1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/ProfileData/InstrProfCorrelator.h" 19 #include "llvm/ProfileData/InstrProfReader.h" 20 #include "llvm/ProfileData/InstrProfWriter.h" 21 #include "llvm/ProfileData/MemProf.h" 22 #include "llvm/ProfileData/MemProfReader.h" 23 #include "llvm/ProfileData/ProfileCommon.h" 24 #include "llvm/ProfileData/SampleProfReader.h" 25 #include "llvm/ProfileData/SampleProfWriter.h" 26 #include "llvm/Support/BalancedPartitioning.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Discriminator.h" 29 #include "llvm/Support/Errc.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/FormattedStream.h" 33 #include "llvm/Support/LLVMDriver.h" 34 #include "llvm/Support/MD5.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/Regex.h" 38 #include "llvm/Support/ThreadPool.h" 39 #include "llvm/Support/Threading.h" 40 #include "llvm/Support/VirtualFileSystem.h" 41 #include "llvm/Support/WithColor.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <cmath> 45 #include <optional> 46 #include <queue> 47 48 using namespace llvm; 49 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 50 51 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 52 // on each subcommand. 53 cl::SubCommand ShowSubcommand( 54 "show", 55 "Takes a profile data file and displays the profiles. See detailed " 56 "documentation in " 57 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 58 cl::SubCommand OrderSubcommand( 59 "order", 60 "Reads temporal profiling traces from a profile and outputs a function " 61 "order that reduces the number of page faults for those traces. See " 62 "detailed documentation in " 63 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 64 cl::SubCommand OverlapSubcommand( 65 "overlap", 66 "Computes and displays the overlap between two profiles. See detailed " 67 "documentation in " 68 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 69 cl::SubCommand MergeSubcommand( 70 "merge", 71 "Takes several profiles and merge them together. See detailed " 72 "documentation in " 73 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 74 75 namespace { 76 enum ProfileKinds { instr, sample, memory }; 77 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 78 79 enum ProfileFormat { 80 PF_None = 0, 81 PF_Text, 82 PF_Compact_Binary, // Deprecated 83 PF_Ext_Binary, 84 PF_GCC, 85 PF_Binary 86 }; 87 88 enum class ShowFormat { Text, Json, Yaml }; 89 } // namespace 90 91 // Common options. 92 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 93 cl::init("-"), cl::desc("Output file"), 94 cl::sub(ShowSubcommand), 95 cl::sub(OrderSubcommand), 96 cl::sub(OverlapSubcommand), 97 cl::sub(MergeSubcommand)); 98 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 99 // will be used. llvm::cl::alias::done() method asserts this condition. 100 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 101 cl::aliasopt(OutputFilename)); 102 103 // Options common to at least two commands. 104 cl::opt<ProfileKinds> ProfileKind( 105 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 106 cl::sub(OverlapSubcommand), cl::init(instr), 107 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 108 clEnumVal(sample, "Sample profile"))); 109 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 110 cl::sub(ShowSubcommand), 111 cl::sub(OrderSubcommand)); 112 cl::opt<unsigned> MaxDbgCorrelationWarnings( 113 "max-debug-info-correlation-warnings", 114 cl::desc("The maximum number of warnings to emit when correlating " 115 "profile from debug info (0 = no limit)"), 116 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 117 cl::opt<std::string> ProfiledBinary( 118 "profiled-binary", cl::init(""), 119 cl::desc("Path to binary from which the profile was collected."), 120 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 121 cl::opt<std::string> DebugInfoFilename( 122 "debug-info", cl::init(""), 123 cl::desc( 124 "For show, read and extract profile metadata from debug info and show " 125 "the functions it found. For merge, use the provided debug info to " 126 "correlate the raw profile."), 127 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 128 cl::opt<std::string> 129 BinaryFilename("binary-file", cl::init(""), 130 cl::desc("For merge, use the provided unstripped bianry to " 131 "correlate the raw profile."), 132 cl::sub(MergeSubcommand)); 133 cl::opt<std::string> FuncNameFilter( 134 "function", 135 cl::desc("Only functions matching the filter are shown in the output. For " 136 "overlapping CSSPGO, this takes a function name with calling " 137 "context."), 138 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand), 139 cl::sub(MergeSubcommand)); 140 141 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 142 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 143 // options. 144 145 // Options specific to merge subcommand. 146 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 147 cl::desc("<filename...>")); 148 cl::list<std::string> WeightedInputFilenames("weighted-input", 149 cl::sub(MergeSubcommand), 150 cl::desc("<weight>,<filename>")); 151 cl::opt<ProfileFormat> OutputFormat( 152 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 153 cl::init(PF_Ext_Binary), 154 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 155 clEnumValN(PF_Ext_Binary, "extbinary", 156 "Extensible binary encoding " 157 "(default)"), 158 clEnumValN(PF_Text, "text", "Text encoding"), 159 clEnumValN(PF_GCC, "gcc", 160 "GCC encoding (only meaningful for -sample)"))); 161 cl::opt<std::string> 162 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 163 cl::desc("Path to file containing newline-separated " 164 "[<weight>,]<filename> entries")); 165 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 166 cl::aliasopt(InputFilenamesFile)); 167 cl::opt<bool> DumpInputFileList( 168 "dump-input-file-list", cl::init(false), cl::Hidden, 169 cl::sub(MergeSubcommand), 170 cl::desc("Dump the list of input files and their weights, then exit")); 171 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 172 cl::sub(MergeSubcommand), 173 cl::desc("Symbol remapping file")); 174 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 175 cl::aliasopt(RemappingFile)); 176 cl::opt<bool> 177 UseMD5("use-md5", cl::init(false), cl::Hidden, 178 cl::desc("Choose to use MD5 to represent string in name table (only " 179 "meaningful for -extbinary)"), 180 cl::sub(MergeSubcommand)); 181 cl::opt<bool> CompressAllSections( 182 "compress-all-sections", cl::init(false), cl::Hidden, 183 cl::sub(MergeSubcommand), 184 cl::desc("Compress all sections when writing the profile (only " 185 "meaningful for -extbinary)")); 186 cl::opt<bool> SampleMergeColdContext( 187 "sample-merge-cold-context", cl::init(false), cl::Hidden, 188 cl::sub(MergeSubcommand), 189 cl::desc( 190 "Merge context sample profiles whose count is below cold threshold")); 191 cl::opt<bool> SampleTrimColdContext( 192 "sample-trim-cold-context", cl::init(false), cl::Hidden, 193 cl::sub(MergeSubcommand), 194 cl::desc( 195 "Trim context sample profiles whose count is below cold threshold")); 196 cl::opt<uint32_t> SampleColdContextFrameDepth( 197 "sample-frame-depth-for-cold-context", cl::init(1), 198 cl::sub(MergeSubcommand), 199 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 200 "context-less base profile")); 201 cl::opt<size_t> OutputSizeLimit( 202 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 203 cl::desc("Trim cold functions until profile size is below specified " 204 "limit in bytes. This uses a heursitic and functions may be " 205 "excessively trimmed")); 206 cl::opt<bool> GenPartialProfile( 207 "gen-partial-profile", cl::init(false), cl::Hidden, 208 cl::sub(MergeSubcommand), 209 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 210 cl::opt<std::string> SupplInstrWithSample( 211 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 212 cl::sub(MergeSubcommand), 213 cl::desc("Supplement an instr profile with sample profile, to correct " 214 "the profile unrepresentativeness issue. The sample " 215 "profile is the input of the flag. Output will be in instr " 216 "format (The flag only works with -instr)")); 217 cl::opt<float> ZeroCounterThreshold( 218 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 219 cl::sub(MergeSubcommand), 220 cl::desc("For the function which is cold in instr profile but hot in " 221 "sample profile, if the ratio of the number of zero counters " 222 "divided by the total number of counters is above the " 223 "threshold, the profile of the function will be regarded as " 224 "being harmful for performance and will be dropped.")); 225 cl::opt<unsigned> SupplMinSizeThreshold( 226 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 227 cl::sub(MergeSubcommand), 228 cl::desc("If the size of a function is smaller than the threshold, " 229 "assume it can be inlined by PGO early inliner and it won't " 230 "be adjusted based on sample profile.")); 231 cl::opt<unsigned> InstrProfColdThreshold( 232 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 233 cl::sub(MergeSubcommand), 234 cl::desc("User specified cold threshold for instr profile which will " 235 "override the cold threshold got from profile summary. ")); 236 // WARNING: This reservoir size value is propagated to any input indexed 237 // profiles for simplicity. Changing this value between invocations could 238 // result in sample bias. 239 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 240 "temporal-profile-trace-reservoir-size", cl::init(100), 241 cl::sub(MergeSubcommand), 242 cl::desc("The maximum number of stored temporal profile traces (default: " 243 "100)")); 244 cl::opt<uint64_t> TemporalProfMaxTraceLength( 245 "temporal-profile-max-trace-length", cl::init(10000), 246 cl::sub(MergeSubcommand), 247 cl::desc("The maximum length of a single temporal profile trace " 248 "(default: 10000)")); 249 cl::opt<std::string> FuncNameNegativeFilter( 250 "no-function", cl::init(""), 251 cl::sub(MergeSubcommand), 252 cl::desc("Exclude functions matching the filter from the output.")); 253 254 cl::opt<FailureMode> 255 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 256 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 257 cl::values(clEnumValN(warnOnly, "warn", 258 "Do not fail and just print warnings."), 259 clEnumValN(failIfAnyAreInvalid, "any", 260 "Fail if any profile is invalid."), 261 clEnumValN(failIfAllAreInvalid, "all", 262 "Fail only if all profiles are invalid."))); 263 264 cl::opt<bool> OutputSparse( 265 "sparse", cl::init(false), cl::sub(MergeSubcommand), 266 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 267 cl::opt<unsigned> NumThreads( 268 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 269 cl::desc("Number of merge threads to use (default: autodetect)")); 270 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 271 cl::aliasopt(NumThreads)); 272 273 cl::opt<std::string> ProfileSymbolListFile( 274 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 275 cl::desc("Path to file containing the list of function symbols " 276 "used to populate profile symbol list")); 277 278 cl::opt<SampleProfileLayout> ProfileLayout( 279 "convert-sample-profile-layout", 280 cl::desc("Convert the generated profile to a profile with a new layout"), 281 cl::sub(MergeSubcommand), cl::init(SPL_None), 282 cl::values( 283 clEnumValN(SPL_Nest, "nest", 284 "Nested profile, the input should be CS flat profile"), 285 clEnumValN(SPL_Flat, "flat", 286 "Profile with nested inlinee flatten out"))); 287 288 cl::opt<bool> DropProfileSymbolList( 289 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 290 cl::sub(MergeSubcommand), 291 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 292 "(only meaningful for -sample)")); 293 294 // Temporary support for writing the previous version of the format, to enable 295 // some forward compatibility. 296 // TODO: Consider enabling this with future version changes as well, to ease 297 // deployment of newer versions of llvm-profdata. 298 cl::opt<bool> DoWritePrevVersion( 299 "write-prev-version", cl::init(false), cl::Hidden, 300 cl::desc("Write the previous version of indexed format, to enable " 301 "some forward compatibility.")); 302 303 cl::opt<memprof::IndexedVersion> MemProfVersionRequested( 304 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand), 305 cl::desc("Specify the version of the memprof format to use"), 306 cl::init(memprof::Version0), 307 cl::values(clEnumValN(memprof::Version0, "0", "version 0"), 308 clEnumValN(memprof::Version1, "1", "version 1"), 309 clEnumValN(memprof::Version2, "2", "version 2"), 310 clEnumValN(memprof::Version3, "3", "version 3"))); 311 312 cl::opt<bool> MemProfFullSchema( 313 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand), 314 cl::desc("Use the full schema for serialization"), cl::init(false)); 315 316 // Options specific to overlap subcommand. 317 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 318 cl::desc("<base profile file>"), 319 cl::sub(OverlapSubcommand)); 320 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 321 cl::desc("<test profile file>"), 322 cl::sub(OverlapSubcommand)); 323 324 cl::opt<unsigned long long> SimilarityCutoff( 325 "similarity-cutoff", cl::init(0), 326 cl::desc("For sample profiles, list function names (with calling context " 327 "for csspgo) for overlapped functions " 328 "with similarities below the cutoff (percentage times 10000)."), 329 cl::sub(OverlapSubcommand)); 330 331 cl::opt<bool> IsCS( 332 "cs", cl::init(false), 333 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 334 cl::sub(OverlapSubcommand)); 335 336 cl::opt<unsigned long long> OverlapValueCutoff( 337 "value-cutoff", cl::init(-1), 338 cl::desc( 339 "Function level overlap information for every function (with calling " 340 "context for csspgo) in test " 341 "profile with max count value greater then the parameter value"), 342 cl::sub(OverlapSubcommand)); 343 344 // Options specific to show subcommand. 345 cl::opt<bool> ShowCounts("counts", cl::init(false), 346 cl::desc("Show counter values for shown functions"), 347 cl::sub(ShowSubcommand)); 348 cl::opt<ShowFormat> 349 SFormat("show-format", cl::init(ShowFormat::Text), 350 cl::desc("Emit output in the selected format if supported"), 351 cl::sub(ShowSubcommand), 352 cl::values(clEnumValN(ShowFormat::Text, "text", 353 "emit normal text output (default)"), 354 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 355 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 356 // TODO: Consider replacing this with `--show-format=text-encoding`. 357 cl::opt<bool> 358 TextFormat("text", cl::init(false), 359 cl::desc("Show instr profile data in text dump format"), 360 cl::sub(ShowSubcommand)); 361 cl::opt<bool> 362 JsonFormat("json", 363 cl::desc("Show sample profile data in the JSON format " 364 "(deprecated, please use --show-format=json)"), 365 cl::sub(ShowSubcommand)); 366 cl::opt<bool> ShowIndirectCallTargets( 367 "ic-targets", cl::init(false), 368 cl::desc("Show indirect call site target values for shown functions"), 369 cl::sub(ShowSubcommand)); 370 cl::opt<bool> ShowVTables("show-vtables", cl::init(false), 371 cl::desc("Show vtable names for shown functions"), 372 cl::sub(ShowSubcommand)); 373 cl::opt<bool> ShowMemOPSizes( 374 "memop-sizes", cl::init(false), 375 cl::desc("Show the profiled sizes of the memory intrinsic calls " 376 "for shown functions"), 377 cl::sub(ShowSubcommand)); 378 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 379 cl::desc("Show detailed profile summary"), 380 cl::sub(ShowSubcommand)); 381 cl::list<uint32_t> DetailedSummaryCutoffs( 382 cl::CommaSeparated, "detailed-summary-cutoffs", 383 cl::desc( 384 "Cutoff percentages (times 10000) for generating detailed summary"), 385 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 386 cl::opt<bool> 387 ShowHotFuncList("hot-func-list", cl::init(false), 388 cl::desc("Show profile summary of a list of hot functions"), 389 cl::sub(ShowSubcommand)); 390 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 391 cl::desc("Details for each and every function"), 392 cl::sub(ShowSubcommand)); 393 cl::opt<bool> ShowCS("showcs", cl::init(false), 394 cl::desc("Show context sensitive counts"), 395 cl::sub(ShowSubcommand)); 396 cl::opt<ProfileKinds> ShowProfileKind( 397 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 398 cl::init(instr), 399 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 400 clEnumVal(sample, "Sample profile"), 401 clEnumVal(memory, "MemProf memory access profile"))); 402 cl::opt<uint32_t> TopNFunctions( 403 "topn", cl::init(0), 404 cl::desc("Show the list of functions with the largest internal counts"), 405 cl::sub(ShowSubcommand)); 406 cl::opt<uint32_t> ShowValueCutoff( 407 "value-cutoff", cl::init(0), 408 cl::desc("Set the count value cutoff. Functions with the maximum count " 409 "less than this value will not be printed out. (Default is 0)"), 410 cl::sub(ShowSubcommand)); 411 cl::opt<bool> OnlyListBelow( 412 "list-below-cutoff", cl::init(false), 413 cl::desc("Only output names of functions whose max count values are " 414 "below the cutoff value"), 415 cl::sub(ShowSubcommand)); 416 cl::opt<bool> ShowProfileSymbolList( 417 "show-prof-sym-list", cl::init(false), 418 cl::desc("Show profile symbol list if it exists in the profile. "), 419 cl::sub(ShowSubcommand)); 420 cl::opt<bool> ShowSectionInfoOnly( 421 "show-sec-info-only", cl::init(false), 422 cl::desc("Show the information of each section in the sample profile. " 423 "The flag is only usable when the sample profile is in " 424 "extbinary format"), 425 cl::sub(ShowSubcommand)); 426 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 427 cl::desc("Show binary ids in the profile. "), 428 cl::sub(ShowSubcommand)); 429 cl::opt<bool> ShowTemporalProfTraces( 430 "temporal-profile-traces", 431 cl::desc("Show temporal profile traces in the profile."), 432 cl::sub(ShowSubcommand)); 433 434 cl::opt<bool> 435 ShowCovered("covered", cl::init(false), 436 cl::desc("Show only the functions that have been executed."), 437 cl::sub(ShowSubcommand)); 438 439 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 440 cl::desc("Show profile version. "), 441 cl::sub(ShowSubcommand)); 442 443 // Options specific to order subcommand. 444 cl::opt<unsigned> 445 NumTestTraces("num-test-traces", cl::init(0), 446 cl::desc("Keep aside the last <num-test-traces> traces in " 447 "the profile when computing the function order and " 448 "instead use them to evaluate that order"), 449 cl::sub(OrderSubcommand)); 450 451 // We use this string to indicate that there are 452 // multiple static functions map to the same name. 453 const std::string DuplicateNameStr = "----"; 454 455 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") { 456 WithColor::warning(); 457 if (!Whence.empty()) 458 errs() << Whence << ": "; 459 errs() << Message << "\n"; 460 if (!Hint.empty()) 461 WithColor::note() << Hint << "\n"; 462 } 463 464 static void warn(Error E, StringRef Whence = "") { 465 if (E.isA<InstrProfError>()) { 466 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 467 warn(IPE.message(), Whence); 468 }); 469 } 470 } 471 472 static void exitWithError(Twine Message, StringRef Whence = "", 473 StringRef Hint = "") { 474 WithColor::error(); 475 if (!Whence.empty()) 476 errs() << Whence << ": "; 477 errs() << Message << "\n"; 478 if (!Hint.empty()) 479 WithColor::note() << Hint << "\n"; 480 ::exit(1); 481 } 482 483 static void exitWithError(Error E, StringRef Whence = "") { 484 if (E.isA<InstrProfError>()) { 485 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 486 instrprof_error instrError = IPE.get(); 487 StringRef Hint = ""; 488 if (instrError == instrprof_error::unrecognized_format) { 489 // Hint in case user missed specifying the profile type. 490 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 491 } 492 exitWithError(IPE.message(), Whence, Hint); 493 }); 494 return; 495 } 496 497 exitWithError(toString(std::move(E)), Whence); 498 } 499 500 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 501 exitWithError(EC.message(), Whence); 502 } 503 504 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 505 StringRef Whence = "") { 506 if (FailMode == failIfAnyAreInvalid) 507 exitWithErrorCode(EC, Whence); 508 else 509 warn(EC.message(), Whence); 510 } 511 512 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 513 StringRef WhenceFunction = "", 514 bool ShowHint = true) { 515 if (!WhenceFile.empty()) 516 errs() << WhenceFile << ": "; 517 if (!WhenceFunction.empty()) 518 errs() << WhenceFunction << ": "; 519 520 auto IPE = instrprof_error::success; 521 E = handleErrors(std::move(E), 522 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 523 IPE = E->get(); 524 return Error(std::move(E)); 525 }); 526 errs() << toString(std::move(E)) << "\n"; 527 528 if (ShowHint) { 529 StringRef Hint = ""; 530 if (IPE != instrprof_error::success) { 531 switch (IPE) { 532 case instrprof_error::hash_mismatch: 533 case instrprof_error::count_mismatch: 534 case instrprof_error::value_site_count_mismatch: 535 Hint = "Make sure that all profile data to be merged is generated " 536 "from the same binary."; 537 break; 538 default: 539 break; 540 } 541 } 542 543 if (!Hint.empty()) 544 errs() << Hint << "\n"; 545 } 546 } 547 548 namespace { 549 /// A remapper from original symbol names to new symbol names based on a file 550 /// containing a list of mappings from old name to new name. 551 class SymbolRemapper { 552 std::unique_ptr<MemoryBuffer> File; 553 DenseMap<StringRef, StringRef> RemappingTable; 554 555 public: 556 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 557 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 558 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 559 if (!BufOrError) 560 exitWithErrorCode(BufOrError.getError(), InputFile); 561 562 auto Remapper = std::make_unique<SymbolRemapper>(); 563 Remapper->File = std::move(BufOrError.get()); 564 565 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 566 !LineIt.is_at_eof(); ++LineIt) { 567 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 568 if (Parts.first.empty() || Parts.second.empty() || 569 Parts.second.count(' ')) { 570 exitWithError("unexpected line in remapping file", 571 (InputFile + ":" + Twine(LineIt.line_number())).str(), 572 "expected 'old_symbol new_symbol'"); 573 } 574 Remapper->RemappingTable.insert(Parts); 575 } 576 return Remapper; 577 } 578 579 /// Attempt to map the given old symbol into a new symbol. 580 /// 581 /// \return The new symbol, or \p Name if no such symbol was found. 582 StringRef operator()(StringRef Name) { 583 StringRef New = RemappingTable.lookup(Name); 584 return New.empty() ? Name : New; 585 } 586 587 FunctionId operator()(FunctionId Name) { 588 // MD5 name cannot be remapped. 589 if (!Name.isStringRef()) 590 return Name; 591 StringRef New = RemappingTable.lookup(Name.stringRef()); 592 return New.empty() ? Name : FunctionId(New); 593 } 594 }; 595 } 596 597 struct WeightedFile { 598 std::string Filename; 599 uint64_t Weight; 600 }; 601 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 602 603 /// Keep track of merged data and reported errors. 604 struct WriterContext { 605 std::mutex Lock; 606 InstrProfWriter Writer; 607 std::vector<std::pair<Error, std::string>> Errors; 608 std::mutex &ErrLock; 609 SmallSet<instrprof_error, 4> &WriterErrorCodes; 610 611 WriterContext(bool IsSparse, std::mutex &ErrLock, 612 SmallSet<instrprof_error, 4> &WriterErrorCodes, 613 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 614 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion, 615 MemProfVersionRequested, MemProfFullSchema), 616 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {} 617 }; 618 619 /// Computer the overlap b/w profile BaseFilename and TestFileName, 620 /// and store the program level result to Overlap. 621 static void overlapInput(const std::string &BaseFilename, 622 const std::string &TestFilename, WriterContext *WC, 623 OverlapStats &Overlap, 624 const OverlapFuncFilters &FuncFilter, 625 raw_fd_ostream &OS, bool IsCS) { 626 auto FS = vfs::getRealFileSystem(); 627 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 628 if (Error E = ReaderOrErr.takeError()) { 629 // Skip the empty profiles by returning sliently. 630 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 631 if (ErrorCode != instrprof_error::empty_raw_profile) 632 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 633 TestFilename); 634 return; 635 } 636 637 auto Reader = std::move(ReaderOrErr.get()); 638 for (auto &I : *Reader) { 639 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 640 FuncOverlap.setFuncInfo(I.Name, I.Hash); 641 642 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 643 FuncOverlap.dump(OS); 644 } 645 } 646 647 /// Load an input into a writer context. 648 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 649 const InstrProfCorrelator *Correlator, 650 const StringRef ProfiledBinary, WriterContext *WC) { 651 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 652 653 // Copy the filename, because llvm::ThreadPool copied the input "const 654 // WeightedFile &" by value, making a reference to the filename within it 655 // invalid outside of this packaged task. 656 std::string Filename = Input.Filename; 657 658 using ::llvm::memprof::RawMemProfReader; 659 if (RawMemProfReader::hasFormat(Input.Filename)) { 660 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 661 if (!ReaderOrErr) { 662 exitWithError(ReaderOrErr.takeError(), Input.Filename); 663 } 664 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 665 // Check if the profile types can be merged, e.g. clang frontend profiles 666 // should not be merged with memprof profiles. 667 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 668 consumeError(std::move(E)); 669 WC->Errors.emplace_back( 670 make_error<StringError>( 671 "Cannot merge MemProf profile with Clang generated profile.", 672 std::error_code()), 673 Filename); 674 return; 675 } 676 677 auto MemProfError = [&](Error E) { 678 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 679 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 680 Filename); 681 }; 682 683 // Add the frame mappings into the writer context. 684 const auto &IdToFrame = Reader->getFrameMapping(); 685 for (const auto &I : IdToFrame) { 686 bool Succeeded = WC->Writer.addMemProfFrame( 687 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 688 // If we weren't able to add the frame mappings then it doesn't make sense 689 // to try to add the records from this profile. 690 if (!Succeeded) 691 return; 692 } 693 694 // Add the call stacks into the writer context. 695 const auto &CSIdToCallStacks = Reader->getCallStacks(); 696 for (const auto &I : CSIdToCallStacks) { 697 bool Succeeded = WC->Writer.addMemProfCallStack( 698 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 699 // If we weren't able to add the call stacks then it doesn't make sense 700 // to try to add the records from this profile. 701 if (!Succeeded) 702 return; 703 } 704 705 const auto &FunctionProfileData = Reader->getProfileData(); 706 // Add the memprof records into the writer context. 707 for (const auto &[GUID, Record] : FunctionProfileData) { 708 WC->Writer.addMemProfRecord(GUID, Record); 709 } 710 return; 711 } 712 713 auto FS = vfs::getRealFileSystem(); 714 // TODO: This only saves the first non-fatal error from InstrProfReader, and 715 // then added to WriterContext::Errors. However, this is not extensible, if 716 // we have more non-fatal errors from InstrProfReader in the future. How 717 // should this interact with different -failure-mode? 718 std::optional<std::pair<Error, std::string>> ReaderWarning; 719 auto Warn = [&](Error E) { 720 if (ReaderWarning) { 721 consumeError(std::move(E)); 722 return; 723 } 724 // Only show the first time an error occurs in this file. 725 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 726 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 727 }; 728 auto ReaderOrErr = 729 InstrProfReader::create(Input.Filename, *FS, Correlator, Warn); 730 if (Error E = ReaderOrErr.takeError()) { 731 // Skip the empty profiles by returning silently. 732 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 733 if (ErrCode != instrprof_error::empty_raw_profile) 734 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 735 Filename); 736 return; 737 } 738 739 auto Reader = std::move(ReaderOrErr.get()); 740 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 741 consumeError(std::move(E)); 742 WC->Errors.emplace_back( 743 make_error<StringError>( 744 "Merge IR generated profile with Clang generated profile.", 745 std::error_code()), 746 Filename); 747 return; 748 } 749 750 for (auto &I : *Reader) { 751 if (Remapper) 752 I.Name = (*Remapper)(I.Name); 753 const StringRef FuncName = I.Name; 754 bool Reported = false; 755 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 756 if (Reported) { 757 consumeError(std::move(E)); 758 return; 759 } 760 Reported = true; 761 // Only show hint the first time an error occurs. 762 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 763 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 764 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 765 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 766 Input.Filename, FuncName, firstTime); 767 }); 768 } 769 770 const InstrProfSymtab &symtab = Reader->getSymtab(); 771 const auto &VTableNames = symtab.getVTableNames(); 772 773 for (const auto &kv : VTableNames) { 774 WC->Writer.addVTableName(kv.getKey()); 775 } 776 777 if (Reader->hasTemporalProfile()) { 778 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 779 if (!Traces.empty()) 780 WC->Writer.addTemporalProfileTraces( 781 Traces, Reader->getTemporalProfTraceStreamSize()); 782 } 783 if (Reader->hasError()) { 784 if (Error E = Reader->getError()) { 785 WC->Errors.emplace_back(std::move(E), Filename); 786 return; 787 } 788 } 789 790 std::vector<llvm::object::BuildID> BinaryIds; 791 if (Error E = Reader->readBinaryIds(BinaryIds)) { 792 WC->Errors.emplace_back(std::move(E), Filename); 793 return; 794 } 795 WC->Writer.addBinaryIds(BinaryIds); 796 797 if (ReaderWarning) { 798 WC->Errors.emplace_back(std::move(ReaderWarning->first), 799 ReaderWarning->second); 800 } 801 } 802 803 /// Merge the \p Src writer context into \p Dst. 804 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 805 for (auto &ErrorPair : Src->Errors) 806 Dst->Errors.push_back(std::move(ErrorPair)); 807 Src->Errors.clear(); 808 809 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 810 exitWithError(std::move(E)); 811 812 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 813 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 814 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 815 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 816 if (firstTime) 817 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 818 }); 819 } 820 821 static StringRef 822 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) { 823 return Val.first(); 824 } 825 826 static std::string 827 getFuncName(const SampleProfileMap::value_type &Val) { 828 return Val.second.getContext().toString(); 829 } 830 831 template <typename T> 832 static void filterFunctions(T &ProfileMap) { 833 bool hasFilter = !FuncNameFilter.empty(); 834 bool hasNegativeFilter = !FuncNameNegativeFilter.empty(); 835 if (!hasFilter && !hasNegativeFilter) 836 return; 837 838 // If filter starts with '?' it is MSVC mangled name, not a regex. 839 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+"); 840 if (hasFilter && FuncNameFilter[0] == '?' && 841 ProbablyMSVCMangledName.match(FuncNameFilter)) 842 FuncNameFilter = llvm::Regex::escape(FuncNameFilter); 843 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' && 844 ProbablyMSVCMangledName.match(FuncNameNegativeFilter)) 845 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter); 846 847 size_t Count = ProfileMap.size(); 848 llvm::Regex Pattern(FuncNameFilter); 849 llvm::Regex NegativePattern(FuncNameNegativeFilter); 850 std::string Error; 851 if (hasFilter && !Pattern.isValid(Error)) 852 exitWithError(Error); 853 if (hasNegativeFilter && !NegativePattern.isValid(Error)) 854 exitWithError(Error); 855 856 // Handle MD5 profile, so it is still able to match using the original name. 857 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter)); 858 std::string NegativeMD5Name = 859 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter)); 860 861 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { 862 auto Tmp = I++; 863 const auto &FuncName = getFuncName(*Tmp); 864 // Negative filter has higher precedence than positive filter. 865 if ((hasNegativeFilter && 866 (NegativePattern.match(FuncName) || 867 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) || 868 (hasFilter && !(Pattern.match(FuncName) || 869 (FunctionSamples::UseMD5 && MD5Name == FuncName)))) 870 ProfileMap.erase(Tmp); 871 } 872 873 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions " 874 << "in the original profile are filtered.\n"; 875 } 876 877 static void writeInstrProfile(StringRef OutputFilename, 878 ProfileFormat OutputFormat, 879 InstrProfWriter &Writer) { 880 std::error_code EC; 881 raw_fd_ostream Output(OutputFilename.data(), EC, 882 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 883 : sys::fs::OF_None); 884 if (EC) 885 exitWithErrorCode(EC, OutputFilename); 886 887 if (OutputFormat == PF_Text) { 888 if (Error E = Writer.writeText(Output)) 889 warn(std::move(E)); 890 } else { 891 if (Output.is_displayed()) 892 exitWithError("cannot write a non-text format profile to the terminal"); 893 if (Error E = Writer.write(Output)) 894 warn(std::move(E)); 895 } 896 } 897 898 static void mergeInstrProfile(const WeightedFileVector &Inputs, 899 SymbolRemapper *Remapper, 900 int MaxDbgCorrelationWarnings, 901 const StringRef ProfiledBinary) { 902 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 903 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 904 if (OutputFormat == PF_Compact_Binary) 905 exitWithError("Compact Binary is deprecated"); 906 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 907 OutputFormat != PF_Text) 908 exitWithError("unknown format is specified"); 909 910 // TODO: Maybe we should support correlation with mixture of different 911 // correlation modes(w/wo debug-info/object correlation). 912 if (!DebugInfoFilename.empty() && !BinaryFilename.empty()) 913 exitWithError("Expected only one of -debug-info, -binary-file"); 914 std::string CorrelateFilename; 915 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 916 if (!DebugInfoFilename.empty()) { 917 CorrelateFilename = DebugInfoFilename; 918 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 919 } else if (!BinaryFilename.empty()) { 920 CorrelateFilename = BinaryFilename; 921 CorrelateKind = ProfCorrelatorKind::BINARY; 922 } 923 924 std::unique_ptr<InstrProfCorrelator> Correlator; 925 if (CorrelateKind != InstrProfCorrelator::NONE) { 926 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 927 .moveInto(Correlator)) 928 exitWithError(std::move(Err), CorrelateFilename); 929 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 930 exitWithError(std::move(Err), CorrelateFilename); 931 } 932 933 std::mutex ErrorLock; 934 SmallSet<instrprof_error, 4> WriterErrorCodes; 935 936 // If NumThreads is not specified, auto-detect a good default. 937 if (NumThreads == 0) 938 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 939 unsigned((Inputs.size() + 1) / 2)); 940 941 // Initialize the writer contexts. 942 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 943 for (unsigned I = 0; I < NumThreads; ++I) 944 Contexts.emplace_back(std::make_unique<WriterContext>( 945 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 946 MaxTraceLength)); 947 948 if (NumThreads == 1) { 949 for (const auto &Input : Inputs) 950 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 951 Contexts[0].get()); 952 } else { 953 DefaultThreadPool Pool(hardware_concurrency(NumThreads)); 954 955 // Load the inputs in parallel (N/NumThreads serial steps). 956 unsigned Ctx = 0; 957 for (const auto &Input : Inputs) { 958 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 959 Contexts[Ctx].get()); 960 Ctx = (Ctx + 1) % NumThreads; 961 } 962 Pool.wait(); 963 964 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 965 unsigned Mid = Contexts.size() / 2; 966 unsigned End = Contexts.size(); 967 assert(Mid > 0 && "Expected more than one context"); 968 do { 969 for (unsigned I = 0; I < Mid; ++I) 970 Pool.async(mergeWriterContexts, Contexts[I].get(), 971 Contexts[I + Mid].get()); 972 Pool.wait(); 973 if (End & 1) { 974 Pool.async(mergeWriterContexts, Contexts[0].get(), 975 Contexts[End - 1].get()); 976 Pool.wait(); 977 } 978 End = Mid; 979 Mid /= 2; 980 } while (Mid > 0); 981 } 982 983 // Handle deferred errors encountered during merging. If the number of errors 984 // is equal to the number of inputs the merge failed. 985 unsigned NumErrors = 0; 986 for (std::unique_ptr<WriterContext> &WC : Contexts) { 987 for (auto &ErrorPair : WC->Errors) { 988 ++NumErrors; 989 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 990 } 991 } 992 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 993 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 994 exitWithError("no profile can be merged"); 995 996 filterFunctions(Contexts[0]->Writer.getProfileData()); 997 998 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 999 } 1000 1001 /// The profile entry for a function in instrumentation profile. 1002 struct InstrProfileEntry { 1003 uint64_t MaxCount = 0; 1004 uint64_t NumEdgeCounters = 0; 1005 float ZeroCounterRatio = 0.0; 1006 InstrProfRecord *ProfRecord; 1007 InstrProfileEntry(InstrProfRecord *Record); 1008 InstrProfileEntry() = default; 1009 }; 1010 1011 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 1012 ProfRecord = Record; 1013 uint64_t CntNum = Record->Counts.size(); 1014 uint64_t ZeroCntNum = 0; 1015 for (size_t I = 0; I < CntNum; ++I) { 1016 MaxCount = std::max(MaxCount, Record->Counts[I]); 1017 ZeroCntNum += !Record->Counts[I]; 1018 } 1019 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 1020 NumEdgeCounters = CntNum; 1021 } 1022 1023 /// Either set all the counters in the instr profile entry \p IFE to 1024 /// -1 / -2 /in order to drop the profile or scale up the 1025 /// counters in \p IFP to be above hot / cold threshold. We use 1026 /// the ratio of zero counters in the profile of a function to 1027 /// decide the profile is helpful or harmful for performance, 1028 /// and to choose whether to scale up or drop it. 1029 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 1030 uint64_t HotInstrThreshold, 1031 uint64_t ColdInstrThreshold, 1032 float ZeroCounterThreshold) { 1033 InstrProfRecord *ProfRecord = IFE.ProfRecord; 1034 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 1035 // If all or most of the counters of the function are zero, the 1036 // profile is unaccountable and should be dropped. Reset all the 1037 // counters to be -1 / -2 and PGO profile-use will drop the profile. 1038 // All counters being -1 also implies that the function is hot so 1039 // PGO profile-use will also set the entry count metadata to be 1040 // above hot threshold. 1041 // All counters being -2 implies that the function is warm so 1042 // PGO profile-use will also set the entry count metadata to be 1043 // above cold threshold. 1044 auto Kind = 1045 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 1046 ProfRecord->setPseudoCount(Kind); 1047 return; 1048 } 1049 1050 // Scale up the MaxCount to be multiple times above hot / cold threshold. 1051 const unsigned MultiplyFactor = 3; 1052 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 1053 uint64_t Numerator = Threshold * MultiplyFactor; 1054 1055 // Make sure Threshold for warm counters is below the HotInstrThreshold. 1056 if (!SetToHot && Threshold >= HotInstrThreshold) { 1057 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 1058 } 1059 1060 uint64_t Denominator = IFE.MaxCount; 1061 if (Numerator <= Denominator) 1062 return; 1063 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 1064 warn(toString(make_error<InstrProfError>(E))); 1065 }); 1066 } 1067 1068 const uint64_t ColdPercentileIdx = 15; 1069 const uint64_t HotPercentileIdx = 11; 1070 1071 using sampleprof::FSDiscriminatorPass; 1072 1073 // Internal options to set FSDiscriminatorPass. Used in merge and show 1074 // commands. 1075 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 1076 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 1077 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 1078 "pass beyond this value. The enum values are defined in " 1079 "Support/Discriminator.h"), 1080 cl::values(clEnumVal(Base, "Use base discriminators only"), 1081 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 1082 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 1083 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 1084 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 1085 1086 static unsigned getDiscriminatorMask() { 1087 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 1088 } 1089 1090 /// Adjust the instr profile in \p WC based on the sample profile in 1091 /// \p Reader. 1092 static void 1093 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 1094 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 1095 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 1096 unsigned InstrProfColdThreshold) { 1097 // Function to its entry in instr profile. 1098 StringMap<InstrProfileEntry> InstrProfileMap; 1099 StringMap<StringRef> StaticFuncMap; 1100 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 1101 1102 auto checkSampleProfileHasFUnique = [&Reader]() { 1103 for (const auto &PD : Reader->getProfiles()) { 1104 auto &FContext = PD.second.getContext(); 1105 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 1106 std::string::npos) { 1107 return true; 1108 } 1109 } 1110 return false; 1111 }; 1112 1113 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 1114 1115 auto buildStaticFuncMap = [&StaticFuncMap, 1116 SampleProfileHasFUnique](const StringRef Name) { 1117 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1118 size_t PrefixPos = StringRef::npos; 1119 for (auto &FilePrefix : FilePrefixes) { 1120 std::string NamePrefix = FilePrefix + kGlobalIdentifierDelimiter; 1121 PrefixPos = Name.find_insensitive(NamePrefix); 1122 if (PrefixPos == StringRef::npos) 1123 continue; 1124 PrefixPos += NamePrefix.size(); 1125 break; 1126 } 1127 1128 if (PrefixPos == StringRef::npos) { 1129 return; 1130 } 1131 1132 StringRef NewName = Name.drop_front(PrefixPos); 1133 StringRef FName = Name.substr(0, PrefixPos - 1); 1134 if (NewName.size() == 0) { 1135 return; 1136 } 1137 1138 // This name should have a static linkage. 1139 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1140 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1141 1142 // If sample profile and instrumented profile do not agree on symbol 1143 // uniqification. 1144 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1145 // If instrumented profile uses -funique-internal-linkage-symbols, 1146 // we need to trim the name. 1147 if (ProfileHasFUnique) { 1148 NewName = NewName.substr(0, PostfixPos); 1149 } else { 1150 // If sample profile uses -funique-internal-linkage-symbols, 1151 // we build the map. 1152 std::string NStr = 1153 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1154 NewName = StringRef(NStr); 1155 StaticFuncMap[NewName] = Name; 1156 return; 1157 } 1158 } 1159 1160 if (!StaticFuncMap.contains(NewName)) { 1161 StaticFuncMap[NewName] = Name; 1162 } else { 1163 StaticFuncMap[NewName] = DuplicateNameStr; 1164 } 1165 }; 1166 1167 // We need to flatten the SampleFDO profile as the InstrFDO 1168 // profile does not have inlined callsite profiles. 1169 // One caveat is the pre-inlined function -- their samples 1170 // should be collapsed into the caller function. 1171 // Here we do a DFS traversal to get the flatten profile 1172 // info: the sum of entrycount and the max of maxcount. 1173 // Here is the algorithm: 1174 // recursive (FS, root_name) { 1175 // name = FS->getName(); 1176 // get samples for FS; 1177 // if (InstrProf.find(name) { 1178 // root_name = name; 1179 // } else { 1180 // if (name is in static_func map) { 1181 // root_name = static_name; 1182 // } 1183 // } 1184 // update the Map entry for root_name; 1185 // for (subfs: FS) { 1186 // recursive(subfs, root_name); 1187 // } 1188 // } 1189 // 1190 // Here is an example. 1191 // 1192 // SampleProfile: 1193 // foo:12345:1000 1194 // 1: 1000 1195 // 2.1: 1000 1196 // 15: 5000 1197 // 4: bar:1000 1198 // 1: 1000 1199 // 2: goo:3000 1200 // 1: 3000 1201 // 8: bar:40000 1202 // 1: 10000 1203 // 2: goo:30000 1204 // 1: 30000 1205 // 1206 // InstrProfile has two entries: 1207 // foo 1208 // bar.cc;bar 1209 // 1210 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1211 // {"foo", {1000, 5000}} 1212 // {"bar.cc;bar", {11000, 30000}} 1213 // 1214 // foo's has an entry count of 1000, and max body count of 5000. 1215 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1216 // 10000), and max count of 30000 (from the callsite in line 8). 1217 // 1218 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1219 // entry in InstrProfile. 1220 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1221 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1222 &InstrProfileMap](const FunctionSamples &FS, 1223 const StringRef &RootName) { 1224 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1225 const StringRef &RootName, 1226 auto &BuildImpl) -> void { 1227 std::string NameStr = FS.getFunction().str(); 1228 const StringRef Name = NameStr; 1229 const StringRef *NewRootName = &RootName; 1230 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1231 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1232 1233 auto It = InstrProfileMap.find(Name); 1234 if (It != InstrProfileMap.end()) { 1235 NewRootName = &Name; 1236 } else { 1237 auto NewName = StaticFuncMap.find(Name); 1238 if (NewName != StaticFuncMap.end()) { 1239 It = InstrProfileMap.find(NewName->second.str()); 1240 if (NewName->second != DuplicateNameStr) { 1241 NewRootName = &NewName->second; 1242 } 1243 } else { 1244 // Here the EntrySample is of an inlined function, so we should not 1245 // update the EntrySample in the map. 1246 EntrySample = 0; 1247 } 1248 } 1249 EntrySample += FlattenSampleMap[*NewRootName].first; 1250 MaxBodySample = 1251 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1252 FlattenSampleMap[*NewRootName] = 1253 std::make_pair(EntrySample, MaxBodySample); 1254 1255 for (const auto &C : FS.getCallsiteSamples()) 1256 for (const auto &F : C.second) 1257 BuildImpl(F.second, *NewRootName, BuildImpl); 1258 }; 1259 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1260 }; 1261 1262 for (auto &PD : WC->Writer.getProfileData()) { 1263 // Populate IPBuilder. 1264 for (const auto &PDV : PD.getValue()) { 1265 InstrProfRecord Record = PDV.second; 1266 IPBuilder.addRecord(Record); 1267 } 1268 1269 // If a function has multiple entries in instr profile, skip it. 1270 if (PD.getValue().size() != 1) 1271 continue; 1272 1273 // Initialize InstrProfileMap. 1274 InstrProfRecord *R = &PD.getValue().begin()->second; 1275 StringRef FullName = PD.getKey(); 1276 InstrProfileMap[FullName] = InstrProfileEntry(R); 1277 buildStaticFuncMap(FullName); 1278 } 1279 1280 for (auto &PD : Reader->getProfiles()) { 1281 sampleprof::FunctionSamples &FS = PD.second; 1282 std::string Name = FS.getFunction().str(); 1283 BuildMaxSampleMap(FS, Name); 1284 } 1285 1286 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1287 ProfileSummary SamplePS = Reader->getSummary(); 1288 1289 // Compute cold thresholds for instr profile and sample profile. 1290 uint64_t HotSampleThreshold = 1291 ProfileSummaryBuilder::getEntryForPercentile( 1292 SamplePS.getDetailedSummary(), 1293 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1294 .MinCount; 1295 uint64_t ColdSampleThreshold = 1296 ProfileSummaryBuilder::getEntryForPercentile( 1297 SamplePS.getDetailedSummary(), 1298 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1299 .MinCount; 1300 uint64_t HotInstrThreshold = 1301 ProfileSummaryBuilder::getEntryForPercentile( 1302 InstrPS.getDetailedSummary(), 1303 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1304 .MinCount; 1305 uint64_t ColdInstrThreshold = 1306 InstrProfColdThreshold 1307 ? InstrProfColdThreshold 1308 : ProfileSummaryBuilder::getEntryForPercentile( 1309 InstrPS.getDetailedSummary(), 1310 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1311 .MinCount; 1312 1313 // Find hot/warm functions in sample profile which is cold in instr profile 1314 // and adjust the profiles of those functions in the instr profile. 1315 for (const auto &E : FlattenSampleMap) { 1316 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1317 if (SampleMaxCount < ColdSampleThreshold) 1318 continue; 1319 StringRef Name = E.first(); 1320 auto It = InstrProfileMap.find(Name); 1321 if (It == InstrProfileMap.end()) { 1322 auto NewName = StaticFuncMap.find(Name); 1323 if (NewName != StaticFuncMap.end()) { 1324 It = InstrProfileMap.find(NewName->second.str()); 1325 if (NewName->second == DuplicateNameStr) { 1326 WithColor::warning() 1327 << "Static function " << Name 1328 << " has multiple promoted names, cannot adjust profile.\n"; 1329 } 1330 } 1331 } 1332 if (It == InstrProfileMap.end() || 1333 It->second.MaxCount > ColdInstrThreshold || 1334 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1335 continue; 1336 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1337 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1338 ColdInstrThreshold, ZeroCounterThreshold); 1339 } 1340 } 1341 1342 /// The main function to supplement instr profile with sample profile. 1343 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1344 /// sample profile. \p OutputFilename specifies the output profile name. 1345 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1346 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1347 /// specifies the minimal size for the functions whose profile will be 1348 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1349 /// a function contains too many zero counters and whether its profile 1350 /// should be dropped. \p InstrProfColdThreshold is the user specified 1351 /// cold threshold which will override the cold threshold got from the 1352 /// instr profile summary. 1353 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1354 StringRef SampleFilename, bool OutputSparse, 1355 unsigned SupplMinSizeThreshold, 1356 float ZeroCounterThreshold, 1357 unsigned InstrProfColdThreshold) { 1358 if (OutputFilename == "-") 1359 exitWithError("cannot write indexed profdata format to stdout"); 1360 if (Inputs.size() != 1) 1361 exitWithError("expect one input to be an instr profile"); 1362 if (Inputs[0].Weight != 1) 1363 exitWithError("expect instr profile doesn't have weight"); 1364 1365 StringRef InstrFilename = Inputs[0].Filename; 1366 1367 // Read sample profile. 1368 LLVMContext Context; 1369 auto FS = vfs::getRealFileSystem(); 1370 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1371 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1372 if (std::error_code EC = ReaderOrErr.getError()) 1373 exitWithErrorCode(EC, SampleFilename); 1374 auto Reader = std::move(ReaderOrErr.get()); 1375 if (std::error_code EC = Reader->read()) 1376 exitWithErrorCode(EC, SampleFilename); 1377 1378 // Read instr profile. 1379 std::mutex ErrorLock; 1380 SmallSet<instrprof_error, 4> WriterErrorCodes; 1381 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1382 WriterErrorCodes); 1383 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1384 if (WC->Errors.size() > 0) 1385 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1386 1387 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1388 InstrProfColdThreshold); 1389 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1390 } 1391 1392 /// Make a copy of the given function samples with all symbol names remapped 1393 /// by the provided symbol remapper. 1394 static sampleprof::FunctionSamples 1395 remapSamples(const sampleprof::FunctionSamples &Samples, 1396 SymbolRemapper &Remapper, sampleprof_error &Error) { 1397 sampleprof::FunctionSamples Result; 1398 Result.setFunction(Remapper(Samples.getFunction())); 1399 Result.addTotalSamples(Samples.getTotalSamples()); 1400 Result.addHeadSamples(Samples.getHeadSamples()); 1401 for (const auto &BodySample : Samples.getBodySamples()) { 1402 uint32_t MaskedDiscriminator = 1403 BodySample.first.Discriminator & getDiscriminatorMask(); 1404 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1405 BodySample.second.getSamples()); 1406 for (const auto &Target : BodySample.second.getCallTargets()) { 1407 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1408 MaskedDiscriminator, 1409 Remapper(Target.first), Target.second); 1410 } 1411 } 1412 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1413 sampleprof::FunctionSamplesMap &Target = 1414 Result.functionSamplesAt(CallsiteSamples.first); 1415 for (const auto &Callsite : CallsiteSamples.second) { 1416 sampleprof::FunctionSamples Remapped = 1417 remapSamples(Callsite.second, Remapper, Error); 1418 MergeResult(Error, Target[Remapped.getFunction()].merge(Remapped)); 1419 } 1420 } 1421 return Result; 1422 } 1423 1424 static sampleprof::SampleProfileFormat FormatMap[] = { 1425 sampleprof::SPF_None, 1426 sampleprof::SPF_Text, 1427 sampleprof::SPF_None, 1428 sampleprof::SPF_Ext_Binary, 1429 sampleprof::SPF_GCC, 1430 sampleprof::SPF_Binary}; 1431 1432 static std::unique_ptr<MemoryBuffer> 1433 getInputFileBuf(const StringRef &InputFile) { 1434 if (InputFile == "") 1435 return {}; 1436 1437 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1438 if (!BufOrError) 1439 exitWithErrorCode(BufOrError.getError(), InputFile); 1440 1441 return std::move(*BufOrError); 1442 } 1443 1444 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1445 sampleprof::ProfileSymbolList &PSL) { 1446 if (!Buffer) 1447 return; 1448 1449 SmallVector<StringRef, 32> SymbolVec; 1450 StringRef Data = Buffer->getBuffer(); 1451 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1452 1453 for (StringRef SymbolStr : SymbolVec) 1454 PSL.add(SymbolStr.trim()); 1455 } 1456 1457 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1458 ProfileFormat OutputFormat, 1459 MemoryBuffer *Buffer, 1460 sampleprof::ProfileSymbolList &WriterList, 1461 bool CompressAllSections, bool UseMD5, 1462 bool GenPartialProfile) { 1463 populateProfileSymbolList(Buffer, WriterList); 1464 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1465 warn("Profile Symbol list is not empty but the output format is not " 1466 "ExtBinary format. The list will be lost in the output. "); 1467 1468 Writer.setProfileSymbolList(&WriterList); 1469 1470 if (CompressAllSections) { 1471 if (OutputFormat != PF_Ext_Binary) 1472 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1473 else 1474 Writer.setToCompressAllSections(); 1475 } 1476 if (UseMD5) { 1477 if (OutputFormat != PF_Ext_Binary) 1478 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1479 else 1480 Writer.setUseMD5(); 1481 } 1482 if (GenPartialProfile) { 1483 if (OutputFormat != PF_Ext_Binary) 1484 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1485 else 1486 Writer.setPartialProfile(); 1487 } 1488 } 1489 1490 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1491 SymbolRemapper *Remapper, 1492 StringRef ProfileSymbolListFile, 1493 size_t OutputSizeLimit) { 1494 using namespace sampleprof; 1495 SampleProfileMap ProfileMap; 1496 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1497 LLVMContext Context; 1498 sampleprof::ProfileSymbolList WriterList; 1499 std::optional<bool> ProfileIsProbeBased; 1500 std::optional<bool> ProfileIsCS; 1501 for (const auto &Input : Inputs) { 1502 auto FS = vfs::getRealFileSystem(); 1503 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1504 FSDiscriminatorPassOption); 1505 if (std::error_code EC = ReaderOrErr.getError()) { 1506 warnOrExitGivenError(FailMode, EC, Input.Filename); 1507 continue; 1508 } 1509 1510 // We need to keep the readers around until after all the files are 1511 // read so that we do not lose the function names stored in each 1512 // reader's memory. The function names are needed to write out the 1513 // merged profile map. 1514 Readers.push_back(std::move(ReaderOrErr.get())); 1515 const auto Reader = Readers.back().get(); 1516 if (std::error_code EC = Reader->read()) { 1517 warnOrExitGivenError(FailMode, EC, Input.Filename); 1518 Readers.pop_back(); 1519 continue; 1520 } 1521 1522 SampleProfileMap &Profiles = Reader->getProfiles(); 1523 if (ProfileIsProbeBased && 1524 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1525 exitWithError( 1526 "cannot merge probe-based profile with non-probe-based profile"); 1527 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1528 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1529 exitWithError("cannot merge CS profile with non-CS profile"); 1530 ProfileIsCS = FunctionSamples::ProfileIsCS; 1531 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1532 I != E; ++I) { 1533 sampleprof_error Result = sampleprof_error::success; 1534 FunctionSamples Remapped = 1535 Remapper ? remapSamples(I->second, *Remapper, Result) 1536 : FunctionSamples(); 1537 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1538 SampleContext FContext = Samples.getContext(); 1539 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 1540 if (Result != sampleprof_error::success) { 1541 std::error_code EC = make_error_code(Result); 1542 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1543 FContext.toString()); 1544 } 1545 } 1546 1547 if (!DropProfileSymbolList) { 1548 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1549 Reader->getProfileSymbolList(); 1550 if (ReaderList) 1551 WriterList.merge(*ReaderList); 1552 } 1553 } 1554 1555 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1556 // Use threshold calculated from profile summary unless specified. 1557 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1558 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1559 uint64_t SampleProfColdThreshold = 1560 ProfileSummaryBuilder::getColdCountThreshold( 1561 (Summary->getDetailedSummary())); 1562 1563 // Trim and merge cold context profile using cold threshold above; 1564 SampleContextTrimmer(ProfileMap) 1565 .trimAndMergeColdContextProfiles( 1566 SampleProfColdThreshold, SampleTrimColdContext, 1567 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1568 } 1569 1570 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1571 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1572 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1573 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1574 ProfileConverter CSConverter(ProfileMap); 1575 CSConverter.convertCSProfiles(); 1576 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1577 } 1578 1579 filterFunctions(ProfileMap); 1580 1581 auto WriterOrErr = 1582 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1583 if (std::error_code EC = WriterOrErr.getError()) 1584 exitWithErrorCode(EC, OutputFilename); 1585 1586 auto Writer = std::move(WriterOrErr.get()); 1587 // WriterList will have StringRef refering to string in Buffer. 1588 // Make sure Buffer lives as long as WriterList. 1589 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1590 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1591 CompressAllSections, UseMD5, GenPartialProfile); 1592 1593 // If OutputSizeLimit is 0 (default), it is the same as write(). 1594 if (std::error_code EC = 1595 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1596 exitWithErrorCode(EC); 1597 } 1598 1599 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1600 StringRef WeightStr, FileName; 1601 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1602 1603 uint64_t Weight; 1604 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1605 exitWithError("input weight must be a positive integer"); 1606 1607 return {std::string(FileName), Weight}; 1608 } 1609 1610 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1611 StringRef Filename = WF.Filename; 1612 uint64_t Weight = WF.Weight; 1613 1614 // If it's STDIN just pass it on. 1615 if (Filename == "-") { 1616 WNI.push_back({std::string(Filename), Weight}); 1617 return; 1618 } 1619 1620 llvm::sys::fs::file_status Status; 1621 llvm::sys::fs::status(Filename, Status); 1622 if (!llvm::sys::fs::exists(Status)) 1623 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1624 Filename); 1625 // If it's a source file, collect it. 1626 if (llvm::sys::fs::is_regular_file(Status)) { 1627 WNI.push_back({std::string(Filename), Weight}); 1628 return; 1629 } 1630 1631 if (llvm::sys::fs::is_directory(Status)) { 1632 std::error_code EC; 1633 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1634 F != E && !EC; F.increment(EC)) { 1635 if (llvm::sys::fs::is_regular_file(F->path())) { 1636 addWeightedInput(WNI, {F->path(), Weight}); 1637 } 1638 } 1639 if (EC) 1640 exitWithErrorCode(EC, Filename); 1641 } 1642 } 1643 1644 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1645 WeightedFileVector &WFV) { 1646 if (!Buffer) 1647 return; 1648 1649 SmallVector<StringRef, 8> Entries; 1650 StringRef Data = Buffer->getBuffer(); 1651 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1652 for (const StringRef &FileWeightEntry : Entries) { 1653 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1654 // Skip comments. 1655 if (SanitizedEntry.starts_with("#")) 1656 continue; 1657 // If there's no comma, it's an unweighted profile. 1658 else if (!SanitizedEntry.contains(',')) 1659 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1660 else 1661 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1662 } 1663 } 1664 1665 static int merge_main(StringRef ProgName) { 1666 WeightedFileVector WeightedInputs; 1667 for (StringRef Filename : InputFilenames) 1668 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1669 for (StringRef WeightedFilename : WeightedInputFilenames) 1670 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1671 1672 // Make sure that the file buffer stays alive for the duration of the 1673 // weighted input vector's lifetime. 1674 auto Buffer = getInputFileBuf(InputFilenamesFile); 1675 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1676 1677 if (WeightedInputs.empty()) 1678 exitWithError("no input files specified. See " + ProgName + " merge -help"); 1679 1680 if (DumpInputFileList) { 1681 for (auto &WF : WeightedInputs) 1682 outs() << WF.Weight << "," << WF.Filename << "\n"; 1683 return 0; 1684 } 1685 1686 std::unique_ptr<SymbolRemapper> Remapper; 1687 if (!RemappingFile.empty()) 1688 Remapper = SymbolRemapper::create(RemappingFile); 1689 1690 if (!SupplInstrWithSample.empty()) { 1691 if (ProfileKind != instr) 1692 exitWithError( 1693 "-supplement-instr-with-sample can only work with -instr. "); 1694 1695 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1696 SupplMinSizeThreshold, ZeroCounterThreshold, 1697 InstrProfColdThreshold); 1698 return 0; 1699 } 1700 1701 if (ProfileKind == instr) 1702 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1703 ProfiledBinary); 1704 else 1705 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1706 OutputSizeLimit); 1707 return 0; 1708 } 1709 1710 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1711 static void overlapInstrProfile(const std::string &BaseFilename, 1712 const std::string &TestFilename, 1713 const OverlapFuncFilters &FuncFilter, 1714 raw_fd_ostream &OS, bool IsCS) { 1715 std::mutex ErrorLock; 1716 SmallSet<instrprof_error, 4> WriterErrorCodes; 1717 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1718 WeightedFile WeightedInput{BaseFilename, 1}; 1719 OverlapStats Overlap; 1720 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1721 if (E) 1722 exitWithError(std::move(E), "error in getting profile count sums"); 1723 if (Overlap.Base.CountSum < 1.0f) { 1724 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1725 exit(0); 1726 } 1727 if (Overlap.Test.CountSum < 1.0f) { 1728 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1729 exit(0); 1730 } 1731 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1732 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1733 IsCS); 1734 Overlap.dump(OS); 1735 } 1736 1737 namespace { 1738 struct SampleOverlapStats { 1739 SampleContext BaseName; 1740 SampleContext TestName; 1741 // Number of overlap units 1742 uint64_t OverlapCount = 0; 1743 // Total samples of overlap units 1744 uint64_t OverlapSample = 0; 1745 // Number of and total samples of units that only present in base or test 1746 // profile 1747 uint64_t BaseUniqueCount = 0; 1748 uint64_t BaseUniqueSample = 0; 1749 uint64_t TestUniqueCount = 0; 1750 uint64_t TestUniqueSample = 0; 1751 // Number of units and total samples in base or test profile 1752 uint64_t BaseCount = 0; 1753 uint64_t BaseSample = 0; 1754 uint64_t TestCount = 0; 1755 uint64_t TestSample = 0; 1756 // Number of and total samples of units that present in at least one profile 1757 uint64_t UnionCount = 0; 1758 uint64_t UnionSample = 0; 1759 // Weighted similarity 1760 double Similarity = 0.0; 1761 // For SampleOverlapStats instances representing functions, weights of the 1762 // function in base and test profiles 1763 double BaseWeight = 0.0; 1764 double TestWeight = 0.0; 1765 1766 SampleOverlapStats() = default; 1767 }; 1768 } // end anonymous namespace 1769 1770 namespace { 1771 struct FuncSampleStats { 1772 uint64_t SampleSum = 0; 1773 uint64_t MaxSample = 0; 1774 uint64_t HotBlockCount = 0; 1775 FuncSampleStats() = default; 1776 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1777 uint64_t HotBlockCount) 1778 : SampleSum(SampleSum), MaxSample(MaxSample), 1779 HotBlockCount(HotBlockCount) {} 1780 }; 1781 } // end anonymous namespace 1782 1783 namespace { 1784 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1785 1786 // Class for updating merging steps for two sorted maps. The class should be 1787 // instantiated with a map iterator type. 1788 template <class T> class MatchStep { 1789 public: 1790 MatchStep() = delete; 1791 1792 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1793 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1794 SecondEnd(SecondEnd), Status(MS_None) {} 1795 1796 bool areBothFinished() const { 1797 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1798 } 1799 1800 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1801 1802 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1803 1804 /// Advance one step based on the previous match status unless the previous 1805 /// status is MS_None. Then update Status based on the comparison between two 1806 /// container iterators at the current step. If the previous status is 1807 /// MS_None, it means two iterators are at the beginning and no comparison has 1808 /// been made, so we simply update Status without advancing the iterators. 1809 void updateOneStep(); 1810 1811 T getFirstIter() const { return FirstIter; } 1812 1813 T getSecondIter() const { return SecondIter; } 1814 1815 MatchStatus getMatchStatus() const { return Status; } 1816 1817 private: 1818 // Current iterator and end iterator of the first container. 1819 T FirstIter; 1820 T FirstEnd; 1821 // Current iterator and end iterator of the second container. 1822 T SecondIter; 1823 T SecondEnd; 1824 // Match status of the current step. 1825 MatchStatus Status; 1826 }; 1827 } // end anonymous namespace 1828 1829 template <class T> void MatchStep<T>::updateOneStep() { 1830 switch (Status) { 1831 case MS_Match: 1832 ++FirstIter; 1833 ++SecondIter; 1834 break; 1835 case MS_FirstUnique: 1836 ++FirstIter; 1837 break; 1838 case MS_SecondUnique: 1839 ++SecondIter; 1840 break; 1841 case MS_None: 1842 break; 1843 } 1844 1845 // Update Status according to iterators at the current step. 1846 if (areBothFinished()) 1847 return; 1848 if (FirstIter != FirstEnd && 1849 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1850 Status = MS_FirstUnique; 1851 else if (SecondIter != SecondEnd && 1852 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1853 Status = MS_SecondUnique; 1854 else 1855 Status = MS_Match; 1856 } 1857 1858 // Return the sum of line/block samples, the max line/block sample, and the 1859 // number of line/block samples above the given threshold in a function 1860 // including its inlinees. 1861 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1862 FuncSampleStats &FuncStats, 1863 uint64_t HotThreshold) { 1864 for (const auto &L : Func.getBodySamples()) { 1865 uint64_t Sample = L.second.getSamples(); 1866 FuncStats.SampleSum += Sample; 1867 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1868 if (Sample >= HotThreshold) 1869 ++FuncStats.HotBlockCount; 1870 } 1871 1872 for (const auto &C : Func.getCallsiteSamples()) { 1873 for (const auto &F : C.second) 1874 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1875 } 1876 } 1877 1878 /// Predicate that determines if a function is hot with a given threshold. We 1879 /// keep it separate from its callsites for possible extension in the future. 1880 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1881 uint64_t HotThreshold) { 1882 // We intentionally compare the maximum sample count in a function with the 1883 // HotThreshold to get an approximate determination on hot functions. 1884 return (FuncStats.MaxSample >= HotThreshold); 1885 } 1886 1887 namespace { 1888 class SampleOverlapAggregator { 1889 public: 1890 SampleOverlapAggregator(const std::string &BaseFilename, 1891 const std::string &TestFilename, 1892 double LowSimilarityThreshold, double Epsilon, 1893 const OverlapFuncFilters &FuncFilter) 1894 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1895 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1896 FuncFilter(FuncFilter) {} 1897 1898 /// Detect 0-sample input profile and report to output stream. This interface 1899 /// should be called after loadProfiles(). 1900 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1901 1902 /// Write out function-level similarity statistics for functions specified by 1903 /// options --function, --value-cutoff, and --similarity-cutoff. 1904 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1905 1906 /// Write out program-level similarity and overlap statistics. 1907 void dumpProgramSummary(raw_fd_ostream &OS) const; 1908 1909 /// Write out hot-function and hot-block statistics for base_profile, 1910 /// test_profile, and their overlap. For both cases, the overlap HO is 1911 /// calculated as follows: 1912 /// Given the number of functions (or blocks) that are hot in both profiles 1913 /// HCommon and the number of functions (or blocks) that are hot in at 1914 /// least one profile HUnion, HO = HCommon / HUnion. 1915 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1916 1917 /// This function tries matching functions in base and test profiles. For each 1918 /// pair of matched functions, it aggregates the function-level 1919 /// similarity into a profile-level similarity. It also dump function-level 1920 /// similarity information of functions specified by --function, 1921 /// --value-cutoff, and --similarity-cutoff options. The program-level 1922 /// similarity PS is computed as follows: 1923 /// Given function-level similarity FS(A) for all function A, the 1924 /// weight of function A in base profile WB(A), and the weight of function 1925 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1926 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1927 /// meaning no-overlap. 1928 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1929 1930 /// Initialize ProfOverlap with the sum of samples in base and test 1931 /// profiles. This function also computes and keeps the sum of samples and 1932 /// max sample counts of each function in BaseStats and TestStats for later 1933 /// use to avoid re-computations. 1934 void initializeSampleProfileOverlap(); 1935 1936 /// Load profiles specified by BaseFilename and TestFilename. 1937 std::error_code loadProfiles(); 1938 1939 using FuncSampleStatsMap = 1940 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1941 1942 private: 1943 SampleOverlapStats ProfOverlap; 1944 SampleOverlapStats HotFuncOverlap; 1945 SampleOverlapStats HotBlockOverlap; 1946 std::string BaseFilename; 1947 std::string TestFilename; 1948 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1949 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1950 // BaseStats and TestStats hold FuncSampleStats for each function, with 1951 // function name as the key. 1952 FuncSampleStatsMap BaseStats; 1953 FuncSampleStatsMap TestStats; 1954 // Low similarity threshold in floating point number 1955 double LowSimilarityThreshold; 1956 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1957 // for tracking hot blocks. 1958 uint64_t BaseHotThreshold; 1959 uint64_t TestHotThreshold; 1960 // A small threshold used to round the results of floating point accumulations 1961 // to resolve imprecision. 1962 const double Epsilon; 1963 std::multimap<double, SampleOverlapStats, std::greater<double>> 1964 FuncSimilarityDump; 1965 // FuncFilter carries specifications in options --value-cutoff and 1966 // --function. 1967 OverlapFuncFilters FuncFilter; 1968 // Column offsets for printing the function-level details table. 1969 static const unsigned int TestWeightCol = 15; 1970 static const unsigned int SimilarityCol = 30; 1971 static const unsigned int OverlapCol = 43; 1972 static const unsigned int BaseUniqueCol = 53; 1973 static const unsigned int TestUniqueCol = 67; 1974 static const unsigned int BaseSampleCol = 81; 1975 static const unsigned int TestSampleCol = 96; 1976 static const unsigned int FuncNameCol = 111; 1977 1978 /// Return a similarity of two line/block sample counters in the same 1979 /// function in base and test profiles. The line/block-similarity BS(i) is 1980 /// computed as follows: 1981 /// For an offsets i, given the sample count at i in base profile BB(i), 1982 /// the sample count at i in test profile BT(i), the sum of sample counts 1983 /// in this function in base profile SB, and the sum of sample counts in 1984 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1985 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1986 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1987 const SampleOverlapStats &FuncOverlap) const; 1988 1989 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1990 uint64_t HotBlockCount); 1991 1992 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1993 FuncSampleStatsMap &HotFunc, 1994 uint64_t HotThreshold) const; 1995 1996 void computeHotFuncOverlap(); 1997 1998 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1999 /// Difference for two sample units in a matched function according to the 2000 /// given match status. 2001 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 2002 uint64_t HotBlockCount, 2003 SampleOverlapStats &FuncOverlap, 2004 double &Difference, MatchStatus Status); 2005 2006 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2007 /// Difference for unmatched callees that only present in one profile in a 2008 /// matched caller function. 2009 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 2010 SampleOverlapStats &FuncOverlap, 2011 double &Difference, MatchStatus Status); 2012 2013 /// This function updates sample overlap statistics of an overlap function in 2014 /// base and test profile. It also calculates a function-internal similarity 2015 /// FIS as follows: 2016 /// For offsets i that have samples in at least one profile in this 2017 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 2018 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 2019 /// 0.0 meaning no overlap. 2020 double computeSampleFunctionInternalOverlap( 2021 const sampleprof::FunctionSamples &BaseFunc, 2022 const sampleprof::FunctionSamples &TestFunc, 2023 SampleOverlapStats &FuncOverlap); 2024 2025 /// Function-level similarity (FS) is a weighted value over function internal 2026 /// similarity (FIS). This function computes a function's FS from its FIS by 2027 /// applying the weight. 2028 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 2029 uint64_t TestFuncSample) const; 2030 2031 /// The function-level similarity FS(A) for a function A is computed as 2032 /// follows: 2033 /// Compute a function-internal similarity FIS(A) by 2034 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 2035 /// function A in base profile WB(A), and the weight of function A in test 2036 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 2037 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 2038 double 2039 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 2040 const sampleprof::FunctionSamples *TestFunc, 2041 SampleOverlapStats *FuncOverlap, 2042 uint64_t BaseFuncSample, 2043 uint64_t TestFuncSample); 2044 2045 /// Profile-level similarity (PS) is a weighted aggregate over function-level 2046 /// similarities (FS). This method weights the FS value by the function 2047 /// weights in the base and test profiles for the aggregation. 2048 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 2049 uint64_t TestFuncSample) const; 2050 }; 2051 } // end anonymous namespace 2052 2053 bool SampleOverlapAggregator::detectZeroSampleProfile( 2054 raw_fd_ostream &OS) const { 2055 bool HaveZeroSample = false; 2056 if (ProfOverlap.BaseSample == 0) { 2057 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 2058 HaveZeroSample = true; 2059 } 2060 if (ProfOverlap.TestSample == 0) { 2061 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 2062 HaveZeroSample = true; 2063 } 2064 return HaveZeroSample; 2065 } 2066 2067 double SampleOverlapAggregator::computeBlockSimilarity( 2068 uint64_t BaseSample, uint64_t TestSample, 2069 const SampleOverlapStats &FuncOverlap) const { 2070 double BaseFrac = 0.0; 2071 double TestFrac = 0.0; 2072 if (FuncOverlap.BaseSample > 0) 2073 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 2074 if (FuncOverlap.TestSample > 0) 2075 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 2076 return 1.0 - std::fabs(BaseFrac - TestFrac); 2077 } 2078 2079 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 2080 uint64_t TestSample, 2081 uint64_t HotBlockCount) { 2082 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 2083 bool IsTestHot = (TestSample >= TestHotThreshold); 2084 if (!IsBaseHot && !IsTestHot) 2085 return; 2086 2087 HotBlockOverlap.UnionCount += HotBlockCount; 2088 if (IsBaseHot) 2089 HotBlockOverlap.BaseCount += HotBlockCount; 2090 if (IsTestHot) 2091 HotBlockOverlap.TestCount += HotBlockCount; 2092 if (IsBaseHot && IsTestHot) 2093 HotBlockOverlap.OverlapCount += HotBlockCount; 2094 } 2095 2096 void SampleOverlapAggregator::getHotFunctions( 2097 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 2098 uint64_t HotThreshold) const { 2099 for (const auto &F : ProfStats) { 2100 if (isFunctionHot(F.second, HotThreshold)) 2101 HotFunc.emplace(F.first, F.second); 2102 } 2103 } 2104 2105 void SampleOverlapAggregator::computeHotFuncOverlap() { 2106 FuncSampleStatsMap BaseHotFunc; 2107 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 2108 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 2109 2110 FuncSampleStatsMap TestHotFunc; 2111 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 2112 HotFuncOverlap.TestCount = TestHotFunc.size(); 2113 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 2114 2115 for (const auto &F : BaseHotFunc) { 2116 if (TestHotFunc.count(F.first)) 2117 ++HotFuncOverlap.OverlapCount; 2118 else 2119 ++HotFuncOverlap.UnionCount; 2120 } 2121 } 2122 2123 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2124 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2125 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2126 assert(Status != MS_None && 2127 "Match status should be updated before updating overlap statistics"); 2128 if (Status == MS_FirstUnique) { 2129 TestSample = 0; 2130 FuncOverlap.BaseUniqueSample += BaseSample; 2131 } else if (Status == MS_SecondUnique) { 2132 BaseSample = 0; 2133 FuncOverlap.TestUniqueSample += TestSample; 2134 } else { 2135 ++FuncOverlap.OverlapCount; 2136 } 2137 2138 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2139 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2140 Difference += 2141 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2142 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2143 } 2144 2145 void SampleOverlapAggregator::updateForUnmatchedCallee( 2146 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2147 double &Difference, MatchStatus Status) { 2148 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2149 "Status must be either of the two unmatched cases"); 2150 FuncSampleStats FuncStats; 2151 if (Status == MS_FirstUnique) { 2152 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2153 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2154 FuncStats.HotBlockCount, FuncOverlap, 2155 Difference, Status); 2156 } else { 2157 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2158 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2159 FuncStats.HotBlockCount, FuncOverlap, 2160 Difference, Status); 2161 } 2162 } 2163 2164 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2165 const sampleprof::FunctionSamples &BaseFunc, 2166 const sampleprof::FunctionSamples &TestFunc, 2167 SampleOverlapStats &FuncOverlap) { 2168 2169 using namespace sampleprof; 2170 2171 double Difference = 0; 2172 2173 // Accumulate Difference for regular line/block samples in the function. 2174 // We match them through sort-merge join algorithm because 2175 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2176 // by their offsets. 2177 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2178 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2179 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2180 BlockIterStep.updateOneStep(); 2181 while (!BlockIterStep.areBothFinished()) { 2182 uint64_t BaseSample = 2183 BlockIterStep.isFirstFinished() 2184 ? 0 2185 : BlockIterStep.getFirstIter()->second.getSamples(); 2186 uint64_t TestSample = 2187 BlockIterStep.isSecondFinished() 2188 ? 0 2189 : BlockIterStep.getSecondIter()->second.getSamples(); 2190 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2191 Difference, BlockIterStep.getMatchStatus()); 2192 2193 BlockIterStep.updateOneStep(); 2194 } 2195 2196 // Accumulate Difference for callsite lines in the function. We match 2197 // them through sort-merge algorithm because 2198 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2199 // ordered by their offsets. 2200 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2201 BaseFunc.getCallsiteSamples().cbegin(), 2202 BaseFunc.getCallsiteSamples().cend(), 2203 TestFunc.getCallsiteSamples().cbegin(), 2204 TestFunc.getCallsiteSamples().cend()); 2205 CallsiteIterStep.updateOneStep(); 2206 while (!CallsiteIterStep.areBothFinished()) { 2207 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2208 assert(CallsiteStepStatus != MS_None && 2209 "Match status should be updated before entering loop body"); 2210 2211 if (CallsiteStepStatus != MS_Match) { 2212 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2213 ? CallsiteIterStep.getFirstIter() 2214 : CallsiteIterStep.getSecondIter(); 2215 for (const auto &F : Callsite->second) 2216 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2217 CallsiteStepStatus); 2218 } else { 2219 // There may be multiple inlinees at the same offset, so we need to try 2220 // matching all of them. This match is implemented through sort-merge 2221 // algorithm because callsite records at the same offset are ordered by 2222 // function names. 2223 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2224 CallsiteIterStep.getFirstIter()->second.cbegin(), 2225 CallsiteIterStep.getFirstIter()->second.cend(), 2226 CallsiteIterStep.getSecondIter()->second.cbegin(), 2227 CallsiteIterStep.getSecondIter()->second.cend()); 2228 CalleeIterStep.updateOneStep(); 2229 while (!CalleeIterStep.areBothFinished()) { 2230 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2231 if (CalleeStepStatus != MS_Match) { 2232 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2233 ? CalleeIterStep.getFirstIter() 2234 : CalleeIterStep.getSecondIter(); 2235 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2236 CalleeStepStatus); 2237 } else { 2238 // An inlined function can contain other inlinees inside, so compute 2239 // the Difference recursively. 2240 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2241 CalleeIterStep.getFirstIter()->second, 2242 CalleeIterStep.getSecondIter()->second, 2243 FuncOverlap); 2244 } 2245 CalleeIterStep.updateOneStep(); 2246 } 2247 } 2248 CallsiteIterStep.updateOneStep(); 2249 } 2250 2251 // Difference reflects the total differences of line/block samples in this 2252 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2253 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2254 return (2.0 - Difference) / 2; 2255 } 2256 2257 double SampleOverlapAggregator::weightForFuncSimilarity( 2258 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2259 uint64_t TestFuncSample) const { 2260 // Compute the weight as the distance between the function weights in two 2261 // profiles. 2262 double BaseFrac = 0.0; 2263 double TestFrac = 0.0; 2264 assert(ProfOverlap.BaseSample > 0 && 2265 "Total samples in base profile should be greater than 0"); 2266 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2267 assert(ProfOverlap.TestSample > 0 && 2268 "Total samples in test profile should be greater than 0"); 2269 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2270 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2271 2272 // Take WeightDistance into the similarity. 2273 return FuncInternalSimilarity * (1 - WeightDistance); 2274 } 2275 2276 double 2277 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2278 uint64_t BaseFuncSample, 2279 uint64_t TestFuncSample) const { 2280 2281 double BaseFrac = 0.0; 2282 double TestFrac = 0.0; 2283 assert(ProfOverlap.BaseSample > 0 && 2284 "Total samples in base profile should be greater than 0"); 2285 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2286 assert(ProfOverlap.TestSample > 0 && 2287 "Total samples in test profile should be greater than 0"); 2288 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2289 return FuncSimilarity * (BaseFrac + TestFrac); 2290 } 2291 2292 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2293 const sampleprof::FunctionSamples *BaseFunc, 2294 const sampleprof::FunctionSamples *TestFunc, 2295 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2296 uint64_t TestFuncSample) { 2297 // Default function internal similarity before weighted, meaning two functions 2298 // has no overlap. 2299 const double DefaultFuncInternalSimilarity = 0; 2300 double FuncSimilarity; 2301 double FuncInternalSimilarity; 2302 2303 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2304 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2305 // similarity. 2306 if (!BaseFunc || !TestFunc) { 2307 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2308 } else { 2309 assert(FuncOverlap != nullptr && 2310 "FuncOverlap should be provided in this case"); 2311 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2312 *BaseFunc, *TestFunc, *FuncOverlap); 2313 // Now, FuncInternalSimilarity may be a little less than 0 due to 2314 // imprecision of floating point accumulations. Make it zero if the 2315 // difference is below Epsilon. 2316 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2317 ? 0 2318 : FuncInternalSimilarity; 2319 } 2320 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2321 BaseFuncSample, TestFuncSample); 2322 return FuncSimilarity; 2323 } 2324 2325 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2326 using namespace sampleprof; 2327 2328 std::unordered_map<SampleContext, const FunctionSamples *, 2329 SampleContext::Hash> 2330 BaseFuncProf; 2331 const auto &BaseProfiles = BaseReader->getProfiles(); 2332 for (const auto &BaseFunc : BaseProfiles) { 2333 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2334 } 2335 ProfOverlap.UnionCount = BaseFuncProf.size(); 2336 2337 const auto &TestProfiles = TestReader->getProfiles(); 2338 for (const auto &TestFunc : TestProfiles) { 2339 SampleOverlapStats FuncOverlap; 2340 FuncOverlap.TestName = TestFunc.second.getContext(); 2341 assert(TestStats.count(FuncOverlap.TestName) && 2342 "TestStats should have records for all functions in test profile " 2343 "except inlinees"); 2344 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2345 2346 bool Matched = false; 2347 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2348 if (Match == BaseFuncProf.end()) { 2349 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2350 ++ProfOverlap.TestUniqueCount; 2351 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2352 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2353 2354 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2355 2356 double FuncSimilarity = computeSampleFunctionOverlap( 2357 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2358 ProfOverlap.Similarity += 2359 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2360 2361 ++ProfOverlap.UnionCount; 2362 ProfOverlap.UnionSample += FuncStats.SampleSum; 2363 } else { 2364 ++ProfOverlap.OverlapCount; 2365 2366 // Two functions match with each other. Compute function-level overlap and 2367 // aggregate them into profile-level overlap. 2368 FuncOverlap.BaseName = Match->second->getContext(); 2369 assert(BaseStats.count(FuncOverlap.BaseName) && 2370 "BaseStats should have records for all functions in base profile " 2371 "except inlinees"); 2372 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2373 2374 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2375 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2376 FuncOverlap.TestSample); 2377 ProfOverlap.Similarity += 2378 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2379 FuncOverlap.TestSample); 2380 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2381 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2382 2383 // Accumulate the percentage of base unique and test unique samples into 2384 // ProfOverlap. 2385 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2386 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2387 2388 // Remove matched base functions for later reporting functions not found 2389 // in test profile. 2390 BaseFuncProf.erase(Match); 2391 Matched = true; 2392 } 2393 2394 // Print function-level similarity information if specified by options. 2395 assert(TestStats.count(FuncOverlap.TestName) && 2396 "TestStats should have records for all functions in test profile " 2397 "except inlinees"); 2398 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2399 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2400 (Matched && !FuncFilter.NameFilter.empty() && 2401 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2402 std::string::npos)) { 2403 assert(ProfOverlap.BaseSample > 0 && 2404 "Total samples in base profile should be greater than 0"); 2405 FuncOverlap.BaseWeight = 2406 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2407 assert(ProfOverlap.TestSample > 0 && 2408 "Total samples in test profile should be greater than 0"); 2409 FuncOverlap.TestWeight = 2410 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2411 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2412 } 2413 } 2414 2415 // Traverse through functions in base profile but not in test profile. 2416 for (const auto &F : BaseFuncProf) { 2417 assert(BaseStats.count(F.second->getContext()) && 2418 "BaseStats should have records for all functions in base profile " 2419 "except inlinees"); 2420 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2421 ++ProfOverlap.BaseUniqueCount; 2422 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2423 2424 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2425 2426 double FuncSimilarity = computeSampleFunctionOverlap( 2427 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2428 ProfOverlap.Similarity += 2429 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2430 2431 ProfOverlap.UnionSample += FuncStats.SampleSum; 2432 } 2433 2434 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2435 // of floating point accumulations. Make it 1.0 if the difference is below 2436 // Epsilon. 2437 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2438 ? 1 2439 : ProfOverlap.Similarity; 2440 2441 computeHotFuncOverlap(); 2442 } 2443 2444 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2445 const auto &BaseProf = BaseReader->getProfiles(); 2446 for (const auto &I : BaseProf) { 2447 ++ProfOverlap.BaseCount; 2448 FuncSampleStats FuncStats; 2449 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2450 ProfOverlap.BaseSample += FuncStats.SampleSum; 2451 BaseStats.emplace(I.second.getContext(), FuncStats); 2452 } 2453 2454 const auto &TestProf = TestReader->getProfiles(); 2455 for (const auto &I : TestProf) { 2456 ++ProfOverlap.TestCount; 2457 FuncSampleStats FuncStats; 2458 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2459 ProfOverlap.TestSample += FuncStats.SampleSum; 2460 TestStats.emplace(I.second.getContext(), FuncStats); 2461 } 2462 2463 ProfOverlap.BaseName = StringRef(BaseFilename); 2464 ProfOverlap.TestName = StringRef(TestFilename); 2465 } 2466 2467 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2468 using namespace sampleprof; 2469 2470 if (FuncSimilarityDump.empty()) 2471 return; 2472 2473 formatted_raw_ostream FOS(OS); 2474 FOS << "Function-level details:\n"; 2475 FOS << "Base weight"; 2476 FOS.PadToColumn(TestWeightCol); 2477 FOS << "Test weight"; 2478 FOS.PadToColumn(SimilarityCol); 2479 FOS << "Similarity"; 2480 FOS.PadToColumn(OverlapCol); 2481 FOS << "Overlap"; 2482 FOS.PadToColumn(BaseUniqueCol); 2483 FOS << "Base unique"; 2484 FOS.PadToColumn(TestUniqueCol); 2485 FOS << "Test unique"; 2486 FOS.PadToColumn(BaseSampleCol); 2487 FOS << "Base samples"; 2488 FOS.PadToColumn(TestSampleCol); 2489 FOS << "Test samples"; 2490 FOS.PadToColumn(FuncNameCol); 2491 FOS << "Function name\n"; 2492 for (const auto &F : FuncSimilarityDump) { 2493 double OverlapPercent = 2494 F.second.UnionSample > 0 2495 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2496 : 0; 2497 double BaseUniquePercent = 2498 F.second.BaseSample > 0 2499 ? static_cast<double>(F.second.BaseUniqueSample) / 2500 F.second.BaseSample 2501 : 0; 2502 double TestUniquePercent = 2503 F.second.TestSample > 0 2504 ? static_cast<double>(F.second.TestUniqueSample) / 2505 F.second.TestSample 2506 : 0; 2507 2508 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2509 FOS.PadToColumn(TestWeightCol); 2510 FOS << format("%.2f%%", F.second.TestWeight * 100); 2511 FOS.PadToColumn(SimilarityCol); 2512 FOS << format("%.2f%%", F.second.Similarity * 100); 2513 FOS.PadToColumn(OverlapCol); 2514 FOS << format("%.2f%%", OverlapPercent * 100); 2515 FOS.PadToColumn(BaseUniqueCol); 2516 FOS << format("%.2f%%", BaseUniquePercent * 100); 2517 FOS.PadToColumn(TestUniqueCol); 2518 FOS << format("%.2f%%", TestUniquePercent * 100); 2519 FOS.PadToColumn(BaseSampleCol); 2520 FOS << F.second.BaseSample; 2521 FOS.PadToColumn(TestSampleCol); 2522 FOS << F.second.TestSample; 2523 FOS.PadToColumn(FuncNameCol); 2524 FOS << F.second.TestName.toString() << "\n"; 2525 } 2526 } 2527 2528 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2529 OS << "Profile overlap infomation for base_profile: " 2530 << ProfOverlap.BaseName.toString() 2531 << " and test_profile: " << ProfOverlap.TestName.toString() 2532 << "\nProgram level:\n"; 2533 2534 OS << " Whole program profile similarity: " 2535 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2536 2537 assert(ProfOverlap.UnionSample > 0 && 2538 "Total samples in two profile should be greater than 0"); 2539 double OverlapPercent = 2540 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2541 assert(ProfOverlap.BaseSample > 0 && 2542 "Total samples in base profile should be greater than 0"); 2543 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2544 ProfOverlap.BaseSample; 2545 assert(ProfOverlap.TestSample > 0 && 2546 "Total samples in test profile should be greater than 0"); 2547 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2548 ProfOverlap.TestSample; 2549 2550 OS << " Whole program sample overlap: " 2551 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2552 OS << " percentage of samples unique in base profile: " 2553 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2554 OS << " percentage of samples unique in test profile: " 2555 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2556 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2557 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2558 2559 assert(ProfOverlap.UnionCount > 0 && 2560 "There should be at least one function in two input profiles"); 2561 double FuncOverlapPercent = 2562 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2563 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2564 << "\n"; 2565 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2566 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2567 << "\n"; 2568 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2569 << "\n"; 2570 } 2571 2572 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2573 raw_fd_ostream &OS) const { 2574 assert(HotFuncOverlap.UnionCount > 0 && 2575 "There should be at least one hot function in two input profiles"); 2576 OS << " Hot-function overlap: " 2577 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2578 HotFuncOverlap.UnionCount * 100) 2579 << "\n"; 2580 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2581 OS << " hot functions unique in base profile: " 2582 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2583 OS << " hot functions unique in test profile: " 2584 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2585 2586 assert(HotBlockOverlap.UnionCount > 0 && 2587 "There should be at least one hot block in two input profiles"); 2588 OS << " Hot-block overlap: " 2589 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2590 HotBlockOverlap.UnionCount * 100) 2591 << "\n"; 2592 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2593 OS << " hot blocks unique in base profile: " 2594 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2595 OS << " hot blocks unique in test profile: " 2596 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2597 } 2598 2599 std::error_code SampleOverlapAggregator::loadProfiles() { 2600 using namespace sampleprof; 2601 2602 LLVMContext Context; 2603 auto FS = vfs::getRealFileSystem(); 2604 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2605 FSDiscriminatorPassOption); 2606 if (std::error_code EC = BaseReaderOrErr.getError()) 2607 exitWithErrorCode(EC, BaseFilename); 2608 2609 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2610 FSDiscriminatorPassOption); 2611 if (std::error_code EC = TestReaderOrErr.getError()) 2612 exitWithErrorCode(EC, TestFilename); 2613 2614 BaseReader = std::move(BaseReaderOrErr.get()); 2615 TestReader = std::move(TestReaderOrErr.get()); 2616 2617 if (std::error_code EC = BaseReader->read()) 2618 exitWithErrorCode(EC, BaseFilename); 2619 if (std::error_code EC = TestReader->read()) 2620 exitWithErrorCode(EC, TestFilename); 2621 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2622 exitWithError( 2623 "cannot compare probe-based profile with non-probe-based profile"); 2624 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2625 exitWithError("cannot compare CS profile with non-CS profile"); 2626 2627 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2628 // profile summary. 2629 ProfileSummary &BasePS = BaseReader->getSummary(); 2630 ProfileSummary &TestPS = TestReader->getSummary(); 2631 BaseHotThreshold = 2632 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2633 TestHotThreshold = 2634 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2635 2636 return std::error_code(); 2637 } 2638 2639 void overlapSampleProfile(const std::string &BaseFilename, 2640 const std::string &TestFilename, 2641 const OverlapFuncFilters &FuncFilter, 2642 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2643 using namespace sampleprof; 2644 2645 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2646 // report 2--3 places after decimal point in percentage numbers. 2647 SampleOverlapAggregator OverlapAggr( 2648 BaseFilename, TestFilename, 2649 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2650 if (std::error_code EC = OverlapAggr.loadProfiles()) 2651 exitWithErrorCode(EC); 2652 2653 OverlapAggr.initializeSampleProfileOverlap(); 2654 if (OverlapAggr.detectZeroSampleProfile(OS)) 2655 return; 2656 2657 OverlapAggr.computeSampleProfileOverlap(OS); 2658 2659 OverlapAggr.dumpProgramSummary(OS); 2660 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2661 OverlapAggr.dumpFuncSimilarity(OS); 2662 } 2663 2664 static int overlap_main() { 2665 std::error_code EC; 2666 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2667 if (EC) 2668 exitWithErrorCode(EC, OutputFilename); 2669 2670 if (ProfileKind == instr) 2671 overlapInstrProfile(BaseFilename, TestFilename, 2672 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2673 OS, IsCS); 2674 else 2675 overlapSampleProfile(BaseFilename, TestFilename, 2676 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2677 SimilarityCutoff, OS); 2678 2679 return 0; 2680 } 2681 2682 namespace { 2683 struct ValueSitesStats { 2684 ValueSitesStats() = default; 2685 uint64_t TotalNumValueSites = 0; 2686 uint64_t TotalNumValueSitesWithValueProfile = 0; 2687 uint64_t TotalNumValues = 0; 2688 std::vector<unsigned> ValueSitesHistogram; 2689 }; 2690 } // namespace 2691 2692 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2693 ValueSitesStats &Stats, raw_fd_ostream &OS, 2694 InstrProfSymtab *Symtab) { 2695 uint32_t NS = Func.getNumValueSites(VK); 2696 Stats.TotalNumValueSites += NS; 2697 for (size_t I = 0; I < NS; ++I) { 2698 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2699 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2700 Stats.TotalNumValues += NV; 2701 if (NV) { 2702 Stats.TotalNumValueSitesWithValueProfile++; 2703 if (NV > Stats.ValueSitesHistogram.size()) 2704 Stats.ValueSitesHistogram.resize(NV, 0); 2705 Stats.ValueSitesHistogram[NV - 1]++; 2706 } 2707 2708 uint64_t SiteSum = 0; 2709 for (uint32_t V = 0; V < NV; V++) 2710 SiteSum += VD[V].Count; 2711 if (SiteSum == 0) 2712 SiteSum = 1; 2713 2714 for (uint32_t V = 0; V < NV; V++) { 2715 OS << "\t[ " << format("%2u", I) << ", "; 2716 if (Symtab == nullptr) 2717 OS << format("%4" PRIu64, VD[V].Value); 2718 else 2719 OS << Symtab->getFuncOrVarName(VD[V].Value); 2720 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2721 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2722 } 2723 } 2724 } 2725 2726 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2727 ValueSitesStats &Stats) { 2728 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2729 OS << " Total number of sites with values: " 2730 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2731 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2732 2733 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2734 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2735 if (Stats.ValueSitesHistogram[I] > 0) 2736 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2737 } 2738 } 2739 2740 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2741 if (SFormat == ShowFormat::Json) 2742 exitWithError("JSON output is not supported for instr profiles"); 2743 if (SFormat == ShowFormat::Yaml) 2744 exitWithError("YAML output is not supported for instr profiles"); 2745 auto FS = vfs::getRealFileSystem(); 2746 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2747 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2748 if (ShowDetailedSummary && Cutoffs.empty()) { 2749 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2750 } 2751 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2752 if (Error E = ReaderOrErr.takeError()) 2753 exitWithError(std::move(E), Filename); 2754 2755 auto Reader = std::move(ReaderOrErr.get()); 2756 bool IsIRInstr = Reader->isIRLevelProfile(); 2757 size_t ShownFunctions = 0; 2758 size_t BelowCutoffFunctions = 0; 2759 int NumVPKind = IPVK_Last - IPVK_First + 1; 2760 std::vector<ValueSitesStats> VPStats(NumVPKind); 2761 2762 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2763 const std::pair<std::string, uint64_t> &v2) { 2764 return v1.second > v2.second; 2765 }; 2766 2767 std::priority_queue<std::pair<std::string, uint64_t>, 2768 std::vector<std::pair<std::string, uint64_t>>, 2769 decltype(MinCmp)> 2770 HottestFuncs(MinCmp); 2771 2772 if (!TextFormat && OnlyListBelow) { 2773 OS << "The list of functions with the maximum counter less than " 2774 << ShowValueCutoff << ":\n"; 2775 } 2776 2777 // Add marker so that IR-level instrumentation round-trips properly. 2778 if (TextFormat && IsIRInstr) 2779 OS << ":ir\n"; 2780 2781 for (const auto &Func : *Reader) { 2782 if (Reader->isIRLevelProfile()) { 2783 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2784 if (FuncIsCS != ShowCS) 2785 continue; 2786 } 2787 bool Show = ShowAllFunctions || 2788 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2789 2790 bool doTextFormatDump = (Show && TextFormat); 2791 2792 if (doTextFormatDump) { 2793 InstrProfSymtab &Symtab = Reader->getSymtab(); 2794 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2795 OS); 2796 continue; 2797 } 2798 2799 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2800 Builder.addRecord(Func); 2801 2802 if (ShowCovered) { 2803 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2804 OS << Func.Name << "\n"; 2805 continue; 2806 } 2807 2808 uint64_t FuncMax = 0; 2809 uint64_t FuncSum = 0; 2810 2811 auto PseudoKind = Func.getCountPseudoKind(); 2812 if (PseudoKind != InstrProfRecord::NotPseudo) { 2813 if (Show) { 2814 if (!ShownFunctions) 2815 OS << "Counters:\n"; 2816 ++ShownFunctions; 2817 OS << " " << Func.Name << ":\n" 2818 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2819 << " Counters: " << Func.Counts.size(); 2820 if (PseudoKind == InstrProfRecord::PseudoHot) 2821 OS << " <PseudoHot>\n"; 2822 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2823 OS << " <PseudoWarm>\n"; 2824 else 2825 llvm_unreachable("Unknown PseudoKind"); 2826 } 2827 continue; 2828 } 2829 2830 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2831 FuncMax = std::max(FuncMax, Func.Counts[I]); 2832 FuncSum += Func.Counts[I]; 2833 } 2834 2835 if (FuncMax < ShowValueCutoff) { 2836 ++BelowCutoffFunctions; 2837 if (OnlyListBelow) { 2838 OS << " " << Func.Name << ": (Max = " << FuncMax 2839 << " Sum = " << FuncSum << ")\n"; 2840 } 2841 continue; 2842 } else if (OnlyListBelow) 2843 continue; 2844 2845 if (TopNFunctions) { 2846 if (HottestFuncs.size() == TopNFunctions) { 2847 if (HottestFuncs.top().second < FuncMax) { 2848 HottestFuncs.pop(); 2849 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2850 } 2851 } else 2852 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2853 } 2854 2855 if (Show) { 2856 if (!ShownFunctions) 2857 OS << "Counters:\n"; 2858 2859 ++ShownFunctions; 2860 2861 OS << " " << Func.Name << ":\n" 2862 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2863 << " Counters: " << Func.Counts.size() << "\n"; 2864 if (!IsIRInstr) 2865 OS << " Function count: " << Func.Counts[0] << "\n"; 2866 2867 if (ShowIndirectCallTargets) 2868 OS << " Indirect Call Site Count: " 2869 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2870 2871 if (ShowVTables) 2872 OS << " Number of instrumented vtables: " 2873 << Func.getNumValueSites(IPVK_VTableTarget) << "\n"; 2874 2875 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2876 if (ShowMemOPSizes && NumMemOPCalls > 0) 2877 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2878 << "\n"; 2879 2880 if (ShowCounts) { 2881 OS << " Block counts: ["; 2882 size_t Start = (IsIRInstr ? 0 : 1); 2883 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2884 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2885 } 2886 OS << "]\n"; 2887 } 2888 2889 if (ShowIndirectCallTargets) { 2890 OS << " Indirect Target Results:\n"; 2891 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2892 VPStats[IPVK_IndirectCallTarget], OS, 2893 &(Reader->getSymtab())); 2894 } 2895 2896 if (ShowVTables) { 2897 OS << " VTable Results:\n"; 2898 traverseAllValueSites(Func, IPVK_VTableTarget, 2899 VPStats[IPVK_VTableTarget], OS, 2900 &(Reader->getSymtab())); 2901 } 2902 2903 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2904 OS << " Memory Intrinsic Size Results:\n"; 2905 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2906 nullptr); 2907 } 2908 } 2909 } 2910 if (Reader->hasError()) 2911 exitWithError(Reader->getError(), Filename); 2912 2913 if (TextFormat || ShowCovered) 2914 return 0; 2915 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2916 bool IsIR = Reader->isIRLevelProfile(); 2917 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2918 if (IsIR) 2919 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2920 OS << "\n"; 2921 if (ShowAllFunctions || !FuncNameFilter.empty()) 2922 OS << "Functions shown: " << ShownFunctions << "\n"; 2923 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2924 if (ShowValueCutoff > 0) { 2925 OS << "Number of functions with maximum count (< " << ShowValueCutoff 2926 << "): " << BelowCutoffFunctions << "\n"; 2927 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 2928 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2929 } 2930 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2931 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2932 2933 if (TopNFunctions) { 2934 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2935 while (!HottestFuncs.empty()) { 2936 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2937 HottestFuncs.pop(); 2938 } 2939 OS << "Top " << TopNFunctions 2940 << " functions with the largest internal block counts: \n"; 2941 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2942 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2943 } 2944 2945 if (ShownFunctions && ShowIndirectCallTargets) { 2946 OS << "Statistics for indirect call sites profile:\n"; 2947 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2948 VPStats[IPVK_IndirectCallTarget]); 2949 } 2950 2951 if (ShownFunctions && ShowVTables) { 2952 OS << "Statistics for vtable profile:\n"; 2953 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]); 2954 } 2955 2956 if (ShownFunctions && ShowMemOPSizes) { 2957 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2958 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2959 } 2960 2961 if (ShowDetailedSummary) { 2962 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2963 OS << "Total count: " << PS->getTotalCount() << "\n"; 2964 PS->printDetailedSummary(OS); 2965 } 2966 2967 if (ShowBinaryIds) 2968 if (Error E = Reader->printBinaryIds(OS)) 2969 exitWithError(std::move(E), Filename); 2970 2971 if (ShowProfileVersion) 2972 OS << "Profile version: " << Reader->getVersion() << "\n"; 2973 2974 if (ShowTemporalProfTraces) { 2975 auto &Traces = Reader->getTemporalProfTraces(); 2976 OS << "Temporal Profile Traces (samples=" << Traces.size() 2977 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 2978 for (unsigned i = 0; i < Traces.size(); i++) { 2979 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 2980 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 2981 for (auto &NameRef : Traces[i].FunctionNameRefs) 2982 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 2983 } 2984 } 2985 2986 return 0; 2987 } 2988 2989 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2990 raw_fd_ostream &OS) { 2991 if (!Reader->dumpSectionInfo(OS)) { 2992 WithColor::warning() << "-show-sec-info-only is only supported for " 2993 << "sample profile in extbinary format and is " 2994 << "ignored for other formats.\n"; 2995 return; 2996 } 2997 } 2998 2999 namespace { 3000 struct HotFuncInfo { 3001 std::string FuncName; 3002 uint64_t TotalCount = 0; 3003 double TotalCountPercent = 0.0f; 3004 uint64_t MaxCount = 0; 3005 uint64_t EntryCount = 0; 3006 3007 HotFuncInfo() = default; 3008 3009 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 3010 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 3011 MaxCount(MS), EntryCount(ES) {} 3012 }; 3013 } // namespace 3014 3015 // Print out detailed information about hot functions in PrintValues vector. 3016 // Users specify titles and offset of every columns through ColumnTitle and 3017 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 3018 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 3019 // print out or let it be an empty string. 3020 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 3021 const std::vector<int> &ColumnOffset, 3022 const std::vector<HotFuncInfo> &PrintValues, 3023 uint64_t HotFuncCount, uint64_t TotalFuncCount, 3024 uint64_t HotProfCount, uint64_t TotalProfCount, 3025 const std::string &HotFuncMetric, 3026 uint32_t TopNFunctions, raw_fd_ostream &OS) { 3027 assert(ColumnOffset.size() == ColumnTitle.size() && 3028 "ColumnOffset and ColumnTitle should have the same size"); 3029 assert(ColumnTitle.size() >= 4 && 3030 "ColumnTitle should have at least 4 elements"); 3031 assert(TotalFuncCount > 0 && 3032 "There should be at least one function in the profile"); 3033 double TotalProfPercent = 0; 3034 if (TotalProfCount > 0) 3035 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 3036 3037 formatted_raw_ostream FOS(OS); 3038 FOS << HotFuncCount << " out of " << TotalFuncCount 3039 << " functions with profile (" 3040 << format("%.2f%%", 3041 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 3042 << ") are considered hot functions"; 3043 if (!HotFuncMetric.empty()) 3044 FOS << " (" << HotFuncMetric << ")"; 3045 FOS << ".\n"; 3046 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 3047 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 3048 3049 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 3050 FOS.PadToColumn(ColumnOffset[I]); 3051 FOS << ColumnTitle[I]; 3052 } 3053 FOS << "\n"; 3054 3055 uint32_t Count = 0; 3056 for (const auto &R : PrintValues) { 3057 if (TopNFunctions && (Count++ == TopNFunctions)) 3058 break; 3059 FOS.PadToColumn(ColumnOffset[0]); 3060 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 3061 FOS.PadToColumn(ColumnOffset[1]); 3062 FOS << R.MaxCount; 3063 FOS.PadToColumn(ColumnOffset[2]); 3064 FOS << R.EntryCount; 3065 FOS.PadToColumn(ColumnOffset[3]); 3066 FOS << R.FuncName << "\n"; 3067 } 3068 } 3069 3070 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 3071 ProfileSummary &PS, uint32_t TopN, 3072 raw_fd_ostream &OS) { 3073 using namespace sampleprof; 3074 3075 const uint32_t HotFuncCutoff = 990000; 3076 auto &SummaryVector = PS.getDetailedSummary(); 3077 uint64_t MinCountThreshold = 0; 3078 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 3079 if (SummaryEntry.Cutoff == HotFuncCutoff) { 3080 MinCountThreshold = SummaryEntry.MinCount; 3081 break; 3082 } 3083 } 3084 3085 // Traverse all functions in the profile and keep only hot functions. 3086 // The following loop also calculates the sum of total samples of all 3087 // functions. 3088 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 3089 std::greater<uint64_t>> 3090 HotFunc; 3091 uint64_t ProfileTotalSample = 0; 3092 uint64_t HotFuncSample = 0; 3093 uint64_t HotFuncCount = 0; 3094 3095 for (const auto &I : Profiles) { 3096 FuncSampleStats FuncStats; 3097 const FunctionSamples &FuncProf = I.second; 3098 ProfileTotalSample += FuncProf.getTotalSamples(); 3099 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 3100 3101 if (isFunctionHot(FuncStats, MinCountThreshold)) { 3102 HotFunc.emplace(FuncProf.getTotalSamples(), 3103 std::make_pair(&(I.second), FuncStats.MaxSample)); 3104 HotFuncSample += FuncProf.getTotalSamples(); 3105 ++HotFuncCount; 3106 } 3107 } 3108 3109 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 3110 "Entry sample", "Function name"}; 3111 std::vector<int> ColumnOffset{0, 24, 42, 58}; 3112 std::string Metric = 3113 std::string("max sample >= ") + std::to_string(MinCountThreshold); 3114 std::vector<HotFuncInfo> PrintValues; 3115 for (const auto &FuncPair : HotFunc) { 3116 const FunctionSamples &Func = *FuncPair.second.first; 3117 double TotalSamplePercent = 3118 (ProfileTotalSample > 0) 3119 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 3120 : 0; 3121 PrintValues.emplace_back( 3122 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 3123 TotalSamplePercent, FuncPair.second.second, 3124 Func.getHeadSamplesEstimate())); 3125 } 3126 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 3127 Profiles.size(), HotFuncSample, ProfileTotalSample, 3128 Metric, TopN, OS); 3129 3130 return 0; 3131 } 3132 3133 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3134 if (SFormat == ShowFormat::Yaml) 3135 exitWithError("YAML output is not supported for sample profiles"); 3136 using namespace sampleprof; 3137 LLVMContext Context; 3138 auto FS = vfs::getRealFileSystem(); 3139 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3140 FSDiscriminatorPassOption); 3141 if (std::error_code EC = ReaderOrErr.getError()) 3142 exitWithErrorCode(EC, Filename); 3143 3144 auto Reader = std::move(ReaderOrErr.get()); 3145 if (ShowSectionInfoOnly) { 3146 showSectionInfo(Reader.get(), OS); 3147 return 0; 3148 } 3149 3150 if (std::error_code EC = Reader->read()) 3151 exitWithErrorCode(EC, Filename); 3152 3153 if (ShowAllFunctions || FuncNameFilter.empty()) { 3154 if (SFormat == ShowFormat::Json) 3155 Reader->dumpJson(OS); 3156 else 3157 Reader->dump(OS); 3158 } else { 3159 if (SFormat == ShowFormat::Json) 3160 exitWithError( 3161 "the JSON format is supported only when all functions are to " 3162 "be printed"); 3163 3164 // TODO: parse context string to support filtering by contexts. 3165 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3166 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3167 } 3168 3169 if (ShowProfileSymbolList) { 3170 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3171 Reader->getProfileSymbolList(); 3172 ReaderList->dump(OS); 3173 } 3174 3175 if (ShowDetailedSummary) { 3176 auto &PS = Reader->getSummary(); 3177 PS.printSummary(OS); 3178 PS.printDetailedSummary(OS); 3179 } 3180 3181 if (ShowHotFuncList || TopNFunctions) 3182 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3183 TopNFunctions, OS); 3184 3185 return 0; 3186 } 3187 3188 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3189 if (SFormat == ShowFormat::Json) 3190 exitWithError("JSON output is not supported for MemProf"); 3191 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3192 Filename, ProfiledBinary, /*KeepNames=*/true); 3193 if (Error E = ReaderOr.takeError()) 3194 // Since the error can be related to the profile or the binary we do not 3195 // pass whence. Instead additional context is provided where necessary in 3196 // the error message. 3197 exitWithError(std::move(E), /*Whence*/ ""); 3198 3199 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3200 ReaderOr.get().release()); 3201 3202 Reader->printYAML(OS); 3203 return 0; 3204 } 3205 3206 static int showDebugInfoCorrelation(const std::string &Filename, 3207 ShowFormat SFormat, raw_fd_ostream &OS) { 3208 if (SFormat == ShowFormat::Json) 3209 exitWithError("JSON output is not supported for debug info correlation"); 3210 std::unique_ptr<InstrProfCorrelator> Correlator; 3211 if (auto Err = 3212 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3213 .moveInto(Correlator)) 3214 exitWithError(std::move(Err), Filename); 3215 if (SFormat == ShowFormat::Yaml) { 3216 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3217 exitWithError(std::move(Err), Filename); 3218 return 0; 3219 } 3220 3221 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3222 exitWithError(std::move(Err), Filename); 3223 3224 InstrProfSymtab Symtab; 3225 if (auto Err = Symtab.create( 3226 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3227 exitWithError(std::move(Err), Filename); 3228 3229 if (ShowProfileSymbolList) 3230 Symtab.dumpNames(OS); 3231 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3232 // counters the section holds. 3233 if (ShowDetailedSummary) 3234 OS << "Counters section size: 0x" 3235 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3236 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3237 3238 return 0; 3239 } 3240 3241 static int show_main(StringRef ProgName) { 3242 if (Filename.empty() && DebugInfoFilename.empty()) 3243 exitWithError( 3244 "the positional argument '<profdata-file>' is required unless '--" + 3245 DebugInfoFilename.ArgStr + "' is provided"); 3246 3247 if (Filename == OutputFilename) { 3248 errs() << ProgName 3249 << " show: Input file name cannot be the same as the output file " 3250 "name!\n"; 3251 return 1; 3252 } 3253 if (JsonFormat) 3254 SFormat = ShowFormat::Json; 3255 3256 std::error_code EC; 3257 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3258 if (EC) 3259 exitWithErrorCode(EC, OutputFilename); 3260 3261 if (ShowAllFunctions && !FuncNameFilter.empty()) 3262 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3263 3264 if (!DebugInfoFilename.empty()) 3265 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3266 3267 if (ShowProfileKind == instr) 3268 return showInstrProfile(SFormat, OS); 3269 if (ShowProfileKind == sample) 3270 return showSampleProfile(SFormat, OS); 3271 return showMemProfProfile(SFormat, OS); 3272 } 3273 3274 static int order_main() { 3275 std::error_code EC; 3276 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3277 if (EC) 3278 exitWithErrorCode(EC, OutputFilename); 3279 auto FS = vfs::getRealFileSystem(); 3280 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3281 if (Error E = ReaderOrErr.takeError()) 3282 exitWithError(std::move(E), Filename); 3283 3284 auto Reader = std::move(ReaderOrErr.get()); 3285 for (auto &I : *Reader) { 3286 // Read all entries 3287 (void)I; 3288 } 3289 ArrayRef Traces = Reader->getTemporalProfTraces(); 3290 if (NumTestTraces && NumTestTraces >= Traces.size()) 3291 exitWithError( 3292 "--" + NumTestTraces.ArgStr + 3293 " must be smaller than the total number of traces: expected: < " + 3294 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces)); 3295 ArrayRef TestTraces = Traces.take_back(NumTestTraces); 3296 Traces = Traces.drop_back(NumTestTraces); 3297 3298 std::vector<BPFunctionNode> Nodes; 3299 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes); 3300 BalancedPartitioningConfig Config; 3301 BalancedPartitioning BP(Config); 3302 BP.run(Nodes); 3303 3304 OS << "# Ordered " << Nodes.size() << " functions\n"; 3305 if (!TestTraces.empty()) { 3306 // Since we don't know the symbol sizes, we assume 32 functions per page. 3307 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber; 3308 for (auto &Node : Nodes) 3309 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32; 3310 3311 SmallSet<unsigned, 0> TouchedPages; 3312 unsigned Area = 0; 3313 for (auto &Trace : TestTraces) { 3314 for (auto Id : Trace.FunctionNameRefs) { 3315 auto It = IdToPageNumber.find(Id); 3316 if (It == IdToPageNumber.end()) 3317 continue; 3318 TouchedPages.insert(It->getSecond()); 3319 Area += TouchedPages.size(); 3320 } 3321 TouchedPages.clear(); 3322 } 3323 OS << "# Total area under the page fault curve: " << (float)Area << "\n"; 3324 } 3325 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3326 "linkage and this output does not take that into account. Some " 3327 "post-processing may be required before passing to the linker via " 3328 "-order_file.\n"; 3329 for (auto &N : Nodes) { 3330 auto [Filename, ParsedFuncName] = 3331 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3332 if (!Filename.empty()) 3333 OS << "# " << Filename << "\n"; 3334 OS << ParsedFuncName << "\n"; 3335 } 3336 return 0; 3337 } 3338 3339 int llvm_profdata_main(int argc, char **argvNonConst, 3340 const llvm::ToolContext &) { 3341 const char **argv = const_cast<const char **>(argvNonConst); 3342 3343 StringRef ProgName(sys::path::filename(argv[0])); 3344 3345 if (argc < 2) { 3346 errs() << ProgName 3347 << ": No subcommand specified! Run llvm-profata --help for usage.\n"; 3348 return 1; 3349 } 3350 3351 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3352 3353 if (ShowSubcommand) 3354 return show_main(ProgName); 3355 3356 if (OrderSubcommand) 3357 return order_main(); 3358 3359 if (OverlapSubcommand) 3360 return overlap_main(); 3361 3362 if (MergeSubcommand) 3363 return merge_main(ProgName); 3364 3365 errs() << ProgName 3366 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3367 return 1; 3368 } 3369