } 819 } 820 821 /// Merge the \p Src writer context into \p Dst. 822 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 823 for (auto &ErrorPair : Src->Errors) 824 Dst->Errors.push_back(std::move(ErrorPair)); 825 Src->Errors.clear(); 826 827 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 828 exitWithError(std::move(E)); 829 830 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 831 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 832 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 833 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 834 if (firstTime) 835 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 836 }); 837 } 838 839 static StringRef 840 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) { 841 return Val.first(); 842 } 843 844 static std::string 845 getFuncName(const SampleProfileMap::value_type &Val) { 846 return Val.second.getContext().toString(); 847 } 848 849 template <typename T> 850 static void filterFunctions(T &ProfileMap) { 851 bool hasFilter = !FuncNameFilter.empty(); 852 bool hasNegativeFilter = !FuncNameNegativeFilter.empty(); 853 if (!hasFilter && !hasNegativeFilter) 854 return; 855 856 // If filter starts with '?' it is MSVC mangled name, not a regex. 857 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+"); 858 if (hasFilter && FuncNameFilter[0] == '?' && 859 ProbablyMSVCMangledName.match(FuncNameFilter)) 860 FuncNameFilter = llvm::Regex::escape(FuncNameFilter); 861 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' && 862 ProbablyMSVCMangledName.match(FuncNameNegativeFilter)) 863 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter); 864 865 size_t Count = ProfileMap.size(); 866 llvm::Regex Pattern(FuncNameFilter); 867 llvm::Regex NegativePattern(FuncNameNegativeFilter); 868 std::string Error; 869 if (hasFilter && !Pattern.isValid(Error)) 870 exitWithError(Error); 871 if (hasNegativeFilter && !NegativePattern.isValid(Error)) 872 exitWithError(Error); 873 874 // Handle MD5 profile, so it is still able to match using the original name. 875 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter)); 876 std::string NegativeMD5Name = 877 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter)); 878 879 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { 880 auto Tmp = I++; 881 const auto &FuncName = getFuncName(*Tmp); 882 // Negative filter has higher precedence than positive filter. 883 if ((hasNegativeFilter && 884 (NegativePattern.match(FuncName) || 885 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) || 886 (hasFilter && !(Pattern.match(FuncName) || 887 (FunctionSamples::UseMD5 && MD5Name == FuncName)))) 888 ProfileMap.erase(Tmp); 889 } 890 891 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions " 892 << "in the original profile are filtered.\n"; 893 } 894 895 static void writeInstrProfile(StringRef OutputFilename, 896 ProfileFormat OutputFormat, 897 InstrProfWriter &Writer) { 898 std::error_code EC; 899 raw_fd_ostream Output(OutputFilename.data(), EC, 900 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 901 : sys::fs::OF_None); 902 if (EC) 903 exitWithErrorCode(EC, OutputFilename); 904 905 if (OutputFormat == PF_Text) { 906 if (Error E = Writer.writeText(Output)) 907 warn(std::move(E)); 908 } else { 909 if (Output.is_displayed()) 910 exitWithError("cannot write a non-text format profile to the terminal"); 911 if (Error E = Writer.write(Output)) 912 warn(std::move(E)); 913 } 914 } 915 916 static void mergeInstrProfile(const WeightedFileVector &Inputs, 917 SymbolRemapper *Remapper, 918 int MaxDbgCorrelationWarnings, 919 const StringRef ProfiledBinary) { 920 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 921 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 922 if (OutputFormat == PF_Compact_Binary) 923 exitWithError("Compact Binary is deprecated"); 924 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 925 OutputFormat != PF_Text) 926 exitWithError("unknown format is specified"); 927 928 // TODO: Maybe we should support correlation with mixture of different 929 // correlation modes(w/wo debug-info/object correlation). 930 if (DebugInfoFilename.empty()) { 931 if (!BinaryFilename.empty() && (DebugInfod || !DebugFileDirectory.empty())) 932 exitWithError("Expected only one of -binary-file, -debuginfod or " 933 "-debug-file-directory"); 934 } else if (!BinaryFilename.empty() || DebugInfod || 935 !DebugFileDirectory.empty()) { 936 exitWithError("Expected only one of -debug-info, -binary-file, -debuginfod " 937 "or -debug-file-directory"); 938 } 939 std::string CorrelateFilename; 940 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 941 if (!DebugInfoFilename.empty()) { 942 CorrelateFilename = DebugInfoFilename; 943 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 944 } else if (!BinaryFilename.empty()) { 945 CorrelateFilename = BinaryFilename; 946 CorrelateKind = ProfCorrelatorKind::BINARY; 947 } 948 949 std::unique_ptr<InstrProfCorrelator> Correlator; 950 if (CorrelateKind != InstrProfCorrelator::NONE) { 951 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 952 .moveInto(Correlator)) 953 exitWithError(std::move(Err), CorrelateFilename); 954 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 955 exitWithError(std::move(Err), CorrelateFilename); 956 } 957 958 ProfCorrelatorKind BIDFetcherCorrelateKind = ProfCorrelatorKind::NONE; 959 std::unique_ptr<object::BuildIDFetcher> BIDFetcher; 960 if (DebugInfod) { 961 llvm::HTTPClient::initialize(); 962 BIDFetcher = std::make_unique<DebuginfodFetcher>(DebugFileDirectory); 963 if (!BIDFetcherProfileCorrelate) 964 exitWithError("Expected --correlate when --debuginfod is provided"); 965 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 966 } else if (!DebugFileDirectory.empty()) { 967 BIDFetcher = std::make_unique<object::BuildIDFetcher>(DebugFileDirectory); 968 if (!BIDFetcherProfileCorrelate) 969 exitWithError("Expected --correlate when --debug-file-directory " 970 "is provided"); 971 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 972 } else if (BIDFetcherProfileCorrelate) { 973 exitWithError("Expected --debuginfod or --debug-file-directory when " 974 "--correlate is provided"); 975 } 976 977 std::mutex ErrorLock; 978 SmallSet<instrprof_error, 4> WriterErrorCodes; 979 980 // If NumThreads is not specified, auto-detect a good default. 981 if (NumThreads == 0) 982 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 983 unsigned((Inputs.size() + 1) / 2)); 984 985 // Initialize the writer contexts. 986 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 987 for (unsigned I = 0; I < NumThreads; ++I) 988 Contexts.emplace_back(std::make_unique<WriterContext>( 989 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 990 MaxTraceLength)); 991 992 if (NumThreads == 1) { 993 for (const auto &Input : Inputs) 994 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 995 Contexts[0].get(), BIDFetcher.get(), &BIDFetcherCorrelateKind); 996 } else { 997 DefaultThreadPool Pool(hardware_concurrency(NumThreads)); 998 999 // Load the inputs in parallel (N/NumThreads serial steps). 1000 unsigned Ctx = 0; 1001 for (const auto &Input : Inputs) { 1002 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 1003 Contexts[Ctx].get(), BIDFetcher.get(), 1004 &BIDFetcherCorrelateKind); 1005 Ctx = (Ctx + 1) % NumThreads; 1006 } 1007 Pool.wait(); 1008 1009 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 1010 unsigned Mid = Contexts.size() / 2; 1011 unsigned End = Contexts.size(); 1012 assert(Mid > 0 && "Expected more than one context"); 1013 do { 1014 for (unsigned I = 0; I < Mid; ++I) 1015 Pool.async(mergeWriterContexts, Contexts[I].get(), 1016 Contexts[I + Mid].get()); 1017 Pool.wait(); 1018 if (End & 1) { 1019 Pool.async(mergeWriterContexts, Contexts[0].get(), 1020 Contexts[End - 1].get()); 1021 Pool.wait(); 1022 } 1023 End = Mid; 1024 Mid /= 2; 1025 } while (Mid > 0); 1026 } 1027 1028 // Handle deferred errors encountered during merging. If the number of errors 1029 // is equal to the number of inputs the merge failed. 1030 unsigned NumErrors = 0; 1031 for (std::unique_ptr<WriterContext> &WC : Contexts) { 1032 for (auto &ErrorPair : WC->Errors) { 1033 ++NumErrors; 1034 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 1035 } 1036 } 1037 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 1038 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 1039 exitWithError("no profile can be merged"); 1040 1041 filterFunctions(Contexts[0]->Writer.getProfileData()); 1042 1043 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 1044 } 1045 1046 /// The profile entry for a function in instrumentation profile. 1047 struct InstrProfileEntry { 1048 uint64_t MaxCount = 0; 1049 uint64_t NumEdgeCounters = 0; 1050 float ZeroCounterRatio = 0.0; 1051 InstrProfRecord *ProfRecord; 1052 InstrProfileEntry(InstrProfRecord *Record); 1053 InstrProfileEntry() = default; 1054 }; 1055 1056 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 1057 ProfRecord = Record; 1058 uint64_t CntNum = Record->Counts.size(); 1059 uint64_t ZeroCntNum = 0; 1060 for (size_t I = 0; I < CntNum; ++I) { 1061 MaxCount = std::max(MaxCount, Record->Counts[I]); 1062 ZeroCntNum += !Record->Counts[I]; 1063 } 1064 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 1065 NumEdgeCounters = CntNum; 1066 } 1067 1068 /// Either set all the counters in the instr profile entry \p IFE to 1069 /// -1 / -2 /in order to drop the profile or scale up the 1070 /// counters in \p IFP to be above hot / cold threshold. We use 1071 /// the ratio of zero counters in the profile of a function to 1072 /// decide the profile is helpful or harmful for performance, 1073 /// and to choose whether to scale up or drop it. 1074 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 1075 uint64_t HotInstrThreshold, 1076 uint64_t ColdInstrThreshold, 1077 float ZeroCounterThreshold) { 1078 InstrProfRecord *ProfRecord = IFE.ProfRecord; 1079 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 1080 // If all or most of the counters of the function are zero, the 1081 // profile is unaccountable and should be dropped. Reset all the 1082 // counters to be -1 / -2 and PGO profile-use will drop the profile. 1083 // All counters being -1 also implies that the function is hot so 1084 // PGO profile-use will also set the entry count metadata to be 1085 // above hot threshold. 1086 // All counters being -2 implies that the function is warm so 1087 // PGO profile-use will also set the entry count metadata to be 1088 // above cold threshold. 1089 auto Kind = 1090 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 1091 ProfRecord->setPseudoCount(Kind); 1092 return; 1093 } 1094 1095 // Scale up the MaxCount to be multiple times above hot / cold threshold. 1096 const unsigned MultiplyFactor = 3; 1097 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 1098 uint64_t Numerator = Threshold * MultiplyFactor; 1099 1100 // Make sure Threshold for warm counters is below the HotInstrThreshold. 1101 if (!SetToHot && Threshold >= HotInstrThreshold) { 1102 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 1103 } 1104 1105 uint64_t Denominator = IFE.MaxCount; 1106 if (Numerator <= Denominator) 1107 return; 1108 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 1109 warn(toString(make_error<InstrProfError>(E))); 1110 }); 1111 } 1112 1113 const uint64_t ColdPercentileIdx = 15; 1114 const uint64_t HotPercentileIdx = 11; 1115 1116 using sampleprof::FSDiscriminatorPass; 1117 1118 // Internal options to set FSDiscriminatorPass. Used in merge and show 1119 // commands. 1120 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 1121 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 1122 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 1123 "pass beyond this value. The enum values are defined in " 1124 "Support/Discriminator.h"), 1125 cl::values(clEnumVal(Base, "Use base discriminators only"), 1126 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 1127 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 1128 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 1129 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 1130 1131 static unsigned getDiscriminatorMask() { 1132 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 1133 } 1134 1135 /// Adjust the instr profile in \p WC based on the sample profile in 1136 /// \p Reader. 1137 static void 1138 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 1139 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 1140 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 1141 unsigned InstrProfColdThreshold) { 1142 // Function to its entry in instr profile. 1143 StringMap<InstrProfileEntry> InstrProfileMap; 1144 StringMap<StringRef> StaticFuncMap; 1145 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 1146 1147 auto checkSampleProfileHasFUnique = [&Reader]() { 1148 for (const auto &PD : Reader->getProfiles()) { 1149 auto &FContext = PD.second.getContext(); 1150 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 1151 std::string::npos) { 1152 return true; 1153 } 1154 } 1155 return false; 1156 }; 1157 1158 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 1159 1160 auto buildStaticFuncMap = [&StaticFuncMap, 1161 SampleProfileHasFUnique](const StringRef Name) { 1162 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1163 size_t PrefixPos = StringRef::npos; 1164 for (auto &FilePrefix : FilePrefixes) { 1165 std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter; 1166 PrefixPos = Name.find_insensitive(NamePrefix); 1167 if (PrefixPos == StringRef::npos) 1168 continue; 1169 PrefixPos += NamePrefix.size(); 1170 break; 1171 } 1172 1173 if (PrefixPos == StringRef::npos) { 1174 return; 1175 } 1176 1177 StringRef NewName = Name.drop_front(PrefixPos); 1178 StringRef FName = Name.substr(0, PrefixPos - 1); 1179 if (NewName.size() == 0) { 1180 return; 1181 } 1182 1183 // This name should have a static linkage. 1184 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1185 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1186 1187 // If sample profile and instrumented profile do not agree on symbol 1188 // uniqification. 1189 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1190 // If instrumented profile uses -funique-internal-linkage-symbols, 1191 // we need to trim the name. 1192 if (ProfileHasFUnique) { 1193 NewName = NewName.substr(0, PostfixPos); 1194 } else { 1195 // If sample profile uses -funique-internal-linkage-symbols, 1196 // we build the map. 1197 std::string NStr = 1198 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1199 NewName = StringRef(NStr); 1200 StaticFuncMap[NewName] = Name; 1201 return; 1202 } 1203 } 1204 1205 auto [It, Inserted] = StaticFuncMap.try_emplace(NewName, Name); 1206 if (!Inserted) 1207 It->second = DuplicateNameStr; 1208 }; 1209 1210 // We need to flatten the SampleFDO profile as the InstrFDO 1211 // profile does not have inlined callsite profiles. 1212 // One caveat is the pre-inlined function -- their samples 1213 // should be collapsed into the caller function. 1214 // Here we do a DFS traversal to get the flatten profile 1215 // info: the sum of entrycount and the max of maxcount. 1216 // Here is the algorithm: 1217 // recursive (FS, root_name) { 1218 // name = FS->getName(); 1219 // get samples for FS; 1220 // if (InstrProf.find(name) { 1221 // root_name = name; 1222 // } else { 1223 // if (name is in static_func map) { 1224 // root_name = static_name; 1225 // } 1226 // } 1227 // update the Map entry for root_name; 1228 // for (subfs: FS) { 1229 // recursive(subfs, root_name); 1230 // } 1231 // } 1232 // 1233 // Here is an example. 1234 // 1235 // SampleProfile: 1236 // foo:12345:1000 1237 // 1: 1000 1238 // 2.1: 1000 1239 // 15: 5000 1240 // 4: bar:1000 1241 // 1: 1000 1242 // 2: goo:3000 1243 // 1: 3000 1244 // 8: bar:40000 1245 // 1: 10000 1246 // 2: goo:30000 1247 // 1: 30000 1248 // 1249 // InstrProfile has two entries: 1250 // foo 1251 // bar.cc;bar 1252 // 1253 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1254 // {"foo", {1000, 5000}} 1255 // {"bar.cc;bar", {11000, 30000}} 1256 // 1257 // foo's has an entry count of 1000, and max body count of 5000. 1258 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1259 // 10000), and max count of 30000 (from the callsite in line 8). 1260 // 1261 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1262 // entry in InstrProfile. 1263 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1264 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1265 &InstrProfileMap](const FunctionSamples &FS, 1266 const StringRef &RootName) { 1267 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1268 const StringRef &RootName, 1269 auto &BuildImpl) -> void { 1270 std::string NameStr = FS.getFunction().str(); 1271 const StringRef Name = NameStr; 1272 const StringRef *NewRootName = &RootName; 1273 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1274 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1275 1276 auto It = InstrProfileMap.find(Name); 1277 if (It != InstrProfileMap.end()) { 1278 NewRootName = &Name; 1279 } else { 1280 auto NewName = StaticFuncMap.find(Name); 1281 if (NewName != StaticFuncMap.end()) { 1282 It = InstrProfileMap.find(NewName->second); 1283 if (NewName->second != DuplicateNameStr) { 1284 NewRootName = &NewName->second; 1285 } 1286 } else { 1287 // Here the EntrySample is of an inlined function, so we should not 1288 // update the EntrySample in the map. 1289 EntrySample = 0; 1290 } 1291 } 1292 EntrySample += FlattenSampleMap[*NewRootName].first; 1293 MaxBodySample = 1294 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1295 FlattenSampleMap[*NewRootName] = 1296 std::make_pair(EntrySample, MaxBodySample); 1297 1298 for (const auto &C : FS.getCallsiteSamples()) 1299 for (const auto &F : C.second) 1300 BuildImpl(F.second, *NewRootName, BuildImpl); 1301 }; 1302 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1303 }; 1304 1305 for (auto &PD : WC->Writer.getProfileData()) { 1306 // Populate IPBuilder. 1307 for (const auto &PDV : PD.getValue()) { 1308 InstrProfRecord Record = PDV.second; 1309 IPBuilder.addRecord(Record); 1310 } 1311 1312 // If a function has multiple entries in instr profile, skip it. 1313 if (PD.getValue().size() != 1) 1314 continue; 1315 1316 // Initialize InstrProfileMap. 1317 InstrProfRecord *R = &PD.getValue().begin()->second; 1318 StringRef FullName = PD.getKey(); 1319 InstrProfileMap[FullName] = InstrProfileEntry(R); 1320 buildStaticFuncMap(FullName); 1321 } 1322 1323 for (auto &PD : Reader->getProfiles()) { 1324 sampleprof::FunctionSamples &FS = PD.second; 1325 std::string Name = FS.getFunction().str(); 1326 BuildMaxSampleMap(FS, Name); 1327 } 1328 1329 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1330 ProfileSummary SamplePS = Reader->getSummary(); 1331 1332 // Compute cold thresholds for instr profile and sample profile. 1333 uint64_t HotSampleThreshold = 1334 ProfileSummaryBuilder::getEntryForPercentile( 1335 SamplePS.getDetailedSummary(), 1336 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1337 .MinCount; 1338 uint64_t ColdSampleThreshold = 1339 ProfileSummaryBuilder::getEntryForPercentile( 1340 SamplePS.getDetailedSummary(), 1341 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1342 .MinCount; 1343 uint64_t HotInstrThreshold = 1344 ProfileSummaryBuilder::getEntryForPercentile( 1345 InstrPS.getDetailedSummary(), 1346 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1347 .MinCount; 1348 uint64_t ColdInstrThreshold = 1349 InstrProfColdThreshold 1350 ? InstrProfColdThreshold 1351 : ProfileSummaryBuilder::getEntryForPercentile( 1352 InstrPS.getDetailedSummary(), 1353 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1354 .MinCount; 1355 1356 // Find hot/warm functions in sample profile which is cold in instr profile 1357 // and adjust the profiles of those functions in the instr profile. 1358 for (const auto &E : FlattenSampleMap) { 1359 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1360 if (SampleMaxCount < ColdSampleThreshold) 1361 continue; 1362 StringRef Name = E.first(); 1363 auto It = InstrProfileMap.find(Name); 1364 if (It == InstrProfileMap.end()) { 1365 auto NewName = StaticFuncMap.find(Name); 1366 if (NewName != StaticFuncMap.end()) { 1367 It = InstrProfileMap.find(NewName->second); 1368 if (NewName->second == DuplicateNameStr) { 1369 WithColor::warning() 1370 << "Static function " << Name 1371 << " has multiple promoted names, cannot adjust profile.\n"; 1372 } 1373 } 1374 } 1375 if (It == InstrProfileMap.end() || 1376 It->second.MaxCount > ColdInstrThreshold || 1377 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1378 continue; 1379 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1380 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1381 ColdInstrThreshold, ZeroCounterThreshold); 1382 } 1383 } 1384 1385 /// The main function to supplement instr profile with sample profile. 1386 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1387 /// sample profile. \p OutputFilename specifies the output profile name. 1388 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1389 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1390 /// specifies the minimal size for the functions whose profile will be 1391 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1392 /// a function contains too many zero counters and whether its profile 1393 /// should be dropped. \p InstrProfColdThreshold is the user specified 1394 /// cold threshold which will override the cold threshold got from the 1395 /// instr profile summary. 1396 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1397 StringRef SampleFilename, bool OutputSparse, 1398 unsigned SupplMinSizeThreshold, 1399 float ZeroCounterThreshold, 1400 unsigned InstrProfColdThreshold) { 1401 if (OutputFilename == "-") 1402 exitWithError("cannot write indexed profdata format to stdout"); 1403 if (Inputs.size() != 1) 1404 exitWithError("expect one input to be an instr profile"); 1405 if (Inputs[0].Weight != 1) 1406 exitWithError("expect instr profile doesn't have weight"); 1407 1408 StringRef InstrFilename = Inputs[0].Filename; 1409 1410 // Read sample profile. 1411 LLVMContext Context; 1412 auto FS = vfs::getRealFileSystem(); 1413 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1414 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1415 if (std::error_code EC = ReaderOrErr.getError()) 1416 exitWithErrorCode(EC, SampleFilename); 1417 auto Reader = std::move(ReaderOrErr.get()); 1418 if (std::error_code EC = Reader->read()) 1419 exitWithErrorCode(EC, SampleFilename); 1420 1421 // Read instr profile. 1422 std::mutex ErrorLock; 1423 SmallSet<instrprof_error, 4> WriterErrorCodes; 1424 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1425 WriterErrorCodes); 1426 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1427 if (WC->Errors.size() > 0) 1428 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1429 1430 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1431 InstrProfColdThreshold); 1432 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1433 } 1434 1435 /// Make a copy of the given function samples with all symbol names remapped 1436 /// by the provided symbol remapper. 1437 static sampleprof::FunctionSamples 1438 remapSamples(const sampleprof::FunctionSamples &Samples, 1439 SymbolRemapper &Remapper, sampleprof_error &Error) { 1440 sampleprof::FunctionSamples Result; 1441 Result.setFunction(Remapper(Samples.getFunction())); 1442 Result.addTotalSamples(Samples.getTotalSamples()); 1443 Result.addHeadSamples(Samples.getHeadSamples()); 1444 for (const auto &BodySample : Samples.getBodySamples()) { 1445 uint32_t MaskedDiscriminator = 1446 BodySample.first.Discriminator & getDiscriminatorMask(); 1447 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1448 BodySample.second.getSamples()); 1449 for (const auto &Target : BodySample.second.getCallTargets()) { 1450 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1451 MaskedDiscriminator, 1452 Remapper(Target.first), Target.second); 1453 } 1454 } 1455 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1456 sampleprof::FunctionSamplesMap &Target = 1457 Result.functionSamplesAt(CallsiteSamples.first); 1458 for (const auto &Callsite : CallsiteSamples.second) { 1459 sampleprof::FunctionSamples Remapped = 1460 remapSamples(Callsite.second, Remapper, Error); 1461 mergeSampleProfErrors(Error, 1462 Target[Remapped.getFunction()].merge(Remapped)); 1463 } 1464 } 1465 return Result; 1466 } 1467 1468 static sampleprof::SampleProfileFormat FormatMap[] = { 1469 sampleprof::SPF_None, 1470 sampleprof::SPF_Text, 1471 sampleprof::SPF_None, 1472 sampleprof::SPF_Ext_Binary, 1473 sampleprof::SPF_GCC, 1474 sampleprof::SPF_Binary}; 1475 1476 static std::unique_ptr<MemoryBuffer> 1477 getInputFileBuf(const StringRef &InputFile) { 1478 if (InputFile == "") 1479 return {}; 1480 1481 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1482 if (!BufOrError) 1483 exitWithErrorCode(BufOrError.getError(), InputFile); 1484 1485 return std::move(*BufOrError); 1486 } 1487 1488 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1489 sampleprof::ProfileSymbolList &PSL) { 1490 if (!Buffer) 1491 return; 1492 1493 SmallVector<StringRef, 32> SymbolVec; 1494 StringRef Data = Buffer->getBuffer(); 1495 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1496 1497 for (StringRef SymbolStr : SymbolVec) 1498 PSL.add(SymbolStr.trim()); 1499 } 1500 1501 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1502 ProfileFormat OutputFormat, 1503 MemoryBuffer *Buffer, 1504 sampleprof::ProfileSymbolList &WriterList, 1505 bool CompressAllSections, bool UseMD5, 1506 bool GenPartialProfile) { 1507 if (SplitLayout) { 1508 if (OutputFormat == PF_Binary) 1509 warn("-split-layout is ignored. Specify -extbinary to enable it"); 1510 else 1511 Writer.setUseCtxSplitLayout(); 1512 } 1513 1514 populateProfileSymbolList(Buffer, WriterList); 1515 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1516 warn("Profile Symbol list is not empty but the output format is not " 1517 "ExtBinary format. The list will be lost in the output. "); 1518 1519 Writer.setProfileSymbolList(&WriterList); 1520 1521 if (CompressAllSections) { 1522 if (OutputFormat != PF_Ext_Binary) 1523 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1524 else 1525 Writer.setToCompressAllSections(); 1526 } 1527 if (UseMD5) { 1528 if (OutputFormat != PF_Ext_Binary) 1529 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1530 else 1531 Writer.setUseMD5(); 1532 } 1533 if (GenPartialProfile) { 1534 if (OutputFormat != PF_Ext_Binary) 1535 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1536 else 1537 Writer.setPartialProfile(); 1538 } 1539 } 1540 1541 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1542 SymbolRemapper *Remapper, 1543 StringRef ProfileSymbolListFile, 1544 size_t OutputSizeLimit) { 1545 using namespace sampleprof; 1546 SampleProfileMap ProfileMap; 1547 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1548 LLVMContext Context; 1549 sampleprof::ProfileSymbolList WriterList; 1550 std::optional<bool> ProfileIsProbeBased; 1551 std::optional<bool> ProfileIsCS; 1552 for (const auto &Input : Inputs) { 1553 auto FS = vfs::getRealFileSystem(); 1554 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1555 FSDiscriminatorPassOption); 1556 if (std::error_code EC = ReaderOrErr.getError()) { 1557 warnOrExitGivenError(FailMode, EC, Input.Filename); 1558 continue; 1559 } 1560 1561 // We need to keep the readers around until after all the files are 1562 // read so that we do not lose the function names stored in each 1563 // reader's memory. The function names are needed to write out the 1564 // merged profile map. 1565 Readers.push_back(std::move(ReaderOrErr.get())); 1566 const auto Reader = Readers.back().get(); 1567 if (std::error_code EC = Reader->read()) { 1568 warnOrExitGivenError(FailMode, EC, Input.Filename); 1569 Readers.pop_back(); 1570 continue; 1571 } 1572 1573 SampleProfileMap &Profiles = Reader->getProfiles(); 1574 if (ProfileIsProbeBased && 1575 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1576 exitWithError( 1577 "cannot merge probe-based profile with non-probe-based profile"); 1578 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1579 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1580 exitWithError("cannot merge CS profile with non-CS profile"); 1581 ProfileIsCS = FunctionSamples::ProfileIsCS; 1582 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1583 I != E; ++I) { 1584 sampleprof_error Result = sampleprof_error::success; 1585 FunctionSamples Remapped = 1586 Remapper ? remapSamples(I->second, *Remapper, Result) 1587 : FunctionSamples(); 1588 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1589 SampleContext FContext = Samples.getContext(); 1590 mergeSampleProfErrors(Result, 1591 ProfileMap[FContext].merge(Samples, Input.Weight)); 1592 if (Result != sampleprof_error::success) { 1593 std::error_code EC = make_error_code(Result); 1594 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1595 FContext.toString()); 1596 } 1597 } 1598 1599 if (!DropProfileSymbolList) { 1600 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1601 Reader->getProfileSymbolList(); 1602 if (ReaderList) 1603 WriterList.merge(*ReaderList); 1604 } 1605 } 1606 1607 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1608 // Use threshold calculated from profile summary unless specified. 1609 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1610 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1611 uint64_t SampleProfColdThreshold = 1612 ProfileSummaryBuilder::getColdCountThreshold( 1613 (Summary->getDetailedSummary())); 1614 1615 // Trim and merge cold context profile using cold threshold above; 1616 SampleContextTrimmer(ProfileMap) 1617 .trimAndMergeColdContextProfiles( 1618 SampleProfColdThreshold, SampleTrimColdContext, 1619 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1620 } 1621 1622 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1623 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1624 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1625 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1626 ProfileConverter CSConverter(ProfileMap); 1627 CSConverter.convertCSProfiles(); 1628 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1629 } 1630 1631 filterFunctions(ProfileMap); 1632 1633 auto WriterOrErr = 1634 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1635 if (std::error_code EC = WriterOrErr.getError()) 1636 exitWithErrorCode(EC, OutputFilename); 1637 1638 auto Writer = std::move(WriterOrErr.get()); 1639 // WriterList will have StringRef refering to string in Buffer. 1640 // Make sure Buffer lives as long as WriterList. 1641 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1642 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1643 CompressAllSections, UseMD5, GenPartialProfile); 1644 1645 // If OutputSizeLimit is 0 (default), it is the same as write(). 1646 if (std::error_code EC = 1647 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1648 exitWithErrorCode(EC); 1649 } 1650 1651 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1652 StringRef WeightStr, FileName; 1653 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1654 1655 uint64_t Weight; 1656 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1657 exitWithError("input weight must be a positive integer"); 1658 1659 return {std::string(FileName), Weight}; 1660 } 1661 1662 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1663 StringRef Filename = WF.Filename; 1664 uint64_t Weight = WF.Weight; 1665 1666 // If it's STDIN just pass it on. 1667 if (Filename == "-") { 1668 WNI.push_back({std::string(Filename), Weight}); 1669 return; 1670 } 1671 1672 llvm::sys::fs::file_status Status; 1673 llvm::sys::fs::status(Filename, Status); 1674 if (!llvm::sys::fs::exists(Status)) 1675 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1676 Filename); 1677 // If it's a source file, collect it. 1678 if (llvm::sys::fs::is_regular_file(Status)) { 1679 WNI.push_back({std::string(Filename), Weight}); 1680 return; 1681 } 1682 1683 if (llvm::sys::fs::is_directory(Status)) { 1684 std::error_code EC; 1685 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1686 F != E && !EC; F.increment(EC)) { 1687 if (llvm::sys::fs::is_regular_file(F->path())) { 1688 addWeightedInput(WNI, {F->path(), Weight}); 1689 } 1690 } 1691 if (EC) 1692 exitWithErrorCode(EC, Filename); 1693 } 1694 } 1695 1696 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1697 WeightedFileVector &WFV) { 1698 if (!Buffer) 1699 return; 1700 1701 SmallVector<StringRef, 8> Entries; 1702 StringRef Data = Buffer->getBuffer(); 1703 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1704 for (const StringRef &FileWeightEntry : Entries) { 1705 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1706 // Skip comments. 1707 if (SanitizedEntry.starts_with("#")) 1708 continue; 1709 // If there's no comma, it's an unweighted profile. 1710 else if (!SanitizedEntry.contains(',')) 1711 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1712 else 1713 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1714 } 1715 } 1716 1717 static int merge_main(StringRef ProgName) { 1718 WeightedFileVector WeightedInputs; 1719 for (StringRef Filename : InputFilenames) 1720 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1721 for (StringRef WeightedFilename : WeightedInputFilenames) 1722 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1723 1724 // Make sure that the file buffer stays alive for the duration of the 1725 // weighted input vector's lifetime. 1726 auto Buffer = getInputFileBuf(InputFilenamesFile); 1727 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1728 1729 if (WeightedInputs.empty()) 1730 exitWithError("no input files specified. See " + ProgName + " merge -help"); 1731 1732 if (DumpInputFileList) { 1733 for (auto &WF : WeightedInputs) 1734 outs() << WF.Weight << "," << WF.Filename << "\n"; 1735 return 0; 1736 } 1737 1738 std::unique_ptr<SymbolRemapper> Remapper; 1739 if (!RemappingFile.empty()) 1740 Remapper = SymbolRemapper::create(RemappingFile); 1741 1742 if (!SupplInstrWithSample.empty()) { 1743 if (ProfileKind != instr) 1744 exitWithError( 1745 "-supplement-instr-with-sample can only work with -instr. "); 1746 1747 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1748 SupplMinSizeThreshold, ZeroCounterThreshold, 1749 InstrProfColdThreshold); 1750 return 0; 1751 } 1752 1753 if (ProfileKind == instr) 1754 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1755 ProfiledBinary); 1756 else 1757 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1758 OutputSizeLimit); 1759 return 0; 1760 } 1761 1762 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1763 static void overlapInstrProfile(const std::string &BaseFilename, 1764 const std::string &TestFilename, 1765 const OverlapFuncFilters &FuncFilter, 1766 raw_fd_ostream &OS, bool IsCS) { 1767 std::mutex ErrorLock; 1768 SmallSet<instrprof_error, 4> WriterErrorCodes; 1769 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1770 WeightedFile WeightedInput{BaseFilename, 1}; 1771 OverlapStats Overlap; 1772 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1773 if (E) 1774 exitWithError(std::move(E), "error in getting profile count sums"); 1775 if (Overlap.Base.CountSum < 1.0f) { 1776 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1777 exit(0); 1778 } 1779 if (Overlap.Test.CountSum < 1.0f) { 1780 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1781 exit(0); 1782 } 1783 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1784 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1785 IsCS); 1786 Overlap.dump(OS); 1787 } 1788 1789 namespace { 1790 struct SampleOverlapStats { 1791 SampleContext BaseName; 1792 SampleContext TestName; 1793 // Number of overlap units 1794 uint64_t OverlapCount = 0; 1795 // Total samples of overlap units 1796 uint64_t OverlapSample = 0; 1797 // Number of and total samples of units that only present in base or test 1798 // profile 1799 uint64_t BaseUniqueCount = 0; 1800 uint64_t BaseUniqueSample = 0; 1801 uint64_t TestUniqueCount = 0; 1802 uint64_t TestUniqueSample = 0; 1803 // Number of units and total samples in base or test profile 1804 uint64_t BaseCount = 0; 1805 uint64_t BaseSample = 0; 1806 uint64_t TestCount = 0; 1807 uint64_t TestSample = 0; 1808 // Number of and total samples of units that present in at least one profile 1809 uint64_t UnionCount = 0; 1810 uint64_t UnionSample = 0; 1811 // Weighted similarity 1812 double Similarity = 0.0; 1813 // For SampleOverlapStats instances representing functions, weights of the 1814 // function in base and test profiles 1815 double BaseWeight = 0.0; 1816 double TestWeight = 0.0; 1817 1818 SampleOverlapStats() = default; 1819 }; 1820 } // end anonymous namespace 1821 1822 namespace { 1823 struct FuncSampleStats { 1824 uint64_t SampleSum = 0; 1825 uint64_t MaxSample = 0; 1826 uint64_t HotBlockCount = 0; 1827 FuncSampleStats() = default; 1828 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1829 uint64_t HotBlockCount) 1830 : SampleSum(SampleSum), MaxSample(MaxSample), 1831 HotBlockCount(HotBlockCount) {} 1832 }; 1833 } // end anonymous namespace 1834 1835 namespace { 1836 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1837 1838 // Class for updating merging steps for two sorted maps. The class should be 1839 // instantiated with a map iterator type. 1840 template <class T> class MatchStep { 1841 public: 1842 MatchStep() = delete; 1843 1844 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1845 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1846 SecondEnd(SecondEnd), Status(MS_None) {} 1847 1848 bool areBothFinished() const { 1849 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1850 } 1851 1852 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1853 1854 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1855 1856 /// Advance one step based on the previous match status unless the previous 1857 /// status is MS_None. Then update Status based on the comparison between two 1858 /// container iterators at the current step. If the previous status is 1859 /// MS_None, it means two iterators are at the beginning and no comparison has 1860 /// been made, so we simply update Status without advancing the iterators. 1861 void updateOneStep(); 1862 1863 T getFirstIter() const { return FirstIter; } 1864 1865 T getSecondIter() const { return SecondIter; } 1866 1867 MatchStatus getMatchStatus() const { return Status; } 1868 1869 private: 1870 // Current iterator and end iterator of the first container. 1871 T FirstIter; 1872 T FirstEnd; 1873 // Current iterator and end iterator of the second container. 1874 T SecondIter; 1875 T SecondEnd; 1876 // Match status of the current step. 1877 MatchStatus Status; 1878 }; 1879 } // end anonymous namespace 1880 1881 template <class T> void MatchStep<T>::updateOneStep() { 1882 switch (Status) { 1883 case MS_Match: 1884 ++FirstIter; 1885 ++SecondIter; 1886 break; 1887 case MS_FirstUnique: 1888 ++FirstIter; 1889 break; 1890 case MS_SecondUnique: 1891 ++SecondIter; 1892 break; 1893 case MS_None: 1894 break; 1895 } 1896 1897 // Update Status according to iterators at the current step. 1898 if (areBothFinished()) 1899 return; 1900 if (FirstIter != FirstEnd && 1901 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1902 Status = MS_FirstUnique; 1903 else if (SecondIter != SecondEnd && 1904 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1905 Status = MS_SecondUnique; 1906 else 1907 Status = MS_Match; 1908 } 1909 1910 // Return the sum of line/block samples, the max line/block sample, and the 1911 // number of line/block samples above the given threshold in a function 1912 // including its inlinees. 1913 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1914 FuncSampleStats &FuncStats, 1915 uint64_t HotThreshold) { 1916 for (const auto &L : Func.getBodySamples()) { 1917 uint64_t Sample = L.second.getSamples(); 1918 FuncStats.SampleSum += Sample; 1919 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1920 if (Sample >= HotThreshold) 1921 ++FuncStats.HotBlockCount; 1922 } 1923 1924 for (const auto &C : Func.getCallsiteSamples()) { 1925 for (const auto &F : C.second) 1926 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1927 } 1928 } 1929 1930 /// Predicate that determines if a function is hot with a given threshold. We 1931 /// keep it separate from its callsites for possible extension in the future. 1932 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1933 uint64_t HotThreshold) { 1934 // We intentionally compare the maximum sample count in a function with the 1935 // HotThreshold to get an approximate determination on hot functions. 1936 return (FuncStats.MaxSample >= HotThreshold); 1937 } 1938 1939 namespace { 1940 class SampleOverlapAggregator { 1941 public: 1942 SampleOverlapAggregator(const std::string &BaseFilename, 1943 const std::string &TestFilename, 1944 double LowSimilarityThreshold, double Epsilon, 1945 const OverlapFuncFilters &FuncFilter) 1946 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1947 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1948 FuncFilter(FuncFilter) {} 1949 1950 /// Detect 0-sample input profile and report to output stream. This interface 1951 /// should be called after loadProfiles(). 1952 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1953 1954 /// Write out function-level similarity statistics for functions specified by 1955 /// options --function, --value-cutoff, and --similarity-cutoff. 1956 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1957 1958 /// Write out program-level similarity and overlap statistics. 1959 void dumpProgramSummary(raw_fd_ostream &OS) const; 1960 1961 /// Write out hot-function and hot-block statistics for base_profile, 1962 /// test_profile, and their overlap. For both cases, the overlap HO is 1963 /// calculated as follows: 1964 /// Given the number of functions (or blocks) that are hot in both profiles 1965 /// HCommon and the number of functions (or blocks) that are hot in at 1966 /// least one profile HUnion, HO = HCommon / HUnion. 1967 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1968 1969 /// This function tries matching functions in base and test profiles. For each 1970 /// pair of matched functions, it aggregates the function-level 1971 /// similarity into a profile-level similarity. It also dump function-level 1972 /// similarity information of functions specified by --function, 1973 /// --value-cutoff, and --similarity-cutoff options. The program-level 1974 /// similarity PS is computed as follows: 1975 /// Given function-level similarity FS(A) for all function A, the 1976 /// weight of function A in base profile WB(A), and the weight of function 1977 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1978 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1979 /// meaning no-overlap. 1980 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1981 1982 /// Initialize ProfOverlap with the sum of samples in base and test 1983 /// profiles. This function also computes and keeps the sum of samples and 1984 /// max sample counts of each function in BaseStats and TestStats for later 1985 /// use to avoid re-computations. 1986 void initializeSampleProfileOverlap(); 1987 1988 /// Load profiles specified by BaseFilename and TestFilename. 1989 std::error_code loadProfiles(); 1990 1991 using FuncSampleStatsMap = 1992 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1993 1994 private: 1995 SampleOverlapStats ProfOverlap; 1996 SampleOverlapStats HotFuncOverlap; 1997 SampleOverlapStats HotBlockOverlap; 1998 std::string BaseFilename; 1999 std::string TestFilename; 2000 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 2001 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 2002 // BaseStats and TestStats hold FuncSampleStats for each function, with 2003 // function name as the key. 2004 FuncSampleStatsMap BaseStats; 2005 FuncSampleStatsMap TestStats; 2006 // Low similarity threshold in floating point number 2007 double LowSimilarityThreshold; 2008 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 2009 // for tracking hot blocks. 2010 uint64_t BaseHotThreshold; 2011 uint64_t TestHotThreshold; 2012 // A small threshold used to round the results of floating point accumulations 2013 // to resolve imprecision. 2014 const double Epsilon; 2015 std::multimap<double, SampleOverlapStats, std::greater<double>> 2016 FuncSimilarityDump; 2017 // FuncFilter carries specifications in options --value-cutoff and 2018 // --function. 2019 OverlapFuncFilters FuncFilter; 2020 // Column offsets for printing the function-level details table. 2021 static const unsigned int TestWeightCol = 15; 2022 static const unsigned int SimilarityCol = 30; 2023 static const unsigned int OverlapCol = 43; 2024 static const unsigned int BaseUniqueCol = 53; 2025 static const unsigned int TestUniqueCol = 67; 2026 static const unsigned int BaseSampleCol = 81; 2027 static const unsigned int TestSampleCol = 96; 2028 static const unsigned int FuncNameCol = 111; 2029 2030 /// Return a similarity of two line/block sample counters in the same 2031 /// function in base and test profiles. The line/block-similarity BS(i) is 2032 /// computed as follows: 2033 /// For an offsets i, given the sample count at i in base profile BB(i), 2034 /// the sample count at i in test profile BT(i), the sum of sample counts 2035 /// in this function in base profile SB, and the sum of sample counts in 2036 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 2037 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 2038 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 2039 const SampleOverlapStats &FuncOverlap) const; 2040 2041 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 2042 uint64_t HotBlockCount); 2043 2044 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 2045 FuncSampleStatsMap &HotFunc, 2046 uint64_t HotThreshold) const; 2047 2048 void computeHotFuncOverlap(); 2049 2050 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2051 /// Difference for two sample units in a matched function according to the 2052 /// given match status. 2053 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 2054 uint64_t HotBlockCount, 2055 SampleOverlapStats &FuncOverlap, 2056 double &Difference, MatchStatus Status); 2057 2058 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2059 /// Difference for unmatched callees that only present in one profile in a 2060 /// matched caller function. 2061 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 2062 SampleOverlapStats &FuncOverlap, 2063 double &Difference, MatchStatus Status); 2064 2065 /// This function updates sample overlap statistics of an overlap function in 2066 /// base and test profile. It also calculates a function-internal similarity 2067 /// FIS as follows: 2068 /// For offsets i that have samples in at least one profile in this 2069 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 2070 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 2071 /// 0.0 meaning no overlap. 2072 double computeSampleFunctionInternalOverlap( 2073 const sampleprof::FunctionSamples &BaseFunc, 2074 const sampleprof::FunctionSamples &TestFunc, 2075 SampleOverlapStats &FuncOverlap); 2076 2077 /// Function-level similarity (FS) is a weighted value over function internal 2078 /// similarity (FIS). This function computes a function's FS from its FIS by 2079 /// applying the weight. 2080 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 2081 uint64_t TestFuncSample) const; 2082 2083 /// The function-level similarity FS(A) for a function A is computed as 2084 /// follows: 2085 /// Compute a function-internal similarity FIS(A) by 2086 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 2087 /// function A in base profile WB(A), and the weight of function A in test 2088 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 2089 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 2090 double 2091 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 2092 const sampleprof::FunctionSamples *TestFunc, 2093 SampleOverlapStats *FuncOverlap, 2094 uint64_t BaseFuncSample, 2095 uint64_t TestFuncSample); 2096 2097 /// Profile-level similarity (PS) is a weighted aggregate over function-level 2098 /// similarities (FS). This method weights the FS value by the function 2099 /// weights in the base and test profiles for the aggregation. 2100 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 2101 uint64_t TestFuncSample) const; 2102 }; 2103 } // end anonymous namespace 2104 2105 bool SampleOverlapAggregator::detectZeroSampleProfile( 2106 raw_fd_ostream &OS) const { 2107 bool HaveZeroSample = false; 2108 if (ProfOverlap.BaseSample == 0) { 2109 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 2110 HaveZeroSample = true; 2111 } 2112 if (ProfOverlap.TestSample == 0) { 2113 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 2114 HaveZeroSample = true; 2115 } 2116 return HaveZeroSample; 2117 } 2118 2119 double SampleOverlapAggregator::computeBlockSimilarity( 2120 uint64_t BaseSample, uint64_t TestSample, 2121 const SampleOverlapStats &FuncOverlap) const { 2122 double BaseFrac = 0.0; 2123 double TestFrac = 0.0; 2124 if (FuncOverlap.BaseSample > 0) 2125 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 2126 if (FuncOverlap.TestSample > 0) 2127 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 2128 return 1.0 - std::fabs(BaseFrac - TestFrac); 2129 } 2130 2131 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 2132 uint64_t TestSample, 2133 uint64_t HotBlockCount) { 2134 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 2135 bool IsTestHot = (TestSample >= TestHotThreshold); 2136 if (!IsBaseHot && !IsTestHot) 2137 return; 2138 2139 HotBlockOverlap.UnionCount += HotBlockCount; 2140 if (IsBaseHot) 2141 HotBlockOverlap.BaseCount += HotBlockCount; 2142 if (IsTestHot) 2143 HotBlockOverlap.TestCount += HotBlockCount; 2144 if (IsBaseHot && IsTestHot) 2145 HotBlockOverlap.OverlapCount += HotBlockCount; 2146 } 2147 2148 void SampleOverlapAggregator::getHotFunctions( 2149 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 2150 uint64_t HotThreshold) const { 2151 for (const auto &F : ProfStats) { 2152 if (isFunctionHot(F.second, HotThreshold)) 2153 HotFunc.emplace(F.first, F.second); 2154 } 2155 } 2156 2157 void SampleOverlapAggregator::computeHotFuncOverlap() { 2158 FuncSampleStatsMap BaseHotFunc; 2159 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 2160 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 2161 2162 FuncSampleStatsMap TestHotFunc; 2163 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 2164 HotFuncOverlap.TestCount = TestHotFunc.size(); 2165 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 2166 2167 for (const auto &F : BaseHotFunc) { 2168 if (TestHotFunc.count(F.first)) 2169 ++HotFuncOverlap.OverlapCount; 2170 else 2171 ++HotFuncOverlap.UnionCount; 2172 } 2173 } 2174 2175 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2176 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2177 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2178 assert(Status != MS_None && 2179 "Match status should be updated before updating overlap statistics"); 2180 if (Status == MS_FirstUnique) { 2181 TestSample = 0; 2182 FuncOverlap.BaseUniqueSample += BaseSample; 2183 } else if (Status == MS_SecondUnique) { 2184 BaseSample = 0; 2185 FuncOverlap.TestUniqueSample += TestSample; 2186 } else { 2187 ++FuncOverlap.OverlapCount; 2188 } 2189 2190 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2191 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2192 Difference += 2193 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2194 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2195 } 2196 2197 void SampleOverlapAggregator::updateForUnmatchedCallee( 2198 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2199 double &Difference, MatchStatus Status) { 2200 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2201 "Status must be either of the two unmatched cases"); 2202 FuncSampleStats FuncStats; 2203 if (Status == MS_FirstUnique) { 2204 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2205 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2206 FuncStats.HotBlockCount, FuncOverlap, 2207 Difference, Status); 2208 } else { 2209 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2210 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2211 FuncStats.HotBlockCount, FuncOverlap, 2212 Difference, Status); 2213 } 2214 } 2215 2216 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2217 const sampleprof::FunctionSamples &BaseFunc, 2218 const sampleprof::FunctionSamples &TestFunc, 2219 SampleOverlapStats &FuncOverlap) { 2220 2221 using namespace sampleprof; 2222 2223 double Difference = 0; 2224 2225 // Accumulate Difference for regular line/block samples in the function. 2226 // We match them through sort-merge join algorithm because 2227 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2228 // by their offsets. 2229 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2230 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2231 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2232 BlockIterStep.updateOneStep(); 2233 while (!BlockIterStep.areBothFinished()) { 2234 uint64_t BaseSample = 2235 BlockIterStep.isFirstFinished() 2236 ? 0 2237 : BlockIterStep.getFirstIter()->second.getSamples(); 2238 uint64_t TestSample = 2239 BlockIterStep.isSecondFinished() 2240 ? 0 2241 : BlockIterStep.getSecondIter()->second.getSamples(); 2242 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2243 Difference, BlockIterStep.getMatchStatus()); 2244 2245 BlockIterStep.updateOneStep(); 2246 } 2247 2248 // Accumulate Difference for callsite lines in the function. We match 2249 // them through sort-merge algorithm because 2250 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2251 // ordered by their offsets. 2252 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2253 BaseFunc.getCallsiteSamples().cbegin(), 2254 BaseFunc.getCallsiteSamples().cend(), 2255 TestFunc.getCallsiteSamples().cbegin(), 2256 TestFunc.getCallsiteSamples().cend()); 2257 CallsiteIterStep.updateOneStep(); 2258 while (!CallsiteIterStep.areBothFinished()) { 2259 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2260 assert(CallsiteStepStatus != MS_None && 2261 "Match status should be updated before entering loop body"); 2262 2263 if (CallsiteStepStatus != MS_Match) { 2264 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2265 ? CallsiteIterStep.getFirstIter() 2266 : CallsiteIterStep.getSecondIter(); 2267 for (const auto &F : Callsite->second) 2268 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2269 CallsiteStepStatus); 2270 } else { 2271 // There may be multiple inlinees at the same offset, so we need to try 2272 // matching all of them. This match is implemented through sort-merge 2273 // algorithm because callsite records at the same offset are ordered by 2274 // function names. 2275 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2276 CallsiteIterStep.getFirstIter()->second.cbegin(), 2277 CallsiteIterStep.getFirstIter()->second.cend(), 2278 CallsiteIterStep.getSecondIter()->second.cbegin(), 2279 CallsiteIterStep.getSecondIter()->second.cend()); 2280 CalleeIterStep.updateOneStep(); 2281 while (!CalleeIterStep.areBothFinished()) { 2282 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2283 if (CalleeStepStatus != MS_Match) { 2284 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2285 ? CalleeIterStep.getFirstIter() 2286 : CalleeIterStep.getSecondIter(); 2287 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2288 CalleeStepStatus); 2289 } else { 2290 // An inlined function can contain other inlinees inside, so compute 2291 // the Difference recursively. 2292 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2293 CalleeIterStep.getFirstIter()->second, 2294 CalleeIterStep.getSecondIter()->second, 2295 FuncOverlap); 2296 } 2297 CalleeIterStep.updateOneStep(); 2298 } 2299 } 2300 CallsiteIterStep.updateOneStep(); 2301 } 2302 2303 // Difference reflects the total differences of line/block samples in this 2304 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2305 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2306 return (2.0 - Difference) / 2; 2307 } 2308 2309 double SampleOverlapAggregator::weightForFuncSimilarity( 2310 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2311 uint64_t TestFuncSample) const { 2312 // Compute the weight as the distance between the function weights in two 2313 // profiles. 2314 double BaseFrac = 0.0; 2315 double TestFrac = 0.0; 2316 assert(ProfOverlap.BaseSample > 0 && 2317 "Total samples in base profile should be greater than 0"); 2318 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2319 assert(ProfOverlap.TestSample > 0 && 2320 "Total samples in test profile should be greater than 0"); 2321 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2322 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2323 2324 // Take WeightDistance into the similarity. 2325 return FuncInternalSimilarity * (1 - WeightDistance); 2326 } 2327 2328 double 2329 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2330 uint64_t BaseFuncSample, 2331 uint64_t TestFuncSample) const { 2332 2333 double BaseFrac = 0.0; 2334 double TestFrac = 0.0; 2335 assert(ProfOverlap.BaseSample > 0 && 2336 "Total samples in base profile should be greater than 0"); 2337 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2338 assert(ProfOverlap.TestSample > 0 && 2339 "Total samples in test profile should be greater than 0"); 2340 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2341 return FuncSimilarity * (BaseFrac + TestFrac); 2342 } 2343 2344 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2345 const sampleprof::FunctionSamples *BaseFunc, 2346 const sampleprof::FunctionSamples *TestFunc, 2347 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2348 uint64_t TestFuncSample) { 2349 // Default function internal similarity before weighted, meaning two functions 2350 // has no overlap. 2351 const double DefaultFuncInternalSimilarity = 0; 2352 double FuncSimilarity; 2353 double FuncInternalSimilarity; 2354 2355 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2356 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2357 // similarity. 2358 if (!BaseFunc || !TestFunc) { 2359 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2360 } else { 2361 assert(FuncOverlap != nullptr && 2362 "FuncOverlap should be provided in this case"); 2363 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2364 *BaseFunc, *TestFunc, *FuncOverlap); 2365 // Now, FuncInternalSimilarity may be a little less than 0 due to 2366 // imprecision of floating point accumulations. Make it zero if the 2367 // difference is below Epsilon. 2368 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2369 ? 0 2370 : FuncInternalSimilarity; 2371 } 2372 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2373 BaseFuncSample, TestFuncSample); 2374 return FuncSimilarity; 2375 } 2376 2377 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2378 using namespace sampleprof; 2379 2380 std::unordered_map<SampleContext, const FunctionSamples *, 2381 SampleContext::Hash> 2382 BaseFuncProf; 2383 const auto &BaseProfiles = BaseReader->getProfiles(); 2384 for (const auto &BaseFunc : BaseProfiles) { 2385 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2386 } 2387 ProfOverlap.UnionCount = BaseFuncProf.size(); 2388 2389 const auto &TestProfiles = TestReader->getProfiles(); 2390 for (const auto &TestFunc : TestProfiles) { 2391 SampleOverlapStats FuncOverlap; 2392 FuncOverlap.TestName = TestFunc.second.getContext(); 2393 assert(TestStats.count(FuncOverlap.TestName) && 2394 "TestStats should have records for all functions in test profile " 2395 "except inlinees"); 2396 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2397 2398 bool Matched = false; 2399 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2400 if (Match == BaseFuncProf.end()) { 2401 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2402 ++ProfOverlap.TestUniqueCount; 2403 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2404 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2405 2406 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2407 2408 double FuncSimilarity = computeSampleFunctionOverlap( 2409 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2410 ProfOverlap.Similarity += 2411 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2412 2413 ++ProfOverlap.UnionCount; 2414 ProfOverlap.UnionSample += FuncStats.SampleSum; 2415 } else { 2416 ++ProfOverlap.OverlapCount; 2417 2418 // Two functions match with each other. Compute function-level overlap and 2419 // aggregate them into profile-level overlap. 2420 FuncOverlap.BaseName = Match->second->getContext(); 2421 assert(BaseStats.count(FuncOverlap.BaseName) && 2422 "BaseStats should have records for all functions in base profile " 2423 "except inlinees"); 2424 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2425 2426 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2427 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2428 FuncOverlap.TestSample); 2429 ProfOverlap.Similarity += 2430 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2431 FuncOverlap.TestSample); 2432 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2433 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2434 2435 // Accumulate the percentage of base unique and test unique samples into 2436 // ProfOverlap. 2437 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2438 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2439 2440 // Remove matched base functions for later reporting functions not found 2441 // in test profile. 2442 BaseFuncProf.erase(Match); 2443 Matched = true; 2444 } 2445 2446 // Print function-level similarity information if specified by options. 2447 assert(TestStats.count(FuncOverlap.TestName) && 2448 "TestStats should have records for all functions in test profile " 2449 "except inlinees"); 2450 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2451 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2452 (Matched && !FuncFilter.NameFilter.empty() && 2453 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2454 std::string::npos)) { 2455 assert(ProfOverlap.BaseSample > 0 && 2456 "Total samples in base profile should be greater than 0"); 2457 FuncOverlap.BaseWeight = 2458 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2459 assert(ProfOverlap.TestSample > 0 && 2460 "Total samples in test profile should be greater than 0"); 2461 FuncOverlap.TestWeight = 2462 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2463 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2464 } 2465 } 2466 2467 // Traverse through functions in base profile but not in test profile. 2468 for (const auto &F : BaseFuncProf) { 2469 assert(BaseStats.count(F.second->getContext()) && 2470 "BaseStats should have records for all functions in base profile " 2471 "except inlinees"); 2472 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2473 ++ProfOverlap.BaseUniqueCount; 2474 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2475 2476 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2477 2478 double FuncSimilarity = computeSampleFunctionOverlap( 2479 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2480 ProfOverlap.Similarity += 2481 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2482 2483 ProfOverlap.UnionSample += FuncStats.SampleSum; 2484 } 2485 2486 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2487 // of floating point accumulations. Make it 1.0 if the difference is below 2488 // Epsilon. 2489 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2490 ? 1 2491 : ProfOverlap.Similarity; 2492 2493 computeHotFuncOverlap(); 2494 } 2495 2496 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2497 const auto &BaseProf = BaseReader->getProfiles(); 2498 for (const auto &I : BaseProf) { 2499 ++ProfOverlap.BaseCount; 2500 FuncSampleStats FuncStats; 2501 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2502 ProfOverlap.BaseSample += FuncStats.SampleSum; 2503 BaseStats.emplace(I.second.getContext(), FuncStats); 2504 } 2505 2506 const auto &TestProf = TestReader->getProfiles(); 2507 for (const auto &I : TestProf) { 2508 ++ProfOverlap.TestCount; 2509 FuncSampleStats FuncStats; 2510 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2511 ProfOverlap.TestSample += FuncStats.SampleSum; 2512 TestStats.emplace(I.second.getContext(), FuncStats); 2513 } 2514 2515 ProfOverlap.BaseName = StringRef(BaseFilename); 2516 ProfOverlap.TestName = StringRef(TestFilename); 2517 } 2518 2519 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2520 using namespace sampleprof; 2521 2522 if (FuncSimilarityDump.empty()) 2523 return; 2524 2525 formatted_raw_ostream FOS(OS); 2526 FOS << "Function-level details:\n"; 2527 FOS << "Base weight"; 2528 FOS.PadToColumn(TestWeightCol); 2529 FOS << "Test weight"; 2530 FOS.PadToColumn(SimilarityCol); 2531 FOS << "Similarity"; 2532 FOS.PadToColumn(OverlapCol); 2533 FOS << "Overlap"; 2534 FOS.PadToColumn(BaseUniqueCol); 2535 FOS << "Base unique"; 2536 FOS.PadToColumn(TestUniqueCol); 2537 FOS << "Test unique"; 2538 FOS.PadToColumn(BaseSampleCol); 2539 FOS << "Base samples"; 2540 FOS.PadToColumn(TestSampleCol); 2541 FOS << "Test samples"; 2542 FOS.PadToColumn(FuncNameCol); 2543 FOS << "Function name\n"; 2544 for (const auto &F : FuncSimilarityDump) { 2545 double OverlapPercent = 2546 F.second.UnionSample > 0 2547 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2548 : 0; 2549 double BaseUniquePercent = 2550 F.second.BaseSample > 0 2551 ? static_cast<double>(F.second.BaseUniqueSample) / 2552 F.second.BaseSample 2553 : 0; 2554 double TestUniquePercent = 2555 F.second.TestSample > 0 2556 ? static_cast<double>(F.second.TestUniqueSample) / 2557 F.second.TestSample 2558 : 0; 2559 2560 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2561 FOS.PadToColumn(TestWeightCol); 2562 FOS << format("%.2f%%", F.second.TestWeight * 100); 2563 FOS.PadToColumn(SimilarityCol); 2564 FOS << format("%.2f%%", F.second.Similarity * 100); 2565 FOS.PadToColumn(OverlapCol); 2566 FOS << format("%.2f%%", OverlapPercent * 100); 2567 FOS.PadToColumn(BaseUniqueCol); 2568 FOS << format("%.2f%%", BaseUniquePercent * 100); 2569 FOS.PadToColumn(TestUniqueCol); 2570 FOS << format("%.2f%%", TestUniquePercent * 100); 2571 FOS.PadToColumn(BaseSampleCol); 2572 FOS << F.second.BaseSample; 2573 FOS.PadToColumn(TestSampleCol); 2574 FOS << F.second.TestSample; 2575 FOS.PadToColumn(FuncNameCol); 2576 FOS << F.second.TestName.toString() << "\n"; 2577 } 2578 } 2579 2580 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2581 OS << "Profile overlap infomation for base_profile: " 2582 << ProfOverlap.BaseName.toString() 2583 << " and test_profile: " << ProfOverlap.TestName.toString() 2584 << "\nProgram level:\n"; 2585 2586 OS << " Whole program profile similarity: " 2587 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2588 2589 assert(ProfOverlap.UnionSample > 0 && 2590 "Total samples in two profile should be greater than 0"); 2591 double OverlapPercent = 2592 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2593 assert(ProfOverlap.BaseSample > 0 && 2594 "Total samples in base profile should be greater than 0"); 2595 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2596 ProfOverlap.BaseSample; 2597 assert(ProfOverlap.TestSample > 0 && 2598 "Total samples in test profile should be greater than 0"); 2599 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2600 ProfOverlap.TestSample; 2601 2602 OS << " Whole program sample overlap: " 2603 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2604 OS << " percentage of samples unique in base profile: " 2605 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2606 OS << " percentage of samples unique in test profile: " 2607 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2608 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2609 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2610 2611 assert(ProfOverlap.UnionCount > 0 && 2612 "There should be at least one function in two input profiles"); 2613 double FuncOverlapPercent = 2614 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2615 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2616 << "\n"; 2617 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2618 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2619 << "\n"; 2620 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2621 << "\n"; 2622 } 2623 2624 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2625 raw_fd_ostream &OS) const { 2626 assert(HotFuncOverlap.UnionCount > 0 && 2627 "There should be at least one hot function in two input profiles"); 2628 OS << " Hot-function overlap: " 2629 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2630 HotFuncOverlap.UnionCount * 100) 2631 << "\n"; 2632 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2633 OS << " hot functions unique in base profile: " 2634 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2635 OS << " hot functions unique in test profile: " 2636 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2637 2638 assert(HotBlockOverlap.UnionCount > 0 && 2639 "There should be at least one hot block in two input profiles"); 2640 OS << " Hot-block overlap: " 2641 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2642 HotBlockOverlap.UnionCount * 100) 2643 << "\n"; 2644 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2645 OS << " hot blocks unique in base profile: " 2646 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2647 OS << " hot blocks unique in test profile: " 2648 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2649 } 2650 2651 std::error_code SampleOverlapAggregator::loadProfiles() { 2652 using namespace sampleprof; 2653 2654 LLVMContext Context; 2655 auto FS = vfs::getRealFileSystem(); 2656 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2657 FSDiscriminatorPassOption); 2658 if (std::error_code EC = BaseReaderOrErr.getError()) 2659 exitWithErrorCode(EC, BaseFilename); 2660 2661 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2662 FSDiscriminatorPassOption); 2663 if (std::error_code EC = TestReaderOrErr.getError()) 2664 exitWithErrorCode(EC, TestFilename); 2665 2666 BaseReader = std::move(BaseReaderOrErr.get()); 2667 TestReader = std::move(TestReaderOrErr.get()); 2668 2669 if (std::error_code EC = BaseReader->read()) 2670 exitWithErrorCode(EC, BaseFilename); 2671 if (std::error_code EC = TestReader->read()) 2672 exitWithErrorCode(EC, TestFilename); 2673 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2674 exitWithError( 2675 "cannot compare probe-based profile with non-probe-based profile"); 2676 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2677 exitWithError("cannot compare CS profile with non-CS profile"); 2678 2679 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2680 // profile summary. 2681 ProfileSummary &BasePS = BaseReader->getSummary(); 2682 ProfileSummary &TestPS = TestReader->getSummary(); 2683 BaseHotThreshold = 2684 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2685 TestHotThreshold = 2686 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2687 2688 return std::error_code(); 2689 } 2690 2691 void overlapSampleProfile(const std::string &BaseFilename, 2692 const std::string &TestFilename, 2693 const OverlapFuncFilters &FuncFilter, 2694 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2695 using namespace sampleprof; 2696 2697 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2698 // report 2--3 places after decimal point in percentage numbers. 2699 SampleOverlapAggregator OverlapAggr( 2700 BaseFilename, TestFilename, 2701 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2702 if (std::error_code EC = OverlapAggr.loadProfiles()) 2703 exitWithErrorCode(EC); 2704 2705 OverlapAggr.initializeSampleProfileOverlap(); 2706 if (OverlapAggr.detectZeroSampleProfile(OS)) 2707 return; 2708 2709 OverlapAggr.computeSampleProfileOverlap(OS); 2710 2711 OverlapAggr.dumpProgramSummary(OS); 2712 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2713 OverlapAggr.dumpFuncSimilarity(OS); 2714 } 2715 2716 static int overlap_main() { 2717 std::error_code EC; 2718 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2719 if (EC) 2720 exitWithErrorCode(EC, OutputFilename); 2721 2722 if (ProfileKind == instr) 2723 overlapInstrProfile(BaseFilename, TestFilename, 2724 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2725 OS, IsCS); 2726 else 2727 overlapSampleProfile(BaseFilename, TestFilename, 2728 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2729 SimilarityCutoff, OS); 2730 2731 return 0; 2732 } 2733 2734 namespace { 2735 struct ValueSitesStats { 2736 ValueSitesStats() = default; 2737 uint64_t TotalNumValueSites = 0; 2738 uint64_t TotalNumValueSitesWithValueProfile = 0; 2739 uint64_t TotalNumValues = 0; 2740 std::vector<unsigned> ValueSitesHistogram; 2741 }; 2742 } // namespace 2743 2744 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2745 ValueSitesStats &Stats, raw_fd_ostream &OS, 2746 InstrProfSymtab *Symtab) { 2747 uint32_t NS = Func.getNumValueSites(VK); 2748 Stats.TotalNumValueSites += NS; 2749 for (size_t I = 0; I < NS; ++I) { 2750 auto VD = Func.getValueArrayForSite(VK, I); 2751 uint32_t NV = VD.size(); 2752 if (NV == 0) 2753 continue; 2754 Stats.TotalNumValues += NV; 2755 Stats.TotalNumValueSitesWithValueProfile++; 2756 if (NV > Stats.ValueSitesHistogram.size()) 2757 Stats.ValueSitesHistogram.resize(NV, 0); 2758 Stats.ValueSitesHistogram[NV - 1]++; 2759 2760 uint64_t SiteSum = 0; 2761 for (const auto &V : VD) 2762 SiteSum += V.Count; 2763 if (SiteSum == 0) 2764 SiteSum = 1; 2765 2766 for (const auto &V : VD) { 2767 OS << "\t[ " << format("%2u", I) << ", "; 2768 if (Symtab == nullptr) 2769 OS << format("%4" PRIu64, V.Value); 2770 else 2771 OS << Symtab->getFuncOrVarName(V.Value); 2772 OS << ", " << format("%10" PRId64, V.Count) << " ] (" 2773 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n"; 2774 } 2775 } 2776 } 2777 2778 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2779 ValueSitesStats &Stats) { 2780 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2781 OS << " Total number of sites with values: " 2782 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2783 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2784 2785 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2786 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2787 if (Stats.ValueSitesHistogram[I] > 0) 2788 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2789 } 2790 } 2791 2792 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2793 if (SFormat == ShowFormat::Json) 2794 exitWithError("JSON output is not supported for instr profiles"); 2795 if (SFormat == ShowFormat::Yaml) 2796 exitWithError("YAML output is not supported for instr profiles"); 2797 auto FS = vfs::getRealFileSystem(); 2798 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2799 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2800 if (ShowDetailedSummary && Cutoffs.empty()) { 2801 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2802 } 2803 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2804 if (Error E = ReaderOrErr.takeError()) 2805 exitWithError(std::move(E), Filename); 2806 2807 auto Reader = std::move(ReaderOrErr.get()); 2808 bool IsIRInstr = Reader->isIRLevelProfile(); 2809 size_t ShownFunctions = 0; 2810 size_t BelowCutoffFunctions = 0; 2811 int NumVPKind = IPVK_Last - IPVK_First + 1; 2812 std::vector<ValueSitesStats> VPStats(NumVPKind); 2813 2814 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2815 const std::pair<std::string, uint64_t> &v2) { 2816 return v1.second > v2.second; 2817 }; 2818 2819 std::priority_queue<std::pair<std::string, uint64_t>, 2820 std::vector<std::pair<std::string, uint64_t>>, 2821 decltype(MinCmp)> 2822 HottestFuncs(MinCmp); 2823 2824 if (!TextFormat && OnlyListBelow) { 2825 OS << "The list of functions with the maximum counter less than " 2826 << ShowValueCutoff << ":\n"; 2827 } 2828 2829 // Add marker so that IR-level instrumentation round-trips properly. 2830 if (TextFormat && IsIRInstr) 2831 OS << ":ir\n"; 2832 2833 for (const auto &Func : *Reader) { 2834 if (Reader->isIRLevelProfile()) { 2835 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2836 if (FuncIsCS != ShowCS) 2837 continue; 2838 } 2839 bool Show = ShowAllFunctions || 2840 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2841 2842 bool doTextFormatDump = (Show && TextFormat); 2843 2844 if (doTextFormatDump) { 2845 InstrProfSymtab &Symtab = Reader->getSymtab(); 2846 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2847 OS); 2848 continue; 2849 } 2850 2851 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2852 Builder.addRecord(Func); 2853 2854 if (ShowCovered) { 2855 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2856 OS << Func.Name << "\n"; 2857 continue; 2858 } 2859 2860 uint64_t FuncMax = 0; 2861 uint64_t FuncSum = 0; 2862 2863 auto PseudoKind = Func.getCountPseudoKind(); 2864 if (PseudoKind != InstrProfRecord::NotPseudo) { 2865 if (Show) { 2866 if (!ShownFunctions) 2867 OS << "Counters:\n"; 2868 ++ShownFunctions; 2869 OS << " " << Func.Name << ":\n" 2870 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2871 << " Counters: " << Func.Counts.size(); 2872 if (PseudoKind == InstrProfRecord::PseudoHot) 2873 OS << " <PseudoHot>\n"; 2874 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2875 OS << " <PseudoWarm>\n"; 2876 else 2877 llvm_unreachable("Unknown PseudoKind"); 2878 } 2879 continue; 2880 } 2881 2882 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2883 FuncMax = std::max(FuncMax, Func.Counts[I]); 2884 FuncSum += Func.Counts[I]; 2885 } 2886 2887 if (FuncMax < ShowValueCutoff) { 2888 ++BelowCutoffFunctions; 2889 if (OnlyListBelow) { 2890 OS << " " << Func.Name << ": (Max = " << FuncMax 2891 << " Sum = " << FuncSum << ")\n"; 2892 } 2893 continue; 2894 } else if (OnlyListBelow) 2895 continue; 2896 2897 if (TopNFunctions) { 2898 if (HottestFuncs.size() == TopNFunctions) { 2899 if (HottestFuncs.top().second < FuncMax) { 2900 HottestFuncs.pop(); 2901 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2902 } 2903 } else 2904 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2905 } 2906 2907 if (Show) { 2908 if (!ShownFunctions) 2909 OS << "Counters:\n"; 2910 2911 ++ShownFunctions; 2912 2913 OS << " " << Func.Name << ":\n" 2914 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2915 << " Counters: " << Func.Counts.size() << "\n"; 2916 if (!IsIRInstr) 2917 OS << " Function count: " << Func.Counts[0] << "\n"; 2918 2919 if (ShowIndirectCallTargets) 2920 OS << " Indirect Call Site Count: " 2921 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2922 2923 if (ShowVTables) 2924 OS << " Number of instrumented vtables: " 2925 << Func.getNumValueSites(IPVK_VTableTarget) << "\n"; 2926 2927 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2928 if (ShowMemOPSizes && NumMemOPCalls > 0) 2929 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2930 << "\n"; 2931 2932 if (ShowCounts) { 2933 OS << " Block counts: ["; 2934 size_t Start = (IsIRInstr ? 0 : 1); 2935 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2936 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2937 } 2938 OS << "]\n"; 2939 } 2940 2941 if (ShowIndirectCallTargets) { 2942 OS << " Indirect Target Results:\n"; 2943 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2944 VPStats[IPVK_IndirectCallTarget], OS, 2945 &(Reader->getSymtab())); 2946 } 2947 2948 if (ShowVTables) { 2949 OS << " VTable Results:\n"; 2950 traverseAllValueSites(Func, IPVK_VTableTarget, 2951 VPStats[IPVK_VTableTarget], OS, 2952 &(Reader->getSymtab())); 2953 } 2954 2955 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2956 OS << " Memory Intrinsic Size Results:\n"; 2957 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2958 nullptr); 2959 } 2960 } 2961 } 2962 if (Reader->hasError()) 2963 exitWithError(Reader->getError(), Filename); 2964 2965 if (TextFormat || ShowCovered) 2966 return 0; 2967 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2968 bool IsIR = Reader->isIRLevelProfile(); 2969 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2970 if (IsIR) 2971 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2972 OS << "\n"; 2973 if (ShowAllFunctions || !FuncNameFilter.empty()) 2974 OS << "Functions shown: " << ShownFunctions << "\n"; 2975 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2976 if (ShowValueCutoff > 0) { 2977 OS << "Number of functions with maximum count (< " << ShowValueCutoff 2978 << "): " << BelowCutoffFunctions << "\n"; 2979 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 2980 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2981 } 2982 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2983 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2984 2985 if (TopNFunctions) { 2986 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2987 while (!HottestFuncs.empty()) { 2988 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2989 HottestFuncs.pop(); 2990 } 2991 OS << "Top " << TopNFunctions 2992 << " functions with the largest internal block counts: \n"; 2993 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2994 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2995 } 2996 2997 if (ShownFunctions && ShowIndirectCallTargets) { 2998 OS << "Statistics for indirect call sites profile:\n"; 2999 showValueSitesStats(OS, IPVK_IndirectCallTarget, 3000 VPStats[IPVK_IndirectCallTarget]); 3001 } 3002 3003 if (ShownFunctions && ShowVTables) { 3004 OS << "Statistics for vtable profile:\n"; 3005 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]); 3006 } 3007 3008 if (ShownFunctions && ShowMemOPSizes) { 3009 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 3010 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 3011 } 3012 3013 if (ShowDetailedSummary) { 3014 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 3015 OS << "Total count: " << PS->getTotalCount() << "\n"; 3016 PS->printDetailedSummary(OS); 3017 } 3018 3019 if (ShowBinaryIds) 3020 if (Error E = Reader->printBinaryIds(OS)) 3021 exitWithError(std::move(E), Filename); 3022 3023 if (ShowProfileVersion) 3024 OS << "Profile version: " << Reader->getVersion() << "\n"; 3025 3026 if (ShowTemporalProfTraces) { 3027 auto &Traces = Reader->getTemporalProfTraces(); 3028 OS << "Temporal Profile Traces (samples=" << Traces.size() 3029 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 3030 for (unsigned i = 0; i < Traces.size(); i++) { 3031 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 3032 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 3033 for (auto &NameRef : Traces[i].FunctionNameRefs) 3034 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 3035 } 3036 } 3037 3038 return 0; 3039 } 3040 3041 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 3042 raw_fd_ostream &OS) { 3043 if (!Reader->dumpSectionInfo(OS)) { 3044 WithColor::warning() << "-show-sec-info-only is only supported for " 3045 << "sample profile in extbinary format and is " 3046 << "ignored for other formats.\n"; 3047 return; 3048 } 3049 } 3050 3051 namespace { 3052 struct HotFuncInfo { 3053 std::string FuncName; 3054 uint64_t TotalCount = 0; 3055 double TotalCountPercent = 0.0f; 3056 uint64_t MaxCount = 0; 3057 uint64_t EntryCount = 0; 3058 3059 HotFuncInfo() = default; 3060 3061 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 3062 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 3063 MaxCount(MS), EntryCount(ES) {} 3064 }; 3065 } // namespace 3066 3067 // Print out detailed information about hot functions in PrintValues vector. 3068 // Users specify titles and offset of every columns through ColumnTitle and 3069 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 3070 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 3071 // print out or let it be an empty string. 3072 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 3073 const std::vector<int> &ColumnOffset, 3074 const std::vector<HotFuncInfo> &PrintValues, 3075 uint64_t HotFuncCount, uint64_t TotalFuncCount, 3076 uint64_t HotProfCount, uint64_t TotalProfCount, 3077 const std::string &HotFuncMetric, 3078 uint32_t TopNFunctions, raw_fd_ostream &OS) { 3079 assert(ColumnOffset.size() == ColumnTitle.size() && 3080 "ColumnOffset and ColumnTitle should have the same size"); 3081 assert(ColumnTitle.size() >= 4 && 3082 "ColumnTitle should have at least 4 elements"); 3083 assert(TotalFuncCount > 0 && 3084 "There should be at least one function in the profile"); 3085 double TotalProfPercent = 0; 3086 if (TotalProfCount > 0) 3087 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 3088 3089 formatted_raw_ostream FOS(OS); 3090 FOS << HotFuncCount << " out of " << TotalFuncCount 3091 << " functions with profile (" 3092 << format("%.2f%%", 3093 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 3094 << ") are considered hot functions"; 3095 if (!HotFuncMetric.empty()) 3096 FOS << " (" << HotFuncMetric << ")"; 3097 FOS << ".\n"; 3098 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 3099 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 3100 3101 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 3102 FOS.PadToColumn(ColumnOffset[I]); 3103 FOS << ColumnTitle[I]; 3104 } 3105 FOS << "\n"; 3106 3107 uint32_t Count = 0; 3108 for (const auto &R : PrintValues) { 3109 if (TopNFunctions && (Count++ == TopNFunctions)) 3110 break; 3111 FOS.PadToColumn(ColumnOffset[0]); 3112 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 3113 FOS.PadToColumn(ColumnOffset[1]); 3114 FOS << R.MaxCount; 3115 FOS.PadToColumn(ColumnOffset[2]); 3116 FOS << R.EntryCount; 3117 FOS.PadToColumn(ColumnOffset[3]); 3118 FOS << R.FuncName << "\n"; 3119 } 3120 } 3121 3122 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 3123 ProfileSummary &PS, uint32_t TopN, 3124 raw_fd_ostream &OS) { 3125 using namespace sampleprof; 3126 3127 const uint32_t HotFuncCutoff = 990000; 3128 auto &SummaryVector = PS.getDetailedSummary(); 3129 uint64_t MinCountThreshold = 0; 3130 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 3131 if (SummaryEntry.Cutoff == HotFuncCutoff) { 3132 MinCountThreshold = SummaryEntry.MinCount; 3133 break; 3134 } 3135 } 3136 3137 // Traverse all functions in the profile and keep only hot functions. 3138 // The following loop also calculates the sum of total samples of all 3139 // functions. 3140 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 3141 std::greater<uint64_t>> 3142 HotFunc; 3143 uint64_t ProfileTotalSample = 0; 3144 uint64_t HotFuncSample = 0; 3145 uint64_t HotFuncCount = 0; 3146 3147 for (const auto &I : Profiles) { 3148 FuncSampleStats FuncStats; 3149 const FunctionSamples &FuncProf = I.second; 3150 ProfileTotalSample += FuncProf.getTotalSamples(); 3151 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 3152 3153 if (isFunctionHot(FuncStats, MinCountThreshold)) { 3154 HotFunc.emplace(FuncProf.getTotalSamples(), 3155 std::make_pair(&(I.second), FuncStats.MaxSample)); 3156 HotFuncSample += FuncProf.getTotalSamples(); 3157 ++HotFuncCount; 3158 } 3159 } 3160 3161 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 3162 "Entry sample", "Function name"}; 3163 std::vector<int> ColumnOffset{0, 24, 42, 58}; 3164 std::string Metric = 3165 std::string("max sample >= ") + std::to_string(MinCountThreshold); 3166 std::vector<HotFuncInfo> PrintValues; 3167 for (const auto &FuncPair : HotFunc) { 3168 const FunctionSamples &Func = *FuncPair.second.first; 3169 double TotalSamplePercent = 3170 (ProfileTotalSample > 0) 3171 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 3172 : 0; 3173 PrintValues.emplace_back( 3174 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 3175 TotalSamplePercent, FuncPair.second.second, 3176 Func.getHeadSamplesEstimate())); 3177 } 3178 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 3179 Profiles.size(), HotFuncSample, ProfileTotalSample, 3180 Metric, TopN, OS); 3181 3182 return 0; 3183 } 3184 3185 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3186 if (SFormat == ShowFormat::Yaml) 3187 exitWithError("YAML output is not supported for sample profiles"); 3188 using namespace sampleprof; 3189 LLVMContext Context; 3190 auto FS = vfs::getRealFileSystem(); 3191 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3192 FSDiscriminatorPassOption); 3193 if (std::error_code EC = ReaderOrErr.getError()) 3194 exitWithErrorCode(EC, Filename); 3195 3196 auto Reader = std::move(ReaderOrErr.get()); 3197 if (ShowSectionInfoOnly) { 3198 showSectionInfo(Reader.get(), OS); 3199 return 0; 3200 } 3201 3202 if (std::error_code EC = Reader->read()) 3203 exitWithErrorCode(EC, Filename); 3204 3205 if (ShowAllFunctions || FuncNameFilter.empty()) { 3206 if (SFormat == ShowFormat::Json) 3207 Reader->dumpJson(OS); 3208 else 3209 Reader->dump(OS); 3210 } else { 3211 if (SFormat == ShowFormat::Json) 3212 exitWithError( 3213 "the JSON format is supported only when all functions are to " 3214 "be printed"); 3215 3216 // TODO: parse context string to support filtering by contexts. 3217 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3218 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3219 } 3220 3221 if (ShowProfileSymbolList) { 3222 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3223 Reader->getProfileSymbolList(); 3224 ReaderList->dump(OS); 3225 } 3226 3227 if (ShowDetailedSummary) { 3228 auto &PS = Reader->getSummary(); 3229 PS.printSummary(OS); 3230 PS.printDetailedSummary(OS); 3231 } 3232 3233 if (ShowHotFuncList || TopNFunctions) 3234 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3235 TopNFunctions, OS); 3236 3237 return 0; 3238 } 3239 3240 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3241 if (SFormat == ShowFormat::Json) 3242 exitWithError("JSON output is not supported for MemProf"); 3243 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3244 Filename, ProfiledBinary, /*KeepNames=*/true); 3245 if (Error E = ReaderOr.takeError()) 3246 // Since the error can be related to the profile or the binary we do not 3247 // pass whence. Instead additional context is provided where necessary in 3248 // the error message. 3249 exitWithError(std::move(E), /*Whence*/ ""); 3250 3251 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3252 ReaderOr.get().release()); 3253 3254 Reader->printYAML(OS); 3255 return 0; 3256 } 3257 3258 static int showDebugInfoCorrelation(const std::string &Filename, 3259 ShowFormat SFormat, raw_fd_ostream &OS) { 3260 if (SFormat == ShowFormat::Json) 3261 exitWithError("JSON output is not supported for debug info correlation"); 3262 std::unique_ptr<InstrProfCorrelator> Correlator; 3263 if (auto Err = 3264 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3265 .moveInto(Correlator)) 3266 exitWithError(std::move(Err), Filename); 3267 if (SFormat == ShowFormat::Yaml) { 3268 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3269 exitWithError(std::move(Err), Filename); 3270 return 0; 3271 } 3272 3273 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3274 exitWithError(std::move(Err), Filename); 3275 3276 InstrProfSymtab Symtab; 3277 if (auto Err = Symtab.create( 3278 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3279 exitWithError(std::move(Err), Filename); 3280 3281 if (ShowProfileSymbolList) 3282 Symtab.dumpNames(OS); 3283 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3284 // counters the section holds. 3285 if (ShowDetailedSummary) 3286 OS << "Counters section size: 0x" 3287 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3288 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3289 3290 return 0; 3291 } 3292 3293 static int show_main(StringRef ProgName) { 3294 if (Filename.empty() && DebugInfoFilename.empty()) 3295 exitWithError( 3296 "the positional argument '<profdata-file>' is required unless '--" + 3297 DebugInfoFilename.ArgStr + "' is provided"); 3298 3299 if (Filename == OutputFilename) { 3300 errs() << ProgName 3301 << " show: Input file name cannot be the same as the output file " 3302 "name!\n"; 3303 return 1; 3304 } 3305 if (JsonFormat) 3306 SFormat = ShowFormat::Json; 3307 3308 std::error_code EC; 3309 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3310 if (EC) 3311 exitWithErrorCode(EC, OutputFilename); 3312 3313 if (ShowAllFunctions && !FuncNameFilter.empty()) 3314 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3315 3316 if (!DebugInfoFilename.empty()) 3317 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3318 3319 if (ShowProfileKind == instr) 3320 return showInstrProfile(SFormat, OS); 3321 if (ShowProfileKind == sample) 3322 return showSampleProfile(SFormat, OS); 3323 return showMemProfProfile(SFormat, OS); 3324 } 3325 3326 static int order_main() { 3327 std::error_code EC; 3328 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3329 if (EC) 3330 exitWithErrorCode(EC, OutputFilename); 3331 auto FS = vfs::getRealFileSystem(); 3332 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3333 if (Error E = ReaderOrErr.takeError()) 3334 exitWithError(std::move(E), Filename); 3335 3336 auto Reader = std::move(ReaderOrErr.get()); 3337 for (auto &I : *Reader) { 3338 // Read all entries 3339 (void)I; 3340 } 3341 ArrayRef Traces = Reader->getTemporalProfTraces(); 3342 if (NumTestTraces && NumTestTraces >= Traces.size()) 3343 exitWithError( 3344 "--" + NumTestTraces.ArgStr + 3345 " must be smaller than the total number of traces: expected: < " + 3346 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces)); 3347 ArrayRef TestTraces = Traces.take_back(NumTestTraces); 3348 Traces = Traces.drop_back(NumTestTraces); 3349 3350 std::vector<BPFunctionNode> Nodes; 3351 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes); 3352 BalancedPartitioningConfig Config; 3353 BalancedPartitioning BP(Config); 3354 BP.run(Nodes); 3355 3356 OS << "# Ordered " << Nodes.size() << " functions\n"; 3357 if (!TestTraces.empty()) { 3358 // Since we don't know the symbol sizes, we assume 32 functions per page. 3359 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber; 3360 for (auto &Node : Nodes) 3361 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32; 3362 3363 SmallSet<unsigned, 0> TouchedPages; 3364 unsigned Area = 0; 3365 for (auto &Trace : TestTraces) { 3366 for (auto Id : Trace.FunctionNameRefs) { 3367 auto It = IdToPageNumber.find(Id); 3368 if (It == IdToPageNumber.end()) 3369 continue; 3370 TouchedPages.insert(It->getSecond()); 3371 Area += TouchedPages.size(); 3372 } 3373 TouchedPages.clear(); 3374 } 3375 OS << "# Total area under the page fault curve: " << (float)Area << "\n"; 3376 } 3377 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3378 "linkage and this output does not take that into account. Some " 3379 "post-processing may be required before passing to the linker via " 3380 "-order_file.\n"; 3381 for (auto &N : Nodes) { 3382 auto [Filename, ParsedFuncName] = 3383 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3384 if (!Filename.empty()) 3385 OS << "# " << Filename << "\n"; 3386 OS << ParsedFuncName << "\n"; 3387 } 3388 return 0; 3389 } 3390 3391 int llvm_profdata_main(int argc, char **argvNonConst, 3392 const llvm::ToolContext &) { 3393 const char **argv = const_cast<const char **>(argvNonConst); 3394 3395 StringRef ProgName(sys::path::filename(argv[0])); 3396 3397 if (argc < 2) { 3398 errs() 3399 << ProgName 3400 << ": No subcommand specified! Run llvm-profdata --help for usage.\n"; 3401 return 1; 3402 } 3403 3404 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3405 3406 if (ShowSubcommand) 3407 return show_main(ProgName); 3408 3409 if (OrderSubcommand) 3410 return order_main(); 3411 3412 if (OverlapSubcommand) 3413 return overlap_main(); 3414 3415 if (MergeSubcommand) 3416 return merge_main(ProgName); 3417 3418 errs() << ProgName 3419 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3420 return 1; 3421 } 3422