1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/ProfileData/InstrProfCorrelator.h" 19 #include "llvm/ProfileData/InstrProfReader.h" 20 #include "llvm/ProfileData/InstrProfWriter.h" 21 #include "llvm/ProfileData/MemProf.h" 22 #include "llvm/ProfileData/MemProfReader.h" 23 #include "llvm/ProfileData/ProfileCommon.h" 24 #include "llvm/ProfileData/SampleProfReader.h" 25 #include "llvm/ProfileData/SampleProfWriter.h" 26 #include "llvm/Support/BalancedPartitioning.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Discriminator.h" 29 #include "llvm/Support/Errc.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/FormattedStream.h" 33 #include "llvm/Support/LLVMDriver.h" 34 #include "llvm/Support/MD5.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/Regex.h" 38 #include "llvm/Support/ThreadPool.h" 39 #include "llvm/Support/Threading.h" 40 #include "llvm/Support/VirtualFileSystem.h" 41 #include "llvm/Support/WithColor.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <cmath> 45 #include <optional> 46 #include <queue> 47 48 using namespace llvm; 49 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 50 51 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 52 // on each subcommand. 53 cl::SubCommand ShowSubcommand( 54 "show", 55 "Takes a profile data file and displays the profiles. See detailed " 56 "documentation in " 57 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 58 cl::SubCommand OrderSubcommand( 59 "order", 60 "Reads temporal profiling traces from a profile and outputs a function " 61 "order that reduces the number of page faults for those traces. See " 62 "detailed documentation in " 63 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 64 cl::SubCommand OverlapSubcommand( 65 "overlap", 66 "Computes and displays the overlap between two profiles. See detailed " 67 "documentation in " 68 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 69 cl::SubCommand MergeSubcommand( 70 "merge", 71 "Takes several profiles and merge them together. See detailed " 72 "documentation in " 73 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 74 75 namespace { 76 enum ProfileKinds { instr, sample, memory }; 77 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 78 79 enum ProfileFormat { 80 PF_None = 0, 81 PF_Text, 82 PF_Compact_Binary, // Deprecated 83 PF_Ext_Binary, 84 PF_GCC, 85 PF_Binary 86 }; 87 88 enum class ShowFormat { Text, Json, Yaml }; 89 } // namespace 90 91 // Common options. 92 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 93 cl::init("-"), cl::desc("Output file"), 94 cl::sub(ShowSubcommand), 95 cl::sub(OrderSubcommand), 96 cl::sub(OverlapSubcommand), 97 cl::sub(MergeSubcommand)); 98 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 99 // will be used. llvm::cl::alias::done() method asserts this condition. 100 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 101 cl::aliasopt(OutputFilename)); 102 103 // Options common to at least two commands. 104 cl::opt<ProfileKinds> ProfileKind( 105 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 106 cl::sub(OverlapSubcommand), cl::init(instr), 107 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 108 clEnumVal(sample, "Sample profile"))); 109 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 110 cl::sub(ShowSubcommand), 111 cl::sub(OrderSubcommand)); 112 cl::opt<unsigned> MaxDbgCorrelationWarnings( 113 "max-debug-info-correlation-warnings", 114 cl::desc("The maximum number of warnings to emit when correlating " 115 "profile from debug info (0 = no limit)"), 116 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 117 cl::opt<std::string> ProfiledBinary( 118 "profiled-binary", cl::init(""), 119 cl::desc("Path to binary from which the profile was collected."), 120 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 121 cl::opt<std::string> DebugInfoFilename( 122 "debug-info", cl::init(""), 123 cl::desc( 124 "For show, read and extract profile metadata from debug info and show " 125 "the functions it found. For merge, use the provided debug info to " 126 "correlate the raw profile."), 127 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 128 cl::opt<std::string> 129 BinaryFilename("binary-file", cl::init(""), 130 cl::desc("For merge, use the provided unstripped bianry to " 131 "correlate the raw profile."), 132 cl::sub(MergeSubcommand)); 133 cl::opt<std::string> FuncNameFilter( 134 "function", 135 cl::desc("Only functions matching the filter are shown in the output. For " 136 "overlapping CSSPGO, this takes a function name with calling " 137 "context."), 138 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand), 139 cl::sub(MergeSubcommand)); 140 141 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 142 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 143 // options. 144 145 // Options specific to merge subcommand. 146 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 147 cl::desc("<filename...>")); 148 cl::list<std::string> WeightedInputFilenames("weighted-input", 149 cl::sub(MergeSubcommand), 150 cl::desc("<weight>,<filename>")); 151 cl::opt<ProfileFormat> OutputFormat( 152 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 153 cl::init(PF_Ext_Binary), 154 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 155 clEnumValN(PF_Ext_Binary, "extbinary", 156 "Extensible binary encoding " 157 "(default)"), 158 clEnumValN(PF_Text, "text", "Text encoding"), 159 clEnumValN(PF_GCC, "gcc", 160 "GCC encoding (only meaningful for -sample)"))); 161 cl::opt<std::string> 162 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 163 cl::desc("Path to file containing newline-separated " 164 "[<weight>,]<filename> entries")); 165 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 166 cl::aliasopt(InputFilenamesFile)); 167 cl::opt<bool> DumpInputFileList( 168 "dump-input-file-list", cl::init(false), cl::Hidden, 169 cl::sub(MergeSubcommand), 170 cl::desc("Dump the list of input files and their weights, then exit")); 171 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 172 cl::sub(MergeSubcommand), 173 cl::desc("Symbol remapping file")); 174 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 175 cl::aliasopt(RemappingFile)); 176 cl::opt<bool> 177 UseMD5("use-md5", cl::init(false), cl::Hidden, 178 cl::desc("Choose to use MD5 to represent string in name table (only " 179 "meaningful for -extbinary)"), 180 cl::sub(MergeSubcommand)); 181 cl::opt<bool> CompressAllSections( 182 "compress-all-sections", cl::init(false), cl::Hidden, 183 cl::sub(MergeSubcommand), 184 cl::desc("Compress all sections when writing the profile (only " 185 "meaningful for -extbinary)")); 186 cl::opt<bool> SampleMergeColdContext( 187 "sample-merge-cold-context", cl::init(false), cl::Hidden, 188 cl::sub(MergeSubcommand), 189 cl::desc( 190 "Merge context sample profiles whose count is below cold threshold")); 191 cl::opt<bool> SampleTrimColdContext( 192 "sample-trim-cold-context", cl::init(false), cl::Hidden, 193 cl::sub(MergeSubcommand), 194 cl::desc( 195 "Trim context sample profiles whose count is below cold threshold")); 196 cl::opt<uint32_t> SampleColdContextFrameDepth( 197 "sample-frame-depth-for-cold-context", cl::init(1), 198 cl::sub(MergeSubcommand), 199 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 200 "context-less base profile")); 201 cl::opt<size_t> OutputSizeLimit( 202 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 203 cl::desc("Trim cold functions until profile size is below specified " 204 "limit in bytes. This uses a heursitic and functions may be " 205 "excessively trimmed")); 206 cl::opt<bool> GenPartialProfile( 207 "gen-partial-profile", cl::init(false), cl::Hidden, 208 cl::sub(MergeSubcommand), 209 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 210 cl::opt<std::string> SupplInstrWithSample( 211 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 212 cl::sub(MergeSubcommand), 213 cl::desc("Supplement an instr profile with sample profile, to correct " 214 "the profile unrepresentativeness issue. The sample " 215 "profile is the input of the flag. Output will be in instr " 216 "format (The flag only works with -instr)")); 217 cl::opt<float> ZeroCounterThreshold( 218 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 219 cl::sub(MergeSubcommand), 220 cl::desc("For the function which is cold in instr profile but hot in " 221 "sample profile, if the ratio of the number of zero counters " 222 "divided by the total number of counters is above the " 223 "threshold, the profile of the function will be regarded as " 224 "being harmful for performance and will be dropped.")); 225 cl::opt<unsigned> SupplMinSizeThreshold( 226 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 227 cl::sub(MergeSubcommand), 228 cl::desc("If the size of a function is smaller than the threshold, " 229 "assume it can be inlined by PGO early inliner and it won't " 230 "be adjusted based on sample profile.")); 231 cl::opt<unsigned> InstrProfColdThreshold( 232 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 233 cl::sub(MergeSubcommand), 234 cl::desc("User specified cold threshold for instr profile which will " 235 "override the cold threshold got from profile summary. ")); 236 // WARNING: This reservoir size value is propagated to any input indexed 237 // profiles for simplicity. Changing this value between invocations could 238 // result in sample bias. 239 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 240 "temporal-profile-trace-reservoir-size", cl::init(100), 241 cl::sub(MergeSubcommand), 242 cl::desc("The maximum number of stored temporal profile traces (default: " 243 "100)")); 244 cl::opt<uint64_t> TemporalProfMaxTraceLength( 245 "temporal-profile-max-trace-length", cl::init(10000), 246 cl::sub(MergeSubcommand), 247 cl::desc("The maximum length of a single temporal profile trace " 248 "(default: 10000)")); 249 cl::opt<std::string> FuncNameNegativeFilter( 250 "no-function", cl::init(""), 251 cl::sub(MergeSubcommand), 252 cl::desc("Exclude functions matching the filter from the output.")); 253 254 cl::opt<FailureMode> 255 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 256 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 257 cl::values(clEnumValN(warnOnly, "warn", 258 "Do not fail and just print warnings."), 259 clEnumValN(failIfAnyAreInvalid, "any", 260 "Fail if any profile is invalid."), 261 clEnumValN(failIfAllAreInvalid, "all", 262 "Fail only if all profiles are invalid."))); 263 264 cl::opt<bool> OutputSparse( 265 "sparse", cl::init(false), cl::sub(MergeSubcommand), 266 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 267 cl::opt<unsigned> NumThreads( 268 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 269 cl::desc("Number of merge threads to use (default: autodetect)")); 270 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 271 cl::aliasopt(NumThreads)); 272 273 cl::opt<std::string> ProfileSymbolListFile( 274 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 275 cl::desc("Path to file containing the list of function symbols " 276 "used to populate profile symbol list")); 277 278 cl::opt<SampleProfileLayout> ProfileLayout( 279 "convert-sample-profile-layout", 280 cl::desc("Convert the generated profile to a profile with a new layout"), 281 cl::sub(MergeSubcommand), cl::init(SPL_None), 282 cl::values( 283 clEnumValN(SPL_Nest, "nest", 284 "Nested profile, the input should be CS flat profile"), 285 clEnumValN(SPL_Flat, "flat", 286 "Profile with nested inlinee flatten out"))); 287 288 cl::opt<bool> DropProfileSymbolList( 289 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 290 cl::sub(MergeSubcommand), 291 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 292 "(only meaningful for -sample)")); 293 294 cl::opt<bool> KeepVTableSymbols( 295 "keep-vtable-symbols", cl::init(false), cl::Hidden, 296 cl::sub(MergeSubcommand), 297 cl::desc("If true, keep the vtable symbols in indexed profiles")); 298 299 // Temporary support for writing the previous version of the format, to enable 300 // some forward compatibility. 301 // TODO: Consider enabling this with future version changes as well, to ease 302 // deployment of newer versions of llvm-profdata. 303 cl::opt<bool> DoWritePrevVersion( 304 "write-prev-version", cl::init(false), cl::Hidden, 305 cl::desc("Write the previous version of indexed format, to enable " 306 "some forward compatibility.")); 307 308 cl::opt<memprof::IndexedVersion> MemProfVersionRequested( 309 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand), 310 cl::desc("Specify the version of the memprof format to use"), 311 cl::init(memprof::Version0), 312 cl::values(clEnumValN(memprof::Version0, "0", "version 0"), 313 clEnumValN(memprof::Version1, "1", "version 1"), 314 clEnumValN(memprof::Version2, "2", "version 2"), 315 clEnumValN(memprof::Version3, "3", "version 3"))); 316 317 cl::opt<bool> MemProfFullSchema( 318 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand), 319 cl::desc("Use the full schema for serialization"), cl::init(false)); 320 321 // Options specific to overlap subcommand. 322 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 323 cl::desc("<base profile file>"), 324 cl::sub(OverlapSubcommand)); 325 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 326 cl::desc("<test profile file>"), 327 cl::sub(OverlapSubcommand)); 328 329 cl::opt<unsigned long long> SimilarityCutoff( 330 "similarity-cutoff", cl::init(0), 331 cl::desc("For sample profiles, list function names (with calling context " 332 "for csspgo) for overlapped functions " 333 "with similarities below the cutoff (percentage times 10000)."), 334 cl::sub(OverlapSubcommand)); 335 336 cl::opt<bool> IsCS( 337 "cs", cl::init(false), 338 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 339 cl::sub(OverlapSubcommand)); 340 341 cl::opt<unsigned long long> OverlapValueCutoff( 342 "value-cutoff", cl::init(-1), 343 cl::desc( 344 "Function level overlap information for every function (with calling " 345 "context for csspgo) in test " 346 "profile with max count value greater then the parameter value"), 347 cl::sub(OverlapSubcommand)); 348 349 // Options specific to show subcommand. 350 cl::opt<bool> ShowCounts("counts", cl::init(false), 351 cl::desc("Show counter values for shown functions"), 352 cl::sub(ShowSubcommand)); 353 cl::opt<ShowFormat> 354 SFormat("show-format", cl::init(ShowFormat::Text), 355 cl::desc("Emit output in the selected format if supported"), 356 cl::sub(ShowSubcommand), 357 cl::values(clEnumValN(ShowFormat::Text, "text", 358 "emit normal text output (default)"), 359 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 360 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 361 // TODO: Consider replacing this with `--show-format=text-encoding`. 362 cl::opt<bool> 363 TextFormat("text", cl::init(false), 364 cl::desc("Show instr profile data in text dump format"), 365 cl::sub(ShowSubcommand)); 366 cl::opt<bool> 367 JsonFormat("json", 368 cl::desc("Show sample profile data in the JSON format " 369 "(deprecated, please use --show-format=json)"), 370 cl::sub(ShowSubcommand)); 371 cl::opt<bool> ShowIndirectCallTargets( 372 "ic-targets", cl::init(false), 373 cl::desc("Show indirect call site target values for shown functions"), 374 cl::sub(ShowSubcommand)); 375 cl::opt<bool> ShowVTables("show-vtables", cl::init(false), 376 cl::desc("Show vtable names for shown functions"), 377 cl::sub(ShowSubcommand)); 378 cl::opt<bool> ShowMemOPSizes( 379 "memop-sizes", cl::init(false), 380 cl::desc("Show the profiled sizes of the memory intrinsic calls " 381 "for shown functions"), 382 cl::sub(ShowSubcommand)); 383 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 384 cl::desc("Show detailed profile summary"), 385 cl::sub(ShowSubcommand)); 386 cl::list<uint32_t> DetailedSummaryCutoffs( 387 cl::CommaSeparated, "detailed-summary-cutoffs", 388 cl::desc( 389 "Cutoff percentages (times 10000) for generating detailed summary"), 390 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 391 cl::opt<bool> 392 ShowHotFuncList("hot-func-list", cl::init(false), 393 cl::desc("Show profile summary of a list of hot functions"), 394 cl::sub(ShowSubcommand)); 395 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 396 cl::desc("Details for each and every function"), 397 cl::sub(ShowSubcommand)); 398 cl::opt<bool> ShowCS("showcs", cl::init(false), 399 cl::desc("Show context sensitive counts"), 400 cl::sub(ShowSubcommand)); 401 cl::opt<ProfileKinds> ShowProfileKind( 402 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 403 cl::init(instr), 404 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 405 clEnumVal(sample, "Sample profile"), 406 clEnumVal(memory, "MemProf memory access profile"))); 407 cl::opt<uint32_t> TopNFunctions( 408 "topn", cl::init(0), 409 cl::desc("Show the list of functions with the largest internal counts"), 410 cl::sub(ShowSubcommand)); 411 cl::opt<uint32_t> ShowValueCutoff( 412 "value-cutoff", cl::init(0), 413 cl::desc("Set the count value cutoff. Functions with the maximum count " 414 "less than this value will not be printed out. (Default is 0)"), 415 cl::sub(ShowSubcommand)); 416 cl::opt<bool> OnlyListBelow( 417 "list-below-cutoff", cl::init(false), 418 cl::desc("Only output names of functions whose max count values are " 419 "below the cutoff value"), 420 cl::sub(ShowSubcommand)); 421 cl::opt<bool> ShowProfileSymbolList( 422 "show-prof-sym-list", cl::init(false), 423 cl::desc("Show profile symbol list if it exists in the profile. "), 424 cl::sub(ShowSubcommand)); 425 cl::opt<bool> ShowSectionInfoOnly( 426 "show-sec-info-only", cl::init(false), 427 cl::desc("Show the information of each section in the sample profile. " 428 "The flag is only usable when the sample profile is in " 429 "extbinary format"), 430 cl::sub(ShowSubcommand)); 431 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 432 cl::desc("Show binary ids in the profile. "), 433 cl::sub(ShowSubcommand)); 434 cl::opt<bool> ShowTemporalProfTraces( 435 "temporal-profile-traces", 436 cl::desc("Show temporal profile traces in the profile."), 437 cl::sub(ShowSubcommand)); 438 439 cl::opt<bool> 440 ShowCovered("covered", cl::init(false), 441 cl::desc("Show only the functions that have been executed."), 442 cl::sub(ShowSubcommand)); 443 444 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 445 cl::desc("Show profile version. "), 446 cl::sub(ShowSubcommand)); 447 448 // Options specific to order subcommand. 449 cl::opt<unsigned> 450 NumTestTraces("num-test-traces", cl::init(0), 451 cl::desc("Keep aside the last <num-test-traces> traces in " 452 "the profile when computing the function order and " 453 "instead use them to evaluate that order"), 454 cl::sub(OrderSubcommand)); 455 456 // We use this string to indicate that there are 457 // multiple static functions map to the same name. 458 const std::string DuplicateNameStr = "----"; 459 460 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") { 461 WithColor::warning(); 462 if (!Whence.empty()) 463 errs() << Whence << ": "; 464 errs() << Message << "\n"; 465 if (!Hint.empty()) 466 WithColor::note() << Hint << "\n"; 467 } 468 469 static void warn(Error E, StringRef Whence = "") { 470 if (E.isA<InstrProfError>()) { 471 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 472 warn(IPE.message(), Whence); 473 }); 474 } 475 } 476 477 static void exitWithError(Twine Message, StringRef Whence = "", 478 StringRef Hint = "") { 479 WithColor::error(); 480 if (!Whence.empty()) 481 errs() << Whence << ": "; 482 errs() << Message << "\n"; 483 if (!Hint.empty()) 484 WithColor::note() << Hint << "\n"; 485 ::exit(1); 486 } 487 488 static void exitWithError(Error E, StringRef Whence = "") { 489 if (E.isA<InstrProfError>()) { 490 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 491 instrprof_error instrError = IPE.get(); 492 StringRef Hint = ""; 493 if (instrError == instrprof_error::unrecognized_format) { 494 // Hint in case user missed specifying the profile type. 495 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 496 } 497 exitWithError(IPE.message(), Whence, Hint); 498 }); 499 return; 500 } 501 502 exitWithError(toString(std::move(E)), Whence); 503 } 504 505 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 506 exitWithError(EC.message(), Whence); 507 } 508 509 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 510 StringRef Whence = "") { 511 if (FailMode == failIfAnyAreInvalid) 512 exitWithErrorCode(EC, Whence); 513 else 514 warn(EC.message(), Whence); 515 } 516 517 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 518 StringRef WhenceFunction = "", 519 bool ShowHint = true) { 520 if (!WhenceFile.empty()) 521 errs() << WhenceFile << ": "; 522 if (!WhenceFunction.empty()) 523 errs() << WhenceFunction << ": "; 524 525 auto IPE = instrprof_error::success; 526 E = handleErrors(std::move(E), 527 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 528 IPE = E->get(); 529 return Error(std::move(E)); 530 }); 531 errs() << toString(std::move(E)) << "\n"; 532 533 if (ShowHint) { 534 StringRef Hint = ""; 535 if (IPE != instrprof_error::success) { 536 switch (IPE) { 537 case instrprof_error::hash_mismatch: 538 case instrprof_error::count_mismatch: 539 case instrprof_error::value_site_count_mismatch: 540 Hint = "Make sure that all profile data to be merged is generated " 541 "from the same binary."; 542 break; 543 default: 544 break; 545 } 546 } 547 548 if (!Hint.empty()) 549 errs() << Hint << "\n"; 550 } 551 } 552 553 namespace { 554 /// A remapper from original symbol names to new symbol names based on a file 555 /// containing a list of mappings from old name to new name. 556 class SymbolRemapper { 557 std::unique_ptr<MemoryBuffer> File; 558 DenseMap<StringRef, StringRef> RemappingTable; 559 560 public: 561 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 562 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 563 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 564 if (!BufOrError) 565 exitWithErrorCode(BufOrError.getError(), InputFile); 566 567 auto Remapper = std::make_unique<SymbolRemapper>(); 568 Remapper->File = std::move(BufOrError.get()); 569 570 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 571 !LineIt.is_at_eof(); ++LineIt) { 572 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 573 if (Parts.first.empty() || Parts.second.empty() || 574 Parts.second.count(' ')) { 575 exitWithError("unexpected line in remapping file", 576 (InputFile + ":" + Twine(LineIt.line_number())).str(), 577 "expected 'old_symbol new_symbol'"); 578 } 579 Remapper->RemappingTable.insert(Parts); 580 } 581 return Remapper; 582 } 583 584 /// Attempt to map the given old symbol into a new symbol. 585 /// 586 /// \return The new symbol, or \p Name if no such symbol was found. 587 StringRef operator()(StringRef Name) { 588 StringRef New = RemappingTable.lookup(Name); 589 return New.empty() ? Name : New; 590 } 591 592 FunctionId operator()(FunctionId Name) { 593 // MD5 name cannot be remapped. 594 if (!Name.isStringRef()) 595 return Name; 596 StringRef New = RemappingTable.lookup(Name.stringRef()); 597 return New.empty() ? Name : FunctionId(New); 598 } 599 }; 600 } 601 602 struct WeightedFile { 603 std::string Filename; 604 uint64_t Weight; 605 }; 606 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 607 608 /// Keep track of merged data and reported errors. 609 struct WriterContext { 610 std::mutex Lock; 611 InstrProfWriter Writer; 612 std::vector<std::pair<Error, std::string>> Errors; 613 std::mutex &ErrLock; 614 SmallSet<instrprof_error, 4> &WriterErrorCodes; 615 616 WriterContext(bool IsSparse, std::mutex &ErrLock, 617 SmallSet<instrprof_error, 4> &WriterErrorCodes, 618 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 619 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion, 620 MemProfVersionRequested, MemProfFullSchema), 621 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {} 622 }; 623 624 /// Computer the overlap b/w profile BaseFilename and TestFileName, 625 /// and store the program level result to Overlap. 626 static void overlapInput(const std::string &BaseFilename, 627 const std::string &TestFilename, WriterContext *WC, 628 OverlapStats &Overlap, 629 const OverlapFuncFilters &FuncFilter, 630 raw_fd_ostream &OS, bool IsCS) { 631 auto FS = vfs::getRealFileSystem(); 632 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 633 if (Error E = ReaderOrErr.takeError()) { 634 // Skip the empty profiles by returning sliently. 635 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 636 if (ErrorCode != instrprof_error::empty_raw_profile) 637 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 638 TestFilename); 639 return; 640 } 641 642 auto Reader = std::move(ReaderOrErr.get()); 643 for (auto &I : *Reader) { 644 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 645 FuncOverlap.setFuncInfo(I.Name, I.Hash); 646 647 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 648 FuncOverlap.dump(OS); 649 } 650 } 651 652 /// Load an input into a writer context. 653 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 654 const InstrProfCorrelator *Correlator, 655 const StringRef ProfiledBinary, WriterContext *WC) { 656 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 657 658 // Copy the filename, because llvm::ThreadPool copied the input "const 659 // WeightedFile &" by value, making a reference to the filename within it 660 // invalid outside of this packaged task. 661 std::string Filename = Input.Filename; 662 663 using ::llvm::memprof::RawMemProfReader; 664 if (RawMemProfReader::hasFormat(Input.Filename)) { 665 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 666 if (!ReaderOrErr) { 667 exitWithError(ReaderOrErr.takeError(), Input.Filename); 668 } 669 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 670 // Check if the profile types can be merged, e.g. clang frontend profiles 671 // should not be merged with memprof profiles. 672 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 673 consumeError(std::move(E)); 674 WC->Errors.emplace_back( 675 make_error<StringError>( 676 "Cannot merge MemProf profile with Clang generated profile.", 677 std::error_code()), 678 Filename); 679 return; 680 } 681 682 auto MemProfError = [&](Error E) { 683 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 684 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 685 Filename); 686 }; 687 688 // Add the frame mappings into the writer context. 689 const auto &IdToFrame = Reader->getFrameMapping(); 690 for (const auto &I : IdToFrame) { 691 bool Succeeded = WC->Writer.addMemProfFrame( 692 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 693 // If we weren't able to add the frame mappings then it doesn't make sense 694 // to try to add the records from this profile. 695 if (!Succeeded) 696 return; 697 } 698 699 // Add the call stacks into the writer context. 700 const auto &CSIdToCallStacks = Reader->getCallStacks(); 701 for (const auto &I : CSIdToCallStacks) { 702 bool Succeeded = WC->Writer.addMemProfCallStack( 703 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 704 // If we weren't able to add the call stacks then it doesn't make sense 705 // to try to add the records from this profile. 706 if (!Succeeded) 707 return; 708 } 709 710 const auto &FunctionProfileData = Reader->getProfileData(); 711 // Add the memprof records into the writer context. 712 for (const auto &[GUID, Record] : FunctionProfileData) { 713 WC->Writer.addMemProfRecord(GUID, Record); 714 } 715 return; 716 } 717 718 auto FS = vfs::getRealFileSystem(); 719 // TODO: This only saves the first non-fatal error from InstrProfReader, and 720 // then added to WriterContext::Errors. However, this is not extensible, if 721 // we have more non-fatal errors from InstrProfReader in the future. How 722 // should this interact with different -failure-mode? 723 std::optional<std::pair<Error, std::string>> ReaderWarning; 724 auto Warn = [&](Error E) { 725 if (ReaderWarning) { 726 consumeError(std::move(E)); 727 return; 728 } 729 // Only show the first time an error occurs in this file. 730 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 731 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 732 }; 733 auto ReaderOrErr = 734 InstrProfReader::create(Input.Filename, *FS, Correlator, Warn); 735 if (Error E = ReaderOrErr.takeError()) { 736 // Skip the empty profiles by returning silently. 737 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 738 if (ErrCode != instrprof_error::empty_raw_profile) 739 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 740 Filename); 741 return; 742 } 743 744 auto Reader = std::move(ReaderOrErr.get()); 745 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 746 consumeError(std::move(E)); 747 WC->Errors.emplace_back( 748 make_error<StringError>( 749 "Merge IR generated profile with Clang generated profile.", 750 std::error_code()), 751 Filename); 752 return; 753 } 754 755 for (auto &I : *Reader) { 756 if (Remapper) 757 I.Name = (*Remapper)(I.Name); 758 const StringRef FuncName = I.Name; 759 bool Reported = false; 760 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 761 if (Reported) { 762 consumeError(std::move(E)); 763 return; 764 } 765 Reported = true; 766 // Only show hint the first time an error occurs. 767 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 768 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 769 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 770 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 771 Input.Filename, FuncName, firstTime); 772 }); 773 } 774 775 if (KeepVTableSymbols) { 776 const InstrProfSymtab &symtab = Reader->getSymtab(); 777 const auto &VTableNames = symtab.getVTableNames(); 778 779 for (const auto &kv : VTableNames) 780 WC->Writer.addVTableName(kv.getKey()); 781 } 782 783 if (Reader->hasTemporalProfile()) { 784 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 785 if (!Traces.empty()) 786 WC->Writer.addTemporalProfileTraces( 787 Traces, Reader->getTemporalProfTraceStreamSize()); 788 } 789 if (Reader->hasError()) { 790 if (Error E = Reader->getError()) { 791 WC->Errors.emplace_back(std::move(E), Filename); 792 return; 793 } 794 } 795 796 std::vector<llvm::object::BuildID> BinaryIds; 797 if (Error E = Reader->readBinaryIds(BinaryIds)) { 798 WC->Errors.emplace_back(std::move(E), Filename); 799 return; 800 } 801 WC->Writer.addBinaryIds(BinaryIds); 802 803 if (ReaderWarning) { 804 WC->Errors.emplace_back(std::move(ReaderWarning->first), 805 ReaderWarning->second); 806 } 807 } 808 809 /// Merge the \p Src writer context into \p Dst. 810 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 811 for (auto &ErrorPair : Src->Errors) 812 Dst->Errors.push_back(std::move(ErrorPair)); 813 Src->Errors.clear(); 814 815 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 816 exitWithError(std::move(E)); 817 818 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 819 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 820 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 821 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 822 if (firstTime) 823 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 824 }); 825 } 826 827 static StringRef 828 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) { 829 return Val.first(); 830 } 831 832 static std::string 833 getFuncName(const SampleProfileMap::value_type &Val) { 834 return Val.second.getContext().toString(); 835 } 836 837 template <typename T> 838 static void filterFunctions(T &ProfileMap) { 839 bool hasFilter = !FuncNameFilter.empty(); 840 bool hasNegativeFilter = !FuncNameNegativeFilter.empty(); 841 if (!hasFilter && !hasNegativeFilter) 842 return; 843 844 // If filter starts with '?' it is MSVC mangled name, not a regex. 845 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+"); 846 if (hasFilter && FuncNameFilter[0] == '?' && 847 ProbablyMSVCMangledName.match(FuncNameFilter)) 848 FuncNameFilter = llvm::Regex::escape(FuncNameFilter); 849 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' && 850 ProbablyMSVCMangledName.match(FuncNameNegativeFilter)) 851 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter); 852 853 size_t Count = ProfileMap.size(); 854 llvm::Regex Pattern(FuncNameFilter); 855 llvm::Regex NegativePattern(FuncNameNegativeFilter); 856 std::string Error; 857 if (hasFilter && !Pattern.isValid(Error)) 858 exitWithError(Error); 859 if (hasNegativeFilter && !NegativePattern.isValid(Error)) 860 exitWithError(Error); 861 862 // Handle MD5 profile, so it is still able to match using the original name. 863 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter)); 864 std::string NegativeMD5Name = 865 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter)); 866 867 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { 868 auto Tmp = I++; 869 const auto &FuncName = getFuncName(*Tmp); 870 // Negative filter has higher precedence than positive filter. 871 if ((hasNegativeFilter && 872 (NegativePattern.match(FuncName) || 873 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) || 874 (hasFilter && !(Pattern.match(FuncName) || 875 (FunctionSamples::UseMD5 && MD5Name == FuncName)))) 876 ProfileMap.erase(Tmp); 877 } 878 879 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions " 880 << "in the original profile are filtered.\n"; 881 } 882 883 static void writeInstrProfile(StringRef OutputFilename, 884 ProfileFormat OutputFormat, 885 InstrProfWriter &Writer) { 886 std::error_code EC; 887 raw_fd_ostream Output(OutputFilename.data(), EC, 888 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 889 : sys::fs::OF_None); 890 if (EC) 891 exitWithErrorCode(EC, OutputFilename); 892 893 if (OutputFormat == PF_Text) { 894 if (Error E = Writer.writeText(Output)) 895 warn(std::move(E)); 896 } else { 897 if (Output.is_displayed()) 898 exitWithError("cannot write a non-text format profile to the terminal"); 899 if (Error E = Writer.write(Output)) 900 warn(std::move(E)); 901 } 902 } 903 904 static void mergeInstrProfile(const WeightedFileVector &Inputs, 905 SymbolRemapper *Remapper, 906 int MaxDbgCorrelationWarnings, 907 const StringRef ProfiledBinary) { 908 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 909 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 910 if (OutputFormat == PF_Compact_Binary) 911 exitWithError("Compact Binary is deprecated"); 912 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 913 OutputFormat != PF_Text) 914 exitWithError("unknown format is specified"); 915 916 // TODO: Maybe we should support correlation with mixture of different 917 // correlation modes(w/wo debug-info/object correlation). 918 if (!DebugInfoFilename.empty() && !BinaryFilename.empty()) 919 exitWithError("Expected only one of -debug-info, -binary-file"); 920 std::string CorrelateFilename; 921 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 922 if (!DebugInfoFilename.empty()) { 923 CorrelateFilename = DebugInfoFilename; 924 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 925 } else if (!BinaryFilename.empty()) { 926 CorrelateFilename = BinaryFilename; 927 CorrelateKind = ProfCorrelatorKind::BINARY; 928 } 929 930 std::unique_ptr<InstrProfCorrelator> Correlator; 931 if (CorrelateKind != InstrProfCorrelator::NONE) { 932 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 933 .moveInto(Correlator)) 934 exitWithError(std::move(Err), CorrelateFilename); 935 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 936 exitWithError(std::move(Err), CorrelateFilename); 937 } 938 939 std::mutex ErrorLock; 940 SmallSet<instrprof_error, 4> WriterErrorCodes; 941 942 // If NumThreads is not specified, auto-detect a good default. 943 if (NumThreads == 0) 944 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 945 unsigned((Inputs.size() + 1) / 2)); 946 947 // Initialize the writer contexts. 948 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 949 for (unsigned I = 0; I < NumThreads; ++I) 950 Contexts.emplace_back(std::make_unique<WriterContext>( 951 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 952 MaxTraceLength)); 953 954 if (NumThreads == 1) { 955 for (const auto &Input : Inputs) 956 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 957 Contexts[0].get()); 958 } else { 959 DefaultThreadPool Pool(hardware_concurrency(NumThreads)); 960 961 // Load the inputs in parallel (N/NumThreads serial steps). 962 unsigned Ctx = 0; 963 for (const auto &Input : Inputs) { 964 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 965 Contexts[Ctx].get()); 966 Ctx = (Ctx + 1) % NumThreads; 967 } 968 Pool.wait(); 969 970 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 971 unsigned Mid = Contexts.size() / 2; 972 unsigned End = Contexts.size(); 973 assert(Mid > 0 && "Expected more than one context"); 974 do { 975 for (unsigned I = 0; I < Mid; ++I) 976 Pool.async(mergeWriterContexts, Contexts[I].get(), 977 Contexts[I + Mid].get()); 978 Pool.wait(); 979 if (End & 1) { 980 Pool.async(mergeWriterContexts, Contexts[0].get(), 981 Contexts[End - 1].get()); 982 Pool.wait(); 983 } 984 End = Mid; 985 Mid /= 2; 986 } while (Mid > 0); 987 } 988 989 // Handle deferred errors encountered during merging. If the number of errors 990 // is equal to the number of inputs the merge failed. 991 unsigned NumErrors = 0; 992 for (std::unique_ptr<WriterContext> &WC : Contexts) { 993 for (auto &ErrorPair : WC->Errors) { 994 ++NumErrors; 995 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 996 } 997 } 998 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 999 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 1000 exitWithError("no profile can be merged"); 1001 1002 filterFunctions(Contexts[0]->Writer.getProfileData()); 1003 1004 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 1005 } 1006 1007 /// The profile entry for a function in instrumentation profile. 1008 struct InstrProfileEntry { 1009 uint64_t MaxCount = 0; 1010 uint64_t NumEdgeCounters = 0; 1011 float ZeroCounterRatio = 0.0; 1012 InstrProfRecord *ProfRecord; 1013 InstrProfileEntry(InstrProfRecord *Record); 1014 InstrProfileEntry() = default; 1015 }; 1016 1017 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 1018 ProfRecord = Record; 1019 uint64_t CntNum = Record->Counts.size(); 1020 uint64_t ZeroCntNum = 0; 1021 for (size_t I = 0; I < CntNum; ++I) { 1022 MaxCount = std::max(MaxCount, Record->Counts[I]); 1023 ZeroCntNum += !Record->Counts[I]; 1024 } 1025 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 1026 NumEdgeCounters = CntNum; 1027 } 1028 1029 /// Either set all the counters in the instr profile entry \p IFE to 1030 /// -1 / -2 /in order to drop the profile or scale up the 1031 /// counters in \p IFP to be above hot / cold threshold. We use 1032 /// the ratio of zero counters in the profile of a function to 1033 /// decide the profile is helpful or harmful for performance, 1034 /// and to choose whether to scale up or drop it. 1035 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 1036 uint64_t HotInstrThreshold, 1037 uint64_t ColdInstrThreshold, 1038 float ZeroCounterThreshold) { 1039 InstrProfRecord *ProfRecord = IFE.ProfRecord; 1040 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 1041 // If all or most of the counters of the function are zero, the 1042 // profile is unaccountable and should be dropped. Reset all the 1043 // counters to be -1 / -2 and PGO profile-use will drop the profile. 1044 // All counters being -1 also implies that the function is hot so 1045 // PGO profile-use will also set the entry count metadata to be 1046 // above hot threshold. 1047 // All counters being -2 implies that the function is warm so 1048 // PGO profile-use will also set the entry count metadata to be 1049 // above cold threshold. 1050 auto Kind = 1051 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 1052 ProfRecord->setPseudoCount(Kind); 1053 return; 1054 } 1055 1056 // Scale up the MaxCount to be multiple times above hot / cold threshold. 1057 const unsigned MultiplyFactor = 3; 1058 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 1059 uint64_t Numerator = Threshold * MultiplyFactor; 1060 1061 // Make sure Threshold for warm counters is below the HotInstrThreshold. 1062 if (!SetToHot && Threshold >= HotInstrThreshold) { 1063 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 1064 } 1065 1066 uint64_t Denominator = IFE.MaxCount; 1067 if (Numerator <= Denominator) 1068 return; 1069 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 1070 warn(toString(make_error<InstrProfError>(E))); 1071 }); 1072 } 1073 1074 const uint64_t ColdPercentileIdx = 15; 1075 const uint64_t HotPercentileIdx = 11; 1076 1077 using sampleprof::FSDiscriminatorPass; 1078 1079 // Internal options to set FSDiscriminatorPass. Used in merge and show 1080 // commands. 1081 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 1082 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 1083 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 1084 "pass beyond this value. The enum values are defined in " 1085 "Support/Discriminator.h"), 1086 cl::values(clEnumVal(Base, "Use base discriminators only"), 1087 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 1088 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 1089 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 1090 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 1091 1092 static unsigned getDiscriminatorMask() { 1093 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 1094 } 1095 1096 /// Adjust the instr profile in \p WC based on the sample profile in 1097 /// \p Reader. 1098 static void 1099 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 1100 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 1101 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 1102 unsigned InstrProfColdThreshold) { 1103 // Function to its entry in instr profile. 1104 StringMap<InstrProfileEntry> InstrProfileMap; 1105 StringMap<StringRef> StaticFuncMap; 1106 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 1107 1108 auto checkSampleProfileHasFUnique = [&Reader]() { 1109 for (const auto &PD : Reader->getProfiles()) { 1110 auto &FContext = PD.second.getContext(); 1111 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 1112 std::string::npos) { 1113 return true; 1114 } 1115 } 1116 return false; 1117 }; 1118 1119 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 1120 1121 auto buildStaticFuncMap = [&StaticFuncMap, 1122 SampleProfileHasFUnique](const StringRef Name) { 1123 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1124 size_t PrefixPos = StringRef::npos; 1125 for (auto &FilePrefix : FilePrefixes) { 1126 std::string NamePrefix = FilePrefix + kGlobalIdentifierDelimiter; 1127 PrefixPos = Name.find_insensitive(NamePrefix); 1128 if (PrefixPos == StringRef::npos) 1129 continue; 1130 PrefixPos += NamePrefix.size(); 1131 break; 1132 } 1133 1134 if (PrefixPos == StringRef::npos) { 1135 return; 1136 } 1137 1138 StringRef NewName = Name.drop_front(PrefixPos); 1139 StringRef FName = Name.substr(0, PrefixPos - 1); 1140 if (NewName.size() == 0) { 1141 return; 1142 } 1143 1144 // This name should have a static linkage. 1145 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1146 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1147 1148 // If sample profile and instrumented profile do not agree on symbol 1149 // uniqification. 1150 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1151 // If instrumented profile uses -funique-internal-linkage-symbols, 1152 // we need to trim the name. 1153 if (ProfileHasFUnique) { 1154 NewName = NewName.substr(0, PostfixPos); 1155 } else { 1156 // If sample profile uses -funique-internal-linkage-symbols, 1157 // we build the map. 1158 std::string NStr = 1159 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1160 NewName = StringRef(NStr); 1161 StaticFuncMap[NewName] = Name; 1162 return; 1163 } 1164 } 1165 1166 if (!StaticFuncMap.contains(NewName)) { 1167 StaticFuncMap[NewName] = Name; 1168 } else { 1169 StaticFuncMap[NewName] = DuplicateNameStr; 1170 } 1171 }; 1172 1173 // We need to flatten the SampleFDO profile as the InstrFDO 1174 // profile does not have inlined callsite profiles. 1175 // One caveat is the pre-inlined function -- their samples 1176 // should be collapsed into the caller function. 1177 // Here we do a DFS traversal to get the flatten profile 1178 // info: the sum of entrycount and the max of maxcount. 1179 // Here is the algorithm: 1180 // recursive (FS, root_name) { 1181 // name = FS->getName(); 1182 // get samples for FS; 1183 // if (InstrProf.find(name) { 1184 // root_name = name; 1185 // } else { 1186 // if (name is in static_func map) { 1187 // root_name = static_name; 1188 // } 1189 // } 1190 // update the Map entry for root_name; 1191 // for (subfs: FS) { 1192 // recursive(subfs, root_name); 1193 // } 1194 // } 1195 // 1196 // Here is an example. 1197 // 1198 // SampleProfile: 1199 // foo:12345:1000 1200 // 1: 1000 1201 // 2.1: 1000 1202 // 15: 5000 1203 // 4: bar:1000 1204 // 1: 1000 1205 // 2: goo:3000 1206 // 1: 3000 1207 // 8: bar:40000 1208 // 1: 10000 1209 // 2: goo:30000 1210 // 1: 30000 1211 // 1212 // InstrProfile has two entries: 1213 // foo 1214 // bar.cc;bar 1215 // 1216 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1217 // {"foo", {1000, 5000}} 1218 // {"bar.cc;bar", {11000, 30000}} 1219 // 1220 // foo's has an entry count of 1000, and max body count of 5000. 1221 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1222 // 10000), and max count of 30000 (from the callsite in line 8). 1223 // 1224 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1225 // entry in InstrProfile. 1226 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1227 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1228 &InstrProfileMap](const FunctionSamples &FS, 1229 const StringRef &RootName) { 1230 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1231 const StringRef &RootName, 1232 auto &BuildImpl) -> void { 1233 std::string NameStr = FS.getFunction().str(); 1234 const StringRef Name = NameStr; 1235 const StringRef *NewRootName = &RootName; 1236 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1237 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1238 1239 auto It = InstrProfileMap.find(Name); 1240 if (It != InstrProfileMap.end()) { 1241 NewRootName = &Name; 1242 } else { 1243 auto NewName = StaticFuncMap.find(Name); 1244 if (NewName != StaticFuncMap.end()) { 1245 It = InstrProfileMap.find(NewName->second.str()); 1246 if (NewName->second != DuplicateNameStr) { 1247 NewRootName = &NewName->second; 1248 } 1249 } else { 1250 // Here the EntrySample is of an inlined function, so we should not 1251 // update the EntrySample in the map. 1252 EntrySample = 0; 1253 } 1254 } 1255 EntrySample += FlattenSampleMap[*NewRootName].first; 1256 MaxBodySample = 1257 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1258 FlattenSampleMap[*NewRootName] = 1259 std::make_pair(EntrySample, MaxBodySample); 1260 1261 for (const auto &C : FS.getCallsiteSamples()) 1262 for (const auto &F : C.second) 1263 BuildImpl(F.second, *NewRootName, BuildImpl); 1264 }; 1265 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1266 }; 1267 1268 for (auto &PD : WC->Writer.getProfileData()) { 1269 // Populate IPBuilder. 1270 for (const auto &PDV : PD.getValue()) { 1271 InstrProfRecord Record = PDV.second; 1272 IPBuilder.addRecord(Record); 1273 } 1274 1275 // If a function has multiple entries in instr profile, skip it. 1276 if (PD.getValue().size() != 1) 1277 continue; 1278 1279 // Initialize InstrProfileMap. 1280 InstrProfRecord *R = &PD.getValue().begin()->second; 1281 StringRef FullName = PD.getKey(); 1282 InstrProfileMap[FullName] = InstrProfileEntry(R); 1283 buildStaticFuncMap(FullName); 1284 } 1285 1286 for (auto &PD : Reader->getProfiles()) { 1287 sampleprof::FunctionSamples &FS = PD.second; 1288 std::string Name = FS.getFunction().str(); 1289 BuildMaxSampleMap(FS, Name); 1290 } 1291 1292 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1293 ProfileSummary SamplePS = Reader->getSummary(); 1294 1295 // Compute cold thresholds for instr profile and sample profile. 1296 uint64_t HotSampleThreshold = 1297 ProfileSummaryBuilder::getEntryForPercentile( 1298 SamplePS.getDetailedSummary(), 1299 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1300 .MinCount; 1301 uint64_t ColdSampleThreshold = 1302 ProfileSummaryBuilder::getEntryForPercentile( 1303 SamplePS.getDetailedSummary(), 1304 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1305 .MinCount; 1306 uint64_t HotInstrThreshold = 1307 ProfileSummaryBuilder::getEntryForPercentile( 1308 InstrPS.getDetailedSummary(), 1309 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1310 .MinCount; 1311 uint64_t ColdInstrThreshold = 1312 InstrProfColdThreshold 1313 ? InstrProfColdThreshold 1314 : ProfileSummaryBuilder::getEntryForPercentile( 1315 InstrPS.getDetailedSummary(), 1316 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1317 .MinCount; 1318 1319 // Find hot/warm functions in sample profile which is cold in instr profile 1320 // and adjust the profiles of those functions in the instr profile. 1321 for (const auto &E : FlattenSampleMap) { 1322 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1323 if (SampleMaxCount < ColdSampleThreshold) 1324 continue; 1325 StringRef Name = E.first(); 1326 auto It = InstrProfileMap.find(Name); 1327 if (It == InstrProfileMap.end()) { 1328 auto NewName = StaticFuncMap.find(Name); 1329 if (NewName != StaticFuncMap.end()) { 1330 It = InstrProfileMap.find(NewName->second.str()); 1331 if (NewName->second == DuplicateNameStr) { 1332 WithColor::warning() 1333 << "Static function " << Name 1334 << " has multiple promoted names, cannot adjust profile.\n"; 1335 } 1336 } 1337 } 1338 if (It == InstrProfileMap.end() || 1339 It->second.MaxCount > ColdInstrThreshold || 1340 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1341 continue; 1342 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1343 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1344 ColdInstrThreshold, ZeroCounterThreshold); 1345 } 1346 } 1347 1348 /// The main function to supplement instr profile with sample profile. 1349 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1350 /// sample profile. \p OutputFilename specifies the output profile name. 1351 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1352 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1353 /// specifies the minimal size for the functions whose profile will be 1354 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1355 /// a function contains too many zero counters and whether its profile 1356 /// should be dropped. \p InstrProfColdThreshold is the user specified 1357 /// cold threshold which will override the cold threshold got from the 1358 /// instr profile summary. 1359 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1360 StringRef SampleFilename, bool OutputSparse, 1361 unsigned SupplMinSizeThreshold, 1362 float ZeroCounterThreshold, 1363 unsigned InstrProfColdThreshold) { 1364 if (OutputFilename == "-") 1365 exitWithError("cannot write indexed profdata format to stdout"); 1366 if (Inputs.size() != 1) 1367 exitWithError("expect one input to be an instr profile"); 1368 if (Inputs[0].Weight != 1) 1369 exitWithError("expect instr profile doesn't have weight"); 1370 1371 StringRef InstrFilename = Inputs[0].Filename; 1372 1373 // Read sample profile. 1374 LLVMContext Context; 1375 auto FS = vfs::getRealFileSystem(); 1376 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1377 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1378 if (std::error_code EC = ReaderOrErr.getError()) 1379 exitWithErrorCode(EC, SampleFilename); 1380 auto Reader = std::move(ReaderOrErr.get()); 1381 if (std::error_code EC = Reader->read()) 1382 exitWithErrorCode(EC, SampleFilename); 1383 1384 // Read instr profile. 1385 std::mutex ErrorLock; 1386 SmallSet<instrprof_error, 4> WriterErrorCodes; 1387 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1388 WriterErrorCodes); 1389 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1390 if (WC->Errors.size() > 0) 1391 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1392 1393 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1394 InstrProfColdThreshold); 1395 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1396 } 1397 1398 /// Make a copy of the given function samples with all symbol names remapped 1399 /// by the provided symbol remapper. 1400 static sampleprof::FunctionSamples 1401 remapSamples(const sampleprof::FunctionSamples &Samples, 1402 SymbolRemapper &Remapper, sampleprof_error &Error) { 1403 sampleprof::FunctionSamples Result; 1404 Result.setFunction(Remapper(Samples.getFunction())); 1405 Result.addTotalSamples(Samples.getTotalSamples()); 1406 Result.addHeadSamples(Samples.getHeadSamples()); 1407 for (const auto &BodySample : Samples.getBodySamples()) { 1408 uint32_t MaskedDiscriminator = 1409 BodySample.first.Discriminator & getDiscriminatorMask(); 1410 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1411 BodySample.second.getSamples()); 1412 for (const auto &Target : BodySample.second.getCallTargets()) { 1413 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1414 MaskedDiscriminator, 1415 Remapper(Target.first), Target.second); 1416 } 1417 } 1418 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1419 sampleprof::FunctionSamplesMap &Target = 1420 Result.functionSamplesAt(CallsiteSamples.first); 1421 for (const auto &Callsite : CallsiteSamples.second) { 1422 sampleprof::FunctionSamples Remapped = 1423 remapSamples(Callsite.second, Remapper, Error); 1424 MergeResult(Error, Target[Remapped.getFunction()].merge(Remapped)); 1425 } 1426 } 1427 return Result; 1428 } 1429 1430 static sampleprof::SampleProfileFormat FormatMap[] = { 1431 sampleprof::SPF_None, 1432 sampleprof::SPF_Text, 1433 sampleprof::SPF_None, 1434 sampleprof::SPF_Ext_Binary, 1435 sampleprof::SPF_GCC, 1436 sampleprof::SPF_Binary}; 1437 1438 static std::unique_ptr<MemoryBuffer> 1439 getInputFileBuf(const StringRef &InputFile) { 1440 if (InputFile == "") 1441 return {}; 1442 1443 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1444 if (!BufOrError) 1445 exitWithErrorCode(BufOrError.getError(), InputFile); 1446 1447 return std::move(*BufOrError); 1448 } 1449 1450 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1451 sampleprof::ProfileSymbolList &PSL) { 1452 if (!Buffer) 1453 return; 1454 1455 SmallVector<StringRef, 32> SymbolVec; 1456 StringRef Data = Buffer->getBuffer(); 1457 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1458 1459 for (StringRef SymbolStr : SymbolVec) 1460 PSL.add(SymbolStr.trim()); 1461 } 1462 1463 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1464 ProfileFormat OutputFormat, 1465 MemoryBuffer *Buffer, 1466 sampleprof::ProfileSymbolList &WriterList, 1467 bool CompressAllSections, bool UseMD5, 1468 bool GenPartialProfile) { 1469 populateProfileSymbolList(Buffer, WriterList); 1470 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1471 warn("Profile Symbol list is not empty but the output format is not " 1472 "ExtBinary format. The list will be lost in the output. "); 1473 1474 Writer.setProfileSymbolList(&WriterList); 1475 1476 if (CompressAllSections) { 1477 if (OutputFormat != PF_Ext_Binary) 1478 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1479 else 1480 Writer.setToCompressAllSections(); 1481 } 1482 if (UseMD5) { 1483 if (OutputFormat != PF_Ext_Binary) 1484 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1485 else 1486 Writer.setUseMD5(); 1487 } 1488 if (GenPartialProfile) { 1489 if (OutputFormat != PF_Ext_Binary) 1490 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1491 else 1492 Writer.setPartialProfile(); 1493 } 1494 } 1495 1496 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1497 SymbolRemapper *Remapper, 1498 StringRef ProfileSymbolListFile, 1499 size_t OutputSizeLimit) { 1500 using namespace sampleprof; 1501 SampleProfileMap ProfileMap; 1502 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1503 LLVMContext Context; 1504 sampleprof::ProfileSymbolList WriterList; 1505 std::optional<bool> ProfileIsProbeBased; 1506 std::optional<bool> ProfileIsCS; 1507 for (const auto &Input : Inputs) { 1508 auto FS = vfs::getRealFileSystem(); 1509 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1510 FSDiscriminatorPassOption); 1511 if (std::error_code EC = ReaderOrErr.getError()) { 1512 warnOrExitGivenError(FailMode, EC, Input.Filename); 1513 continue; 1514 } 1515 1516 // We need to keep the readers around until after all the files are 1517 // read so that we do not lose the function names stored in each 1518 // reader's memory. The function names are needed to write out the 1519 // merged profile map. 1520 Readers.push_back(std::move(ReaderOrErr.get())); 1521 const auto Reader = Readers.back().get(); 1522 if (std::error_code EC = Reader->read()) { 1523 warnOrExitGivenError(FailMode, EC, Input.Filename); 1524 Readers.pop_back(); 1525 continue; 1526 } 1527 1528 SampleProfileMap &Profiles = Reader->getProfiles(); 1529 if (ProfileIsProbeBased && 1530 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1531 exitWithError( 1532 "cannot merge probe-based profile with non-probe-based profile"); 1533 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1534 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1535 exitWithError("cannot merge CS profile with non-CS profile"); 1536 ProfileIsCS = FunctionSamples::ProfileIsCS; 1537 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1538 I != E; ++I) { 1539 sampleprof_error Result = sampleprof_error::success; 1540 FunctionSamples Remapped = 1541 Remapper ? remapSamples(I->second, *Remapper, Result) 1542 : FunctionSamples(); 1543 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1544 SampleContext FContext = Samples.getContext(); 1545 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 1546 if (Result != sampleprof_error::success) { 1547 std::error_code EC = make_error_code(Result); 1548 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1549 FContext.toString()); 1550 } 1551 } 1552 1553 if (!DropProfileSymbolList) { 1554 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1555 Reader->getProfileSymbolList(); 1556 if (ReaderList) 1557 WriterList.merge(*ReaderList); 1558 } 1559 } 1560 1561 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1562 // Use threshold calculated from profile summary unless specified. 1563 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1564 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1565 uint64_t SampleProfColdThreshold = 1566 ProfileSummaryBuilder::getColdCountThreshold( 1567 (Summary->getDetailedSummary())); 1568 1569 // Trim and merge cold context profile using cold threshold above; 1570 SampleContextTrimmer(ProfileMap) 1571 .trimAndMergeColdContextProfiles( 1572 SampleProfColdThreshold, SampleTrimColdContext, 1573 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1574 } 1575 1576 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1577 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1578 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1579 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1580 ProfileConverter CSConverter(ProfileMap); 1581 CSConverter.convertCSProfiles(); 1582 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1583 } 1584 1585 filterFunctions(ProfileMap); 1586 1587 auto WriterOrErr = 1588 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1589 if (std::error_code EC = WriterOrErr.getError()) 1590 exitWithErrorCode(EC, OutputFilename); 1591 1592 auto Writer = std::move(WriterOrErr.get()); 1593 // WriterList will have StringRef refering to string in Buffer. 1594 // Make sure Buffer lives as long as WriterList. 1595 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1596 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1597 CompressAllSections, UseMD5, GenPartialProfile); 1598 1599 // If OutputSizeLimit is 0 (default), it is the same as write(). 1600 if (std::error_code EC = 1601 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1602 exitWithErrorCode(EC); 1603 } 1604 1605 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1606 StringRef WeightStr, FileName; 1607 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1608 1609 uint64_t Weight; 1610 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1611 exitWithError("input weight must be a positive integer"); 1612 1613 return {std::string(FileName), Weight}; 1614 } 1615 1616 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1617 StringRef Filename = WF.Filename; 1618 uint64_t Weight = WF.Weight; 1619 1620 // If it's STDIN just pass it on. 1621 if (Filename == "-") { 1622 WNI.push_back({std::string(Filename), Weight}); 1623 return; 1624 } 1625 1626 llvm::sys::fs::file_status Status; 1627 llvm::sys::fs::status(Filename, Status); 1628 if (!llvm::sys::fs::exists(Status)) 1629 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1630 Filename); 1631 // If it's a source file, collect it. 1632 if (llvm::sys::fs::is_regular_file(Status)) { 1633 WNI.push_back({std::string(Filename), Weight}); 1634 return; 1635 } 1636 1637 if (llvm::sys::fs::is_directory(Status)) { 1638 std::error_code EC; 1639 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1640 F != E && !EC; F.increment(EC)) { 1641 if (llvm::sys::fs::is_regular_file(F->path())) { 1642 addWeightedInput(WNI, {F->path(), Weight}); 1643 } 1644 } 1645 if (EC) 1646 exitWithErrorCode(EC, Filename); 1647 } 1648 } 1649 1650 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1651 WeightedFileVector &WFV) { 1652 if (!Buffer) 1653 return; 1654 1655 SmallVector<StringRef, 8> Entries; 1656 StringRef Data = Buffer->getBuffer(); 1657 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1658 for (const StringRef &FileWeightEntry : Entries) { 1659 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1660 // Skip comments. 1661 if (SanitizedEntry.starts_with("#")) 1662 continue; 1663 // If there's no comma, it's an unweighted profile. 1664 else if (!SanitizedEntry.contains(',')) 1665 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1666 else 1667 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1668 } 1669 } 1670 1671 static int merge_main(StringRef ProgName) { 1672 WeightedFileVector WeightedInputs; 1673 for (StringRef Filename : InputFilenames) 1674 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1675 for (StringRef WeightedFilename : WeightedInputFilenames) 1676 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1677 1678 // Make sure that the file buffer stays alive for the duration of the 1679 // weighted input vector's lifetime. 1680 auto Buffer = getInputFileBuf(InputFilenamesFile); 1681 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1682 1683 if (WeightedInputs.empty()) 1684 exitWithError("no input files specified. See " + ProgName + " merge -help"); 1685 1686 if (DumpInputFileList) { 1687 for (auto &WF : WeightedInputs) 1688 outs() << WF.Weight << "," << WF.Filename << "\n"; 1689 return 0; 1690 } 1691 1692 std::unique_ptr<SymbolRemapper> Remapper; 1693 if (!RemappingFile.empty()) 1694 Remapper = SymbolRemapper::create(RemappingFile); 1695 1696 if (!SupplInstrWithSample.empty()) { 1697 if (ProfileKind != instr) 1698 exitWithError( 1699 "-supplement-instr-with-sample can only work with -instr. "); 1700 1701 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1702 SupplMinSizeThreshold, ZeroCounterThreshold, 1703 InstrProfColdThreshold); 1704 return 0; 1705 } 1706 1707 if (ProfileKind == instr) 1708 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1709 ProfiledBinary); 1710 else 1711 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1712 OutputSizeLimit); 1713 return 0; 1714 } 1715 1716 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1717 static void overlapInstrProfile(const std::string &BaseFilename, 1718 const std::string &TestFilename, 1719 const OverlapFuncFilters &FuncFilter, 1720 raw_fd_ostream &OS, bool IsCS) { 1721 std::mutex ErrorLock; 1722 SmallSet<instrprof_error, 4> WriterErrorCodes; 1723 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1724 WeightedFile WeightedInput{BaseFilename, 1}; 1725 OverlapStats Overlap; 1726 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1727 if (E) 1728 exitWithError(std::move(E), "error in getting profile count sums"); 1729 if (Overlap.Base.CountSum < 1.0f) { 1730 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1731 exit(0); 1732 } 1733 if (Overlap.Test.CountSum < 1.0f) { 1734 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1735 exit(0); 1736 } 1737 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1738 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1739 IsCS); 1740 Overlap.dump(OS); 1741 } 1742 1743 namespace { 1744 struct SampleOverlapStats { 1745 SampleContext BaseName; 1746 SampleContext TestName; 1747 // Number of overlap units 1748 uint64_t OverlapCount = 0; 1749 // Total samples of overlap units 1750 uint64_t OverlapSample = 0; 1751 // Number of and total samples of units that only present in base or test 1752 // profile 1753 uint64_t BaseUniqueCount = 0; 1754 uint64_t BaseUniqueSample = 0; 1755 uint64_t TestUniqueCount = 0; 1756 uint64_t TestUniqueSample = 0; 1757 // Number of units and total samples in base or test profile 1758 uint64_t BaseCount = 0; 1759 uint64_t BaseSample = 0; 1760 uint64_t TestCount = 0; 1761 uint64_t TestSample = 0; 1762 // Number of and total samples of units that present in at least one profile 1763 uint64_t UnionCount = 0; 1764 uint64_t UnionSample = 0; 1765 // Weighted similarity 1766 double Similarity = 0.0; 1767 // For SampleOverlapStats instances representing functions, weights of the 1768 // function in base and test profiles 1769 double BaseWeight = 0.0; 1770 double TestWeight = 0.0; 1771 1772 SampleOverlapStats() = default; 1773 }; 1774 } // end anonymous namespace 1775 1776 namespace { 1777 struct FuncSampleStats { 1778 uint64_t SampleSum = 0; 1779 uint64_t MaxSample = 0; 1780 uint64_t HotBlockCount = 0; 1781 FuncSampleStats() = default; 1782 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1783 uint64_t HotBlockCount) 1784 : SampleSum(SampleSum), MaxSample(MaxSample), 1785 HotBlockCount(HotBlockCount) {} 1786 }; 1787 } // end anonymous namespace 1788 1789 namespace { 1790 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1791 1792 // Class for updating merging steps for two sorted maps. The class should be 1793 // instantiated with a map iterator type. 1794 template <class T> class MatchStep { 1795 public: 1796 MatchStep() = delete; 1797 1798 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1799 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1800 SecondEnd(SecondEnd), Status(MS_None) {} 1801 1802 bool areBothFinished() const { 1803 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1804 } 1805 1806 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1807 1808 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1809 1810 /// Advance one step based on the previous match status unless the previous 1811 /// status is MS_None. Then update Status based on the comparison between two 1812 /// container iterators at the current step. If the previous status is 1813 /// MS_None, it means two iterators are at the beginning and no comparison has 1814 /// been made, so we simply update Status without advancing the iterators. 1815 void updateOneStep(); 1816 1817 T getFirstIter() const { return FirstIter; } 1818 1819 T getSecondIter() const { return SecondIter; } 1820 1821 MatchStatus getMatchStatus() const { return Status; } 1822 1823 private: 1824 // Current iterator and end iterator of the first container. 1825 T FirstIter; 1826 T FirstEnd; 1827 // Current iterator and end iterator of the second container. 1828 T SecondIter; 1829 T SecondEnd; 1830 // Match status of the current step. 1831 MatchStatus Status; 1832 }; 1833 } // end anonymous namespace 1834 1835 template <class T> void MatchStep<T>::updateOneStep() { 1836 switch (Status) { 1837 case MS_Match: 1838 ++FirstIter; 1839 ++SecondIter; 1840 break; 1841 case MS_FirstUnique: 1842 ++FirstIter; 1843 break; 1844 case MS_SecondUnique: 1845 ++SecondIter; 1846 break; 1847 case MS_None: 1848 break; 1849 } 1850 1851 // Update Status according to iterators at the current step. 1852 if (areBothFinished()) 1853 return; 1854 if (FirstIter != FirstEnd && 1855 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1856 Status = MS_FirstUnique; 1857 else if (SecondIter != SecondEnd && 1858 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1859 Status = MS_SecondUnique; 1860 else 1861 Status = MS_Match; 1862 } 1863 1864 // Return the sum of line/block samples, the max line/block sample, and the 1865 // number of line/block samples above the given threshold in a function 1866 // including its inlinees. 1867 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1868 FuncSampleStats &FuncStats, 1869 uint64_t HotThreshold) { 1870 for (const auto &L : Func.getBodySamples()) { 1871 uint64_t Sample = L.second.getSamples(); 1872 FuncStats.SampleSum += Sample; 1873 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1874 if (Sample >= HotThreshold) 1875 ++FuncStats.HotBlockCount; 1876 } 1877 1878 for (const auto &C : Func.getCallsiteSamples()) { 1879 for (const auto &F : C.second) 1880 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1881 } 1882 } 1883 1884 /// Predicate that determines if a function is hot with a given threshold. We 1885 /// keep it separate from its callsites for possible extension in the future. 1886 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1887 uint64_t HotThreshold) { 1888 // We intentionally compare the maximum sample count in a function with the 1889 // HotThreshold to get an approximate determination on hot functions. 1890 return (FuncStats.MaxSample >= HotThreshold); 1891 } 1892 1893 namespace { 1894 class SampleOverlapAggregator { 1895 public: 1896 SampleOverlapAggregator(const std::string &BaseFilename, 1897 const std::string &TestFilename, 1898 double LowSimilarityThreshold, double Epsilon, 1899 const OverlapFuncFilters &FuncFilter) 1900 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1901 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1902 FuncFilter(FuncFilter) {} 1903 1904 /// Detect 0-sample input profile and report to output stream. This interface 1905 /// should be called after loadProfiles(). 1906 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1907 1908 /// Write out function-level similarity statistics for functions specified by 1909 /// options --function, --value-cutoff, and --similarity-cutoff. 1910 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1911 1912 /// Write out program-level similarity and overlap statistics. 1913 void dumpProgramSummary(raw_fd_ostream &OS) const; 1914 1915 /// Write out hot-function and hot-block statistics for base_profile, 1916 /// test_profile, and their overlap. For both cases, the overlap HO is 1917 /// calculated as follows: 1918 /// Given the number of functions (or blocks) that are hot in both profiles 1919 /// HCommon and the number of functions (or blocks) that are hot in at 1920 /// least one profile HUnion, HO = HCommon / HUnion. 1921 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1922 1923 /// This function tries matching functions in base and test profiles. For each 1924 /// pair of matched functions, it aggregates the function-level 1925 /// similarity into a profile-level similarity. It also dump function-level 1926 /// similarity information of functions specified by --function, 1927 /// --value-cutoff, and --similarity-cutoff options. The program-level 1928 /// similarity PS is computed as follows: 1929 /// Given function-level similarity FS(A) for all function A, the 1930 /// weight of function A in base profile WB(A), and the weight of function 1931 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1932 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1933 /// meaning no-overlap. 1934 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1935 1936 /// Initialize ProfOverlap with the sum of samples in base and test 1937 /// profiles. This function also computes and keeps the sum of samples and 1938 /// max sample counts of each function in BaseStats and TestStats for later 1939 /// use to avoid re-computations. 1940 void initializeSampleProfileOverlap(); 1941 1942 /// Load profiles specified by BaseFilename and TestFilename. 1943 std::error_code loadProfiles(); 1944 1945 using FuncSampleStatsMap = 1946 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1947 1948 private: 1949 SampleOverlapStats ProfOverlap; 1950 SampleOverlapStats HotFuncOverlap; 1951 SampleOverlapStats HotBlockOverlap; 1952 std::string BaseFilename; 1953 std::string TestFilename; 1954 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1955 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1956 // BaseStats and TestStats hold FuncSampleStats for each function, with 1957 // function name as the key. 1958 FuncSampleStatsMap BaseStats; 1959 FuncSampleStatsMap TestStats; 1960 // Low similarity threshold in floating point number 1961 double LowSimilarityThreshold; 1962 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1963 // for tracking hot blocks. 1964 uint64_t BaseHotThreshold; 1965 uint64_t TestHotThreshold; 1966 // A small threshold used to round the results of floating point accumulations 1967 // to resolve imprecision. 1968 const double Epsilon; 1969 std::multimap<double, SampleOverlapStats, std::greater<double>> 1970 FuncSimilarityDump; 1971 // FuncFilter carries specifications in options --value-cutoff and 1972 // --function. 1973 OverlapFuncFilters FuncFilter; 1974 // Column offsets for printing the function-level details table. 1975 static const unsigned int TestWeightCol = 15; 1976 static const unsigned int SimilarityCol = 30; 1977 static const unsigned int OverlapCol = 43; 1978 static const unsigned int BaseUniqueCol = 53; 1979 static const unsigned int TestUniqueCol = 67; 1980 static const unsigned int BaseSampleCol = 81; 1981 static const unsigned int TestSampleCol = 96; 1982 static const unsigned int FuncNameCol = 111; 1983 1984 /// Return a similarity of two line/block sample counters in the same 1985 /// function in base and test profiles. The line/block-similarity BS(i) is 1986 /// computed as follows: 1987 /// For an offsets i, given the sample count at i in base profile BB(i), 1988 /// the sample count at i in test profile BT(i), the sum of sample counts 1989 /// in this function in base profile SB, and the sum of sample counts in 1990 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1991 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1992 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1993 const SampleOverlapStats &FuncOverlap) const; 1994 1995 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1996 uint64_t HotBlockCount); 1997 1998 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1999 FuncSampleStatsMap &HotFunc, 2000 uint64_t HotThreshold) const; 2001 2002 void computeHotFuncOverlap(); 2003 2004 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2005 /// Difference for two sample units in a matched function according to the 2006 /// given match status. 2007 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 2008 uint64_t HotBlockCount, 2009 SampleOverlapStats &FuncOverlap, 2010 double &Difference, MatchStatus Status); 2011 2012 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2013 /// Difference for unmatched callees that only present in one profile in a 2014 /// matched caller function. 2015 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 2016 SampleOverlapStats &FuncOverlap, 2017 double &Difference, MatchStatus Status); 2018 2019 /// This function updates sample overlap statistics of an overlap function in 2020 /// base and test profile. It also calculates a function-internal similarity 2021 /// FIS as follows: 2022 /// For offsets i that have samples in at least one profile in this 2023 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 2024 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 2025 /// 0.0 meaning no overlap. 2026 double computeSampleFunctionInternalOverlap( 2027 const sampleprof::FunctionSamples &BaseFunc, 2028 const sampleprof::FunctionSamples &TestFunc, 2029 SampleOverlapStats &FuncOverlap); 2030 2031 /// Function-level similarity (FS) is a weighted value over function internal 2032 /// similarity (FIS). This function computes a function's FS from its FIS by 2033 /// applying the weight. 2034 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 2035 uint64_t TestFuncSample) const; 2036 2037 /// The function-level similarity FS(A) for a function A is computed as 2038 /// follows: 2039 /// Compute a function-internal similarity FIS(A) by 2040 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 2041 /// function A in base profile WB(A), and the weight of function A in test 2042 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 2043 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 2044 double 2045 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 2046 const sampleprof::FunctionSamples *TestFunc, 2047 SampleOverlapStats *FuncOverlap, 2048 uint64_t BaseFuncSample, 2049 uint64_t TestFuncSample); 2050 2051 /// Profile-level similarity (PS) is a weighted aggregate over function-level 2052 /// similarities (FS). This method weights the FS value by the function 2053 /// weights in the base and test profiles for the aggregation. 2054 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 2055 uint64_t TestFuncSample) const; 2056 }; 2057 } // end anonymous namespace 2058 2059 bool SampleOverlapAggregator::detectZeroSampleProfile( 2060 raw_fd_ostream &OS) const { 2061 bool HaveZeroSample = false; 2062 if (ProfOverlap.BaseSample == 0) { 2063 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 2064 HaveZeroSample = true; 2065 } 2066 if (ProfOverlap.TestSample == 0) { 2067 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 2068 HaveZeroSample = true; 2069 } 2070 return HaveZeroSample; 2071 } 2072 2073 double SampleOverlapAggregator::computeBlockSimilarity( 2074 uint64_t BaseSample, uint64_t TestSample, 2075 const SampleOverlapStats &FuncOverlap) const { 2076 double BaseFrac = 0.0; 2077 double TestFrac = 0.0; 2078 if (FuncOverlap.BaseSample > 0) 2079 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 2080 if (FuncOverlap.TestSample > 0) 2081 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 2082 return 1.0 - std::fabs(BaseFrac - TestFrac); 2083 } 2084 2085 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 2086 uint64_t TestSample, 2087 uint64_t HotBlockCount) { 2088 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 2089 bool IsTestHot = (TestSample >= TestHotThreshold); 2090 if (!IsBaseHot && !IsTestHot) 2091 return; 2092 2093 HotBlockOverlap.UnionCount += HotBlockCount; 2094 if (IsBaseHot) 2095 HotBlockOverlap.BaseCount += HotBlockCount; 2096 if (IsTestHot) 2097 HotBlockOverlap.TestCount += HotBlockCount; 2098 if (IsBaseHot && IsTestHot) 2099 HotBlockOverlap.OverlapCount += HotBlockCount; 2100 } 2101 2102 void SampleOverlapAggregator::getHotFunctions( 2103 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 2104 uint64_t HotThreshold) const { 2105 for (const auto &F : ProfStats) { 2106 if (isFunctionHot(F.second, HotThreshold)) 2107 HotFunc.emplace(F.first, F.second); 2108 } 2109 } 2110 2111 void SampleOverlapAggregator::computeHotFuncOverlap() { 2112 FuncSampleStatsMap BaseHotFunc; 2113 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 2114 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 2115 2116 FuncSampleStatsMap TestHotFunc; 2117 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 2118 HotFuncOverlap.TestCount = TestHotFunc.size(); 2119 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 2120 2121 for (const auto &F : BaseHotFunc) { 2122 if (TestHotFunc.count(F.first)) 2123 ++HotFuncOverlap.OverlapCount; 2124 else 2125 ++HotFuncOverlap.UnionCount; 2126 } 2127 } 2128 2129 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2130 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2131 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2132 assert(Status != MS_None && 2133 "Match status should be updated before updating overlap statistics"); 2134 if (Status == MS_FirstUnique) { 2135 TestSample = 0; 2136 FuncOverlap.BaseUniqueSample += BaseSample; 2137 } else if (Status == MS_SecondUnique) { 2138 BaseSample = 0; 2139 FuncOverlap.TestUniqueSample += TestSample; 2140 } else { 2141 ++FuncOverlap.OverlapCount; 2142 } 2143 2144 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2145 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2146 Difference += 2147 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2148 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2149 } 2150 2151 void SampleOverlapAggregator::updateForUnmatchedCallee( 2152 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2153 double &Difference, MatchStatus Status) { 2154 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2155 "Status must be either of the two unmatched cases"); 2156 FuncSampleStats FuncStats; 2157 if (Status == MS_FirstUnique) { 2158 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2159 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2160 FuncStats.HotBlockCount, FuncOverlap, 2161 Difference, Status); 2162 } else { 2163 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2164 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2165 FuncStats.HotBlockCount, FuncOverlap, 2166 Difference, Status); 2167 } 2168 } 2169 2170 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2171 const sampleprof::FunctionSamples &BaseFunc, 2172 const sampleprof::FunctionSamples &TestFunc, 2173 SampleOverlapStats &FuncOverlap) { 2174 2175 using namespace sampleprof; 2176 2177 double Difference = 0; 2178 2179 // Accumulate Difference for regular line/block samples in the function. 2180 // We match them through sort-merge join algorithm because 2181 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2182 // by their offsets. 2183 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2184 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2185 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2186 BlockIterStep.updateOneStep(); 2187 while (!BlockIterStep.areBothFinished()) { 2188 uint64_t BaseSample = 2189 BlockIterStep.isFirstFinished() 2190 ? 0 2191 : BlockIterStep.getFirstIter()->second.getSamples(); 2192 uint64_t TestSample = 2193 BlockIterStep.isSecondFinished() 2194 ? 0 2195 : BlockIterStep.getSecondIter()->second.getSamples(); 2196 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2197 Difference, BlockIterStep.getMatchStatus()); 2198 2199 BlockIterStep.updateOneStep(); 2200 } 2201 2202 // Accumulate Difference for callsite lines in the function. We match 2203 // them through sort-merge algorithm because 2204 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2205 // ordered by their offsets. 2206 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2207 BaseFunc.getCallsiteSamples().cbegin(), 2208 BaseFunc.getCallsiteSamples().cend(), 2209 TestFunc.getCallsiteSamples().cbegin(), 2210 TestFunc.getCallsiteSamples().cend()); 2211 CallsiteIterStep.updateOneStep(); 2212 while (!CallsiteIterStep.areBothFinished()) { 2213 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2214 assert(CallsiteStepStatus != MS_None && 2215 "Match status should be updated before entering loop body"); 2216 2217 if (CallsiteStepStatus != MS_Match) { 2218 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2219 ? CallsiteIterStep.getFirstIter() 2220 : CallsiteIterStep.getSecondIter(); 2221 for (const auto &F : Callsite->second) 2222 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2223 CallsiteStepStatus); 2224 } else { 2225 // There may be multiple inlinees at the same offset, so we need to try 2226 // matching all of them. This match is implemented through sort-merge 2227 // algorithm because callsite records at the same offset are ordered by 2228 // function names. 2229 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2230 CallsiteIterStep.getFirstIter()->second.cbegin(), 2231 CallsiteIterStep.getFirstIter()->second.cend(), 2232 CallsiteIterStep.getSecondIter()->second.cbegin(), 2233 CallsiteIterStep.getSecondIter()->second.cend()); 2234 CalleeIterStep.updateOneStep(); 2235 while (!CalleeIterStep.areBothFinished()) { 2236 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2237 if (CalleeStepStatus != MS_Match) { 2238 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2239 ? CalleeIterStep.getFirstIter() 2240 : CalleeIterStep.getSecondIter(); 2241 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2242 CalleeStepStatus); 2243 } else { 2244 // An inlined function can contain other inlinees inside, so compute 2245 // the Difference recursively. 2246 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2247 CalleeIterStep.getFirstIter()->second, 2248 CalleeIterStep.getSecondIter()->second, 2249 FuncOverlap); 2250 } 2251 CalleeIterStep.updateOneStep(); 2252 } 2253 } 2254 CallsiteIterStep.updateOneStep(); 2255 } 2256 2257 // Difference reflects the total differences of line/block samples in this 2258 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2259 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2260 return (2.0 - Difference) / 2; 2261 } 2262 2263 double SampleOverlapAggregator::weightForFuncSimilarity( 2264 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2265 uint64_t TestFuncSample) const { 2266 // Compute the weight as the distance between the function weights in two 2267 // profiles. 2268 double BaseFrac = 0.0; 2269 double TestFrac = 0.0; 2270 assert(ProfOverlap.BaseSample > 0 && 2271 "Total samples in base profile should be greater than 0"); 2272 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2273 assert(ProfOverlap.TestSample > 0 && 2274 "Total samples in test profile should be greater than 0"); 2275 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2276 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2277 2278 // Take WeightDistance into the similarity. 2279 return FuncInternalSimilarity * (1 - WeightDistance); 2280 } 2281 2282 double 2283 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2284 uint64_t BaseFuncSample, 2285 uint64_t TestFuncSample) const { 2286 2287 double BaseFrac = 0.0; 2288 double TestFrac = 0.0; 2289 assert(ProfOverlap.BaseSample > 0 && 2290 "Total samples in base profile should be greater than 0"); 2291 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2292 assert(ProfOverlap.TestSample > 0 && 2293 "Total samples in test profile should be greater than 0"); 2294 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2295 return FuncSimilarity * (BaseFrac + TestFrac); 2296 } 2297 2298 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2299 const sampleprof::FunctionSamples *BaseFunc, 2300 const sampleprof::FunctionSamples *TestFunc, 2301 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2302 uint64_t TestFuncSample) { 2303 // Default function internal similarity before weighted, meaning two functions 2304 // has no overlap. 2305 const double DefaultFuncInternalSimilarity = 0; 2306 double FuncSimilarity; 2307 double FuncInternalSimilarity; 2308 2309 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2310 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2311 // similarity. 2312 if (!BaseFunc || !TestFunc) { 2313 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2314 } else { 2315 assert(FuncOverlap != nullptr && 2316 "FuncOverlap should be provided in this case"); 2317 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2318 *BaseFunc, *TestFunc, *FuncOverlap); 2319 // Now, FuncInternalSimilarity may be a little less than 0 due to 2320 // imprecision of floating point accumulations. Make it zero if the 2321 // difference is below Epsilon. 2322 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2323 ? 0 2324 : FuncInternalSimilarity; 2325 } 2326 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2327 BaseFuncSample, TestFuncSample); 2328 return FuncSimilarity; 2329 } 2330 2331 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2332 using namespace sampleprof; 2333 2334 std::unordered_map<SampleContext, const FunctionSamples *, 2335 SampleContext::Hash> 2336 BaseFuncProf; 2337 const auto &BaseProfiles = BaseReader->getProfiles(); 2338 for (const auto &BaseFunc : BaseProfiles) { 2339 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2340 } 2341 ProfOverlap.UnionCount = BaseFuncProf.size(); 2342 2343 const auto &TestProfiles = TestReader->getProfiles(); 2344 for (const auto &TestFunc : TestProfiles) { 2345 SampleOverlapStats FuncOverlap; 2346 FuncOverlap.TestName = TestFunc.second.getContext(); 2347 assert(TestStats.count(FuncOverlap.TestName) && 2348 "TestStats should have records for all functions in test profile " 2349 "except inlinees"); 2350 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2351 2352 bool Matched = false; 2353 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2354 if (Match == BaseFuncProf.end()) { 2355 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2356 ++ProfOverlap.TestUniqueCount; 2357 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2358 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2359 2360 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2361 2362 double FuncSimilarity = computeSampleFunctionOverlap( 2363 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2364 ProfOverlap.Similarity += 2365 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2366 2367 ++ProfOverlap.UnionCount; 2368 ProfOverlap.UnionSample += FuncStats.SampleSum; 2369 } else { 2370 ++ProfOverlap.OverlapCount; 2371 2372 // Two functions match with each other. Compute function-level overlap and 2373 // aggregate them into profile-level overlap. 2374 FuncOverlap.BaseName = Match->second->getContext(); 2375 assert(BaseStats.count(FuncOverlap.BaseName) && 2376 "BaseStats should have records for all functions in base profile " 2377 "except inlinees"); 2378 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2379 2380 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2381 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2382 FuncOverlap.TestSample); 2383 ProfOverlap.Similarity += 2384 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2385 FuncOverlap.TestSample); 2386 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2387 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2388 2389 // Accumulate the percentage of base unique and test unique samples into 2390 // ProfOverlap. 2391 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2392 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2393 2394 // Remove matched base functions for later reporting functions not found 2395 // in test profile. 2396 BaseFuncProf.erase(Match); 2397 Matched = true; 2398 } 2399 2400 // Print function-level similarity information if specified by options. 2401 assert(TestStats.count(FuncOverlap.TestName) && 2402 "TestStats should have records for all functions in test profile " 2403 "except inlinees"); 2404 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2405 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2406 (Matched && !FuncFilter.NameFilter.empty() && 2407 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2408 std::string::npos)) { 2409 assert(ProfOverlap.BaseSample > 0 && 2410 "Total samples in base profile should be greater than 0"); 2411 FuncOverlap.BaseWeight = 2412 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2413 assert(ProfOverlap.TestSample > 0 && 2414 "Total samples in test profile should be greater than 0"); 2415 FuncOverlap.TestWeight = 2416 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2417 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2418 } 2419 } 2420 2421 // Traverse through functions in base profile but not in test profile. 2422 for (const auto &F : BaseFuncProf) { 2423 assert(BaseStats.count(F.second->getContext()) && 2424 "BaseStats should have records for all functions in base profile " 2425 "except inlinees"); 2426 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2427 ++ProfOverlap.BaseUniqueCount; 2428 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2429 2430 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2431 2432 double FuncSimilarity = computeSampleFunctionOverlap( 2433 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2434 ProfOverlap.Similarity += 2435 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2436 2437 ProfOverlap.UnionSample += FuncStats.SampleSum; 2438 } 2439 2440 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2441 // of floating point accumulations. Make it 1.0 if the difference is below 2442 // Epsilon. 2443 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2444 ? 1 2445 : ProfOverlap.Similarity; 2446 2447 computeHotFuncOverlap(); 2448 } 2449 2450 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2451 const auto &BaseProf = BaseReader->getProfiles(); 2452 for (const auto &I : BaseProf) { 2453 ++ProfOverlap.BaseCount; 2454 FuncSampleStats FuncStats; 2455 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2456 ProfOverlap.BaseSample += FuncStats.SampleSum; 2457 BaseStats.emplace(I.second.getContext(), FuncStats); 2458 } 2459 2460 const auto &TestProf = TestReader->getProfiles(); 2461 for (const auto &I : TestProf) { 2462 ++ProfOverlap.TestCount; 2463 FuncSampleStats FuncStats; 2464 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2465 ProfOverlap.TestSample += FuncStats.SampleSum; 2466 TestStats.emplace(I.second.getContext(), FuncStats); 2467 } 2468 2469 ProfOverlap.BaseName = StringRef(BaseFilename); 2470 ProfOverlap.TestName = StringRef(TestFilename); 2471 } 2472 2473 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2474 using namespace sampleprof; 2475 2476 if (FuncSimilarityDump.empty()) 2477 return; 2478 2479 formatted_raw_ostream FOS(OS); 2480 FOS << "Function-level details:\n"; 2481 FOS << "Base weight"; 2482 FOS.PadToColumn(TestWeightCol); 2483 FOS << "Test weight"; 2484 FOS.PadToColumn(SimilarityCol); 2485 FOS << "Similarity"; 2486 FOS.PadToColumn(OverlapCol); 2487 FOS << "Overlap"; 2488 FOS.PadToColumn(BaseUniqueCol); 2489 FOS << "Base unique"; 2490 FOS.PadToColumn(TestUniqueCol); 2491 FOS << "Test unique"; 2492 FOS.PadToColumn(BaseSampleCol); 2493 FOS << "Base samples"; 2494 FOS.PadToColumn(TestSampleCol); 2495 FOS << "Test samples"; 2496 FOS.PadToColumn(FuncNameCol); 2497 FOS << "Function name\n"; 2498 for (const auto &F : FuncSimilarityDump) { 2499 double OverlapPercent = 2500 F.second.UnionSample > 0 2501 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2502 : 0; 2503 double BaseUniquePercent = 2504 F.second.BaseSample > 0 2505 ? static_cast<double>(F.second.BaseUniqueSample) / 2506 F.second.BaseSample 2507 : 0; 2508 double TestUniquePercent = 2509 F.second.TestSample > 0 2510 ? static_cast<double>(F.second.TestUniqueSample) / 2511 F.second.TestSample 2512 : 0; 2513 2514 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2515 FOS.PadToColumn(TestWeightCol); 2516 FOS << format("%.2f%%", F.second.TestWeight * 100); 2517 FOS.PadToColumn(SimilarityCol); 2518 FOS << format("%.2f%%", F.second.Similarity * 100); 2519 FOS.PadToColumn(OverlapCol); 2520 FOS << format("%.2f%%", OverlapPercent * 100); 2521 FOS.PadToColumn(BaseUniqueCol); 2522 FOS << format("%.2f%%", BaseUniquePercent * 100); 2523 FOS.PadToColumn(TestUniqueCol); 2524 FOS << format("%.2f%%", TestUniquePercent * 100); 2525 FOS.PadToColumn(BaseSampleCol); 2526 FOS << F.second.BaseSample; 2527 FOS.PadToColumn(TestSampleCol); 2528 FOS << F.second.TestSample; 2529 FOS.PadToColumn(FuncNameCol); 2530 FOS << F.second.TestName.toString() << "\n"; 2531 } 2532 } 2533 2534 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2535 OS << "Profile overlap infomation for base_profile: " 2536 << ProfOverlap.BaseName.toString() 2537 << " and test_profile: " << ProfOverlap.TestName.toString() 2538 << "\nProgram level:\n"; 2539 2540 OS << " Whole program profile similarity: " 2541 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2542 2543 assert(ProfOverlap.UnionSample > 0 && 2544 "Total samples in two profile should be greater than 0"); 2545 double OverlapPercent = 2546 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2547 assert(ProfOverlap.BaseSample > 0 && 2548 "Total samples in base profile should be greater than 0"); 2549 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2550 ProfOverlap.BaseSample; 2551 assert(ProfOverlap.TestSample > 0 && 2552 "Total samples in test profile should be greater than 0"); 2553 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2554 ProfOverlap.TestSample; 2555 2556 OS << " Whole program sample overlap: " 2557 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2558 OS << " percentage of samples unique in base profile: " 2559 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2560 OS << " percentage of samples unique in test profile: " 2561 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2562 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2563 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2564 2565 assert(ProfOverlap.UnionCount > 0 && 2566 "There should be at least one function in two input profiles"); 2567 double FuncOverlapPercent = 2568 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2569 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2570 << "\n"; 2571 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2572 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2573 << "\n"; 2574 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2575 << "\n"; 2576 } 2577 2578 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2579 raw_fd_ostream &OS) const { 2580 assert(HotFuncOverlap.UnionCount > 0 && 2581 "There should be at least one hot function in two input profiles"); 2582 OS << " Hot-function overlap: " 2583 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2584 HotFuncOverlap.UnionCount * 100) 2585 << "\n"; 2586 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2587 OS << " hot functions unique in base profile: " 2588 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2589 OS << " hot functions unique in test profile: " 2590 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2591 2592 assert(HotBlockOverlap.UnionCount > 0 && 2593 "There should be at least one hot block in two input profiles"); 2594 OS << " Hot-block overlap: " 2595 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2596 HotBlockOverlap.UnionCount * 100) 2597 << "\n"; 2598 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2599 OS << " hot blocks unique in base profile: " 2600 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2601 OS << " hot blocks unique in test profile: " 2602 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2603 } 2604 2605 std::error_code SampleOverlapAggregator::loadProfiles() { 2606 using namespace sampleprof; 2607 2608 LLVMContext Context; 2609 auto FS = vfs::getRealFileSystem(); 2610 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2611 FSDiscriminatorPassOption); 2612 if (std::error_code EC = BaseReaderOrErr.getError()) 2613 exitWithErrorCode(EC, BaseFilename); 2614 2615 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2616 FSDiscriminatorPassOption); 2617 if (std::error_code EC = TestReaderOrErr.getError()) 2618 exitWithErrorCode(EC, TestFilename); 2619 2620 BaseReader = std::move(BaseReaderOrErr.get()); 2621 TestReader = std::move(TestReaderOrErr.get()); 2622 2623 if (std::error_code EC = BaseReader->read()) 2624 exitWithErrorCode(EC, BaseFilename); 2625 if (std::error_code EC = TestReader->read()) 2626 exitWithErrorCode(EC, TestFilename); 2627 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2628 exitWithError( 2629 "cannot compare probe-based profile with non-probe-based profile"); 2630 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2631 exitWithError("cannot compare CS profile with non-CS profile"); 2632 2633 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2634 // profile summary. 2635 ProfileSummary &BasePS = BaseReader->getSummary(); 2636 ProfileSummary &TestPS = TestReader->getSummary(); 2637 BaseHotThreshold = 2638 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2639 TestHotThreshold = 2640 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2641 2642 return std::error_code(); 2643 } 2644 2645 void overlapSampleProfile(const std::string &BaseFilename, 2646 const std::string &TestFilename, 2647 const OverlapFuncFilters &FuncFilter, 2648 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2649 using namespace sampleprof; 2650 2651 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2652 // report 2--3 places after decimal point in percentage numbers. 2653 SampleOverlapAggregator OverlapAggr( 2654 BaseFilename, TestFilename, 2655 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2656 if (std::error_code EC = OverlapAggr.loadProfiles()) 2657 exitWithErrorCode(EC); 2658 2659 OverlapAggr.initializeSampleProfileOverlap(); 2660 if (OverlapAggr.detectZeroSampleProfile(OS)) 2661 return; 2662 2663 OverlapAggr.computeSampleProfileOverlap(OS); 2664 2665 OverlapAggr.dumpProgramSummary(OS); 2666 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2667 OverlapAggr.dumpFuncSimilarity(OS); 2668 } 2669 2670 static int overlap_main() { 2671 std::error_code EC; 2672 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2673 if (EC) 2674 exitWithErrorCode(EC, OutputFilename); 2675 2676 if (ProfileKind == instr) 2677 overlapInstrProfile(BaseFilename, TestFilename, 2678 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2679 OS, IsCS); 2680 else 2681 overlapSampleProfile(BaseFilename, TestFilename, 2682 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2683 SimilarityCutoff, OS); 2684 2685 return 0; 2686 } 2687 2688 namespace { 2689 struct ValueSitesStats { 2690 ValueSitesStats() = default; 2691 uint64_t TotalNumValueSites = 0; 2692 uint64_t TotalNumValueSitesWithValueProfile = 0; 2693 uint64_t TotalNumValues = 0; 2694 std::vector<unsigned> ValueSitesHistogram; 2695 }; 2696 } // namespace 2697 2698 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2699 ValueSitesStats &Stats, raw_fd_ostream &OS, 2700 InstrProfSymtab *Symtab) { 2701 uint32_t NS = Func.getNumValueSites(VK); 2702 Stats.TotalNumValueSites += NS; 2703 for (size_t I = 0; I < NS; ++I) { 2704 auto VD = Func.getValueArrayForSite(VK, I); 2705 uint32_t NV = VD.size(); 2706 if (NV == 0) 2707 continue; 2708 Stats.TotalNumValues += NV; 2709 Stats.TotalNumValueSitesWithValueProfile++; 2710 if (NV > Stats.ValueSitesHistogram.size()) 2711 Stats.ValueSitesHistogram.resize(NV, 0); 2712 Stats.ValueSitesHistogram[NV - 1]++; 2713 2714 uint64_t SiteSum = 0; 2715 for (const auto &V : VD) 2716 SiteSum += V.Count; 2717 if (SiteSum == 0) 2718 SiteSum = 1; 2719 2720 for (const auto &V : VD) { 2721 OS << "\t[ " << format("%2u", I) << ", "; 2722 if (Symtab == nullptr) 2723 OS << format("%4" PRIu64, V.Value); 2724 else 2725 OS << Symtab->getFuncOrVarName(V.Value); 2726 OS << ", " << format("%10" PRId64, V.Count) << " ] (" 2727 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n"; 2728 } 2729 } 2730 } 2731 2732 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2733 ValueSitesStats &Stats) { 2734 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2735 OS << " Total number of sites with values: " 2736 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2737 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2738 2739 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2740 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2741 if (Stats.ValueSitesHistogram[I] > 0) 2742 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2743 } 2744 } 2745 2746 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2747 if (SFormat == ShowFormat::Json) 2748 exitWithError("JSON output is not supported for instr profiles"); 2749 if (SFormat == ShowFormat::Yaml) 2750 exitWithError("YAML output is not supported for instr profiles"); 2751 auto FS = vfs::getRealFileSystem(); 2752 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2753 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2754 if (ShowDetailedSummary && Cutoffs.empty()) { 2755 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2756 } 2757 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2758 if (Error E = ReaderOrErr.takeError()) 2759 exitWithError(std::move(E), Filename); 2760 2761 auto Reader = std::move(ReaderOrErr.get()); 2762 bool IsIRInstr = Reader->isIRLevelProfile(); 2763 size_t ShownFunctions = 0; 2764 size_t BelowCutoffFunctions = 0; 2765 int NumVPKind = IPVK_Last - IPVK_First + 1; 2766 std::vector<ValueSitesStats> VPStats(NumVPKind); 2767 2768 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2769 const std::pair<std::string, uint64_t> &v2) { 2770 return v1.second > v2.second; 2771 }; 2772 2773 std::priority_queue<std::pair<std::string, uint64_t>, 2774 std::vector<std::pair<std::string, uint64_t>>, 2775 decltype(MinCmp)> 2776 HottestFuncs(MinCmp); 2777 2778 if (!TextFormat && OnlyListBelow) { 2779 OS << "The list of functions with the maximum counter less than " 2780 << ShowValueCutoff << ":\n"; 2781 } 2782 2783 // Add marker so that IR-level instrumentation round-trips properly. 2784 if (TextFormat && IsIRInstr) 2785 OS << ":ir\n"; 2786 2787 for (const auto &Func : *Reader) { 2788 if (Reader->isIRLevelProfile()) { 2789 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2790 if (FuncIsCS != ShowCS) 2791 continue; 2792 } 2793 bool Show = ShowAllFunctions || 2794 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2795 2796 bool doTextFormatDump = (Show && TextFormat); 2797 2798 if (doTextFormatDump) { 2799 InstrProfSymtab &Symtab = Reader->getSymtab(); 2800 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2801 OS); 2802 continue; 2803 } 2804 2805 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2806 Builder.addRecord(Func); 2807 2808 if (ShowCovered) { 2809 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2810 OS << Func.Name << "\n"; 2811 continue; 2812 } 2813 2814 uint64_t FuncMax = 0; 2815 uint64_t FuncSum = 0; 2816 2817 auto PseudoKind = Func.getCountPseudoKind(); 2818 if (PseudoKind != InstrProfRecord::NotPseudo) { 2819 if (Show) { 2820 if (!ShownFunctions) 2821 OS << "Counters:\n"; 2822 ++ShownFunctions; 2823 OS << " " << Func.Name << ":\n" 2824 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2825 << " Counters: " << Func.Counts.size(); 2826 if (PseudoKind == InstrProfRecord::PseudoHot) 2827 OS << " <PseudoHot>\n"; 2828 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2829 OS << " <PseudoWarm>\n"; 2830 else 2831 llvm_unreachable("Unknown PseudoKind"); 2832 } 2833 continue; 2834 } 2835 2836 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2837 FuncMax = std::max(FuncMax, Func.Counts[I]); 2838 FuncSum += Func.Counts[I]; 2839 } 2840 2841 if (FuncMax < ShowValueCutoff) { 2842 ++BelowCutoffFunctions; 2843 if (OnlyListBelow) { 2844 OS << " " << Func.Name << ": (Max = " << FuncMax 2845 << " Sum = " << FuncSum << ")\n"; 2846 } 2847 continue; 2848 } else if (OnlyListBelow) 2849 continue; 2850 2851 if (TopNFunctions) { 2852 if (HottestFuncs.size() == TopNFunctions) { 2853 if (HottestFuncs.top().second < FuncMax) { 2854 HottestFuncs.pop(); 2855 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2856 } 2857 } else 2858 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2859 } 2860 2861 if (Show) { 2862 if (!ShownFunctions) 2863 OS << "Counters:\n"; 2864 2865 ++ShownFunctions; 2866 2867 OS << " " << Func.Name << ":\n" 2868 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2869 << " Counters: " << Func.Counts.size() << "\n"; 2870 if (!IsIRInstr) 2871 OS << " Function count: " << Func.Counts[0] << "\n"; 2872 2873 if (ShowIndirectCallTargets) 2874 OS << " Indirect Call Site Count: " 2875 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2876 2877 if (ShowVTables) 2878 OS << " Number of instrumented vtables: " 2879 << Func.getNumValueSites(IPVK_VTableTarget) << "\n"; 2880 2881 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2882 if (ShowMemOPSizes && NumMemOPCalls > 0) 2883 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2884 << "\n"; 2885 2886 if (ShowCounts) { 2887 OS << " Block counts: ["; 2888 size_t Start = (IsIRInstr ? 0 : 1); 2889 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2890 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2891 } 2892 OS << "]\n"; 2893 } 2894 2895 if (ShowIndirectCallTargets) { 2896 OS << " Indirect Target Results:\n"; 2897 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2898 VPStats[IPVK_IndirectCallTarget], OS, 2899 &(Reader->getSymtab())); 2900 } 2901 2902 if (ShowVTables) { 2903 OS << " VTable Results:\n"; 2904 traverseAllValueSites(Func, IPVK_VTableTarget, 2905 VPStats[IPVK_VTableTarget], OS, 2906 &(Reader->getSymtab())); 2907 } 2908 2909 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2910 OS << " Memory Intrinsic Size Results:\n"; 2911 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2912 nullptr); 2913 } 2914 } 2915 } 2916 if (Reader->hasError()) 2917 exitWithError(Reader->getError(), Filename); 2918 2919 if (TextFormat || ShowCovered) 2920 return 0; 2921 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2922 bool IsIR = Reader->isIRLevelProfile(); 2923 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2924 if (IsIR) 2925 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2926 OS << "\n"; 2927 if (ShowAllFunctions || !FuncNameFilter.empty()) 2928 OS << "Functions shown: " << ShownFunctions << "\n"; 2929 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2930 if (ShowValueCutoff > 0) { 2931 OS << "Number of functions with maximum count (< " << ShowValueCutoff 2932 << "): " << BelowCutoffFunctions << "\n"; 2933 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 2934 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2935 } 2936 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2937 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2938 2939 if (TopNFunctions) { 2940 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2941 while (!HottestFuncs.empty()) { 2942 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2943 HottestFuncs.pop(); 2944 } 2945 OS << "Top " << TopNFunctions 2946 << " functions with the largest internal block counts: \n"; 2947 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2948 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2949 } 2950 2951 if (ShownFunctions && ShowIndirectCallTargets) { 2952 OS << "Statistics for indirect call sites profile:\n"; 2953 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2954 VPStats[IPVK_IndirectCallTarget]); 2955 } 2956 2957 if (ShownFunctions && ShowVTables) { 2958 OS << "Statistics for vtable profile:\n"; 2959 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]); 2960 } 2961 2962 if (ShownFunctions && ShowMemOPSizes) { 2963 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2964 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2965 } 2966 2967 if (ShowDetailedSummary) { 2968 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2969 OS << "Total count: " << PS->getTotalCount() << "\n"; 2970 PS->printDetailedSummary(OS); 2971 } 2972 2973 if (ShowBinaryIds) 2974 if (Error E = Reader->printBinaryIds(OS)) 2975 exitWithError(std::move(E), Filename); 2976 2977 if (ShowProfileVersion) 2978 OS << "Profile version: " << Reader->getVersion() << "\n"; 2979 2980 if (ShowTemporalProfTraces) { 2981 auto &Traces = Reader->getTemporalProfTraces(); 2982 OS << "Temporal Profile Traces (samples=" << Traces.size() 2983 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 2984 for (unsigned i = 0; i < Traces.size(); i++) { 2985 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 2986 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 2987 for (auto &NameRef : Traces[i].FunctionNameRefs) 2988 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 2989 } 2990 } 2991 2992 return 0; 2993 } 2994 2995 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2996 raw_fd_ostream &OS) { 2997 if (!Reader->dumpSectionInfo(OS)) { 2998 WithColor::warning() << "-show-sec-info-only is only supported for " 2999 << "sample profile in extbinary format and is " 3000 << "ignored for other formats.\n"; 3001 return; 3002 } 3003 } 3004 3005 namespace { 3006 struct HotFuncInfo { 3007 std::string FuncName; 3008 uint64_t TotalCount = 0; 3009 double TotalCountPercent = 0.0f; 3010 uint64_t MaxCount = 0; 3011 uint64_t EntryCount = 0; 3012 3013 HotFuncInfo() = default; 3014 3015 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 3016 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 3017 MaxCount(MS), EntryCount(ES) {} 3018 }; 3019 } // namespace 3020 3021 // Print out detailed information about hot functions in PrintValues vector. 3022 // Users specify titles and offset of every columns through ColumnTitle and 3023 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 3024 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 3025 // print out or let it be an empty string. 3026 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 3027 const std::vector<int> &ColumnOffset, 3028 const std::vector<HotFuncInfo> &PrintValues, 3029 uint64_t HotFuncCount, uint64_t TotalFuncCount, 3030 uint64_t HotProfCount, uint64_t TotalProfCount, 3031 const std::string &HotFuncMetric, 3032 uint32_t TopNFunctions, raw_fd_ostream &OS) { 3033 assert(ColumnOffset.size() == ColumnTitle.size() && 3034 "ColumnOffset and ColumnTitle should have the same size"); 3035 assert(ColumnTitle.size() >= 4 && 3036 "ColumnTitle should have at least 4 elements"); 3037 assert(TotalFuncCount > 0 && 3038 "There should be at least one function in the profile"); 3039 double TotalProfPercent = 0; 3040 if (TotalProfCount > 0) 3041 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 3042 3043 formatted_raw_ostream FOS(OS); 3044 FOS << HotFuncCount << " out of " << TotalFuncCount 3045 << " functions with profile (" 3046 << format("%.2f%%", 3047 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 3048 << ") are considered hot functions"; 3049 if (!HotFuncMetric.empty()) 3050 FOS << " (" << HotFuncMetric << ")"; 3051 FOS << ".\n"; 3052 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 3053 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 3054 3055 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 3056 FOS.PadToColumn(ColumnOffset[I]); 3057 FOS << ColumnTitle[I]; 3058 } 3059 FOS << "\n"; 3060 3061 uint32_t Count = 0; 3062 for (const auto &R : PrintValues) { 3063 if (TopNFunctions && (Count++ == TopNFunctions)) 3064 break; 3065 FOS.PadToColumn(ColumnOffset[0]); 3066 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 3067 FOS.PadToColumn(ColumnOffset[1]); 3068 FOS << R.MaxCount; 3069 FOS.PadToColumn(ColumnOffset[2]); 3070 FOS << R.EntryCount; 3071 FOS.PadToColumn(ColumnOffset[3]); 3072 FOS << R.FuncName << "\n"; 3073 } 3074 } 3075 3076 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 3077 ProfileSummary &PS, uint32_t TopN, 3078 raw_fd_ostream &OS) { 3079 using namespace sampleprof; 3080 3081 const uint32_t HotFuncCutoff = 990000; 3082 auto &SummaryVector = PS.getDetailedSummary(); 3083 uint64_t MinCountThreshold = 0; 3084 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 3085 if (SummaryEntry.Cutoff == HotFuncCutoff) { 3086 MinCountThreshold = SummaryEntry.MinCount; 3087 break; 3088 } 3089 } 3090 3091 // Traverse all functions in the profile and keep only hot functions. 3092 // The following loop also calculates the sum of total samples of all 3093 // functions. 3094 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 3095 std::greater<uint64_t>> 3096 HotFunc; 3097 uint64_t ProfileTotalSample = 0; 3098 uint64_t HotFuncSample = 0; 3099 uint64_t HotFuncCount = 0; 3100 3101 for (const auto &I : Profiles) { 3102 FuncSampleStats FuncStats; 3103 const FunctionSamples &FuncProf = I.second; 3104 ProfileTotalSample += FuncProf.getTotalSamples(); 3105 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 3106 3107 if (isFunctionHot(FuncStats, MinCountThreshold)) { 3108 HotFunc.emplace(FuncProf.getTotalSamples(), 3109 std::make_pair(&(I.second), FuncStats.MaxSample)); 3110 HotFuncSample += FuncProf.getTotalSamples(); 3111 ++HotFuncCount; 3112 } 3113 } 3114 3115 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 3116 "Entry sample", "Function name"}; 3117 std::vector<int> ColumnOffset{0, 24, 42, 58}; 3118 std::string Metric = 3119 std::string("max sample >= ") + std::to_string(MinCountThreshold); 3120 std::vector<HotFuncInfo> PrintValues; 3121 for (const auto &FuncPair : HotFunc) { 3122 const FunctionSamples &Func = *FuncPair.second.first; 3123 double TotalSamplePercent = 3124 (ProfileTotalSample > 0) 3125 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 3126 : 0; 3127 PrintValues.emplace_back( 3128 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 3129 TotalSamplePercent, FuncPair.second.second, 3130 Func.getHeadSamplesEstimate())); 3131 } 3132 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 3133 Profiles.size(), HotFuncSample, ProfileTotalSample, 3134 Metric, TopN, OS); 3135 3136 return 0; 3137 } 3138 3139 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3140 if (SFormat == ShowFormat::Yaml) 3141 exitWithError("YAML output is not supported for sample profiles"); 3142 using namespace sampleprof; 3143 LLVMContext Context; 3144 auto FS = vfs::getRealFileSystem(); 3145 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3146 FSDiscriminatorPassOption); 3147 if (std::error_code EC = ReaderOrErr.getError()) 3148 exitWithErrorCode(EC, Filename); 3149 3150 auto Reader = std::move(ReaderOrErr.get()); 3151 if (ShowSectionInfoOnly) { 3152 showSectionInfo(Reader.get(), OS); 3153 return 0; 3154 } 3155 3156 if (std::error_code EC = Reader->read()) 3157 exitWithErrorCode(EC, Filename); 3158 3159 if (ShowAllFunctions || FuncNameFilter.empty()) { 3160 if (SFormat == ShowFormat::Json) 3161 Reader->dumpJson(OS); 3162 else 3163 Reader->dump(OS); 3164 } else { 3165 if (SFormat == ShowFormat::Json) 3166 exitWithError( 3167 "the JSON format is supported only when all functions are to " 3168 "be printed"); 3169 3170 // TODO: parse context string to support filtering by contexts. 3171 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3172 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3173 } 3174 3175 if (ShowProfileSymbolList) { 3176 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3177 Reader->getProfileSymbolList(); 3178 ReaderList->dump(OS); 3179 } 3180 3181 if (ShowDetailedSummary) { 3182 auto &PS = Reader->getSummary(); 3183 PS.printSummary(OS); 3184 PS.printDetailedSummary(OS); 3185 } 3186 3187 if (ShowHotFuncList || TopNFunctions) 3188 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3189 TopNFunctions, OS); 3190 3191 return 0; 3192 } 3193 3194 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3195 if (SFormat == ShowFormat::Json) 3196 exitWithError("JSON output is not supported for MemProf"); 3197 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3198 Filename, ProfiledBinary, /*KeepNames=*/true); 3199 if (Error E = ReaderOr.takeError()) 3200 // Since the error can be related to the profile or the binary we do not 3201 // pass whence. Instead additional context is provided where necessary in 3202 // the error message. 3203 exitWithError(std::move(E), /*Whence*/ ""); 3204 3205 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3206 ReaderOr.get().release()); 3207 3208 Reader->printYAML(OS); 3209 return 0; 3210 } 3211 3212 static int showDebugInfoCorrelation(const std::string &Filename, 3213 ShowFormat SFormat, raw_fd_ostream &OS) { 3214 if (SFormat == ShowFormat::Json) 3215 exitWithError("JSON output is not supported for debug info correlation"); 3216 std::unique_ptr<InstrProfCorrelator> Correlator; 3217 if (auto Err = 3218 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3219 .moveInto(Correlator)) 3220 exitWithError(std::move(Err), Filename); 3221 if (SFormat == ShowFormat::Yaml) { 3222 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3223 exitWithError(std::move(Err), Filename); 3224 return 0; 3225 } 3226 3227 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3228 exitWithError(std::move(Err), Filename); 3229 3230 InstrProfSymtab Symtab; 3231 if (auto Err = Symtab.create( 3232 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3233 exitWithError(std::move(Err), Filename); 3234 3235 if (ShowProfileSymbolList) 3236 Symtab.dumpNames(OS); 3237 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3238 // counters the section holds. 3239 if (ShowDetailedSummary) 3240 OS << "Counters section size: 0x" 3241 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3242 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3243 3244 return 0; 3245 } 3246 3247 static int show_main(StringRef ProgName) { 3248 if (Filename.empty() && DebugInfoFilename.empty()) 3249 exitWithError( 3250 "the positional argument '<profdata-file>' is required unless '--" + 3251 DebugInfoFilename.ArgStr + "' is provided"); 3252 3253 if (Filename == OutputFilename) { 3254 errs() << ProgName 3255 << " show: Input file name cannot be the same as the output file " 3256 "name!\n"; 3257 return 1; 3258 } 3259 if (JsonFormat) 3260 SFormat = ShowFormat::Json; 3261 3262 std::error_code EC; 3263 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3264 if (EC) 3265 exitWithErrorCode(EC, OutputFilename); 3266 3267 if (ShowAllFunctions && !FuncNameFilter.empty()) 3268 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3269 3270 if (!DebugInfoFilename.empty()) 3271 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3272 3273 if (ShowProfileKind == instr) 3274 return showInstrProfile(SFormat, OS); 3275 if (ShowProfileKind == sample) 3276 return showSampleProfile(SFormat, OS); 3277 return showMemProfProfile(SFormat, OS); 3278 } 3279 3280 static int order_main() { 3281 std::error_code EC; 3282 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3283 if (EC) 3284 exitWithErrorCode(EC, OutputFilename); 3285 auto FS = vfs::getRealFileSystem(); 3286 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3287 if (Error E = ReaderOrErr.takeError()) 3288 exitWithError(std::move(E), Filename); 3289 3290 auto Reader = std::move(ReaderOrErr.get()); 3291 for (auto &I : *Reader) { 3292 // Read all entries 3293 (void)I; 3294 } 3295 ArrayRef Traces = Reader->getTemporalProfTraces(); 3296 if (NumTestTraces && NumTestTraces >= Traces.size()) 3297 exitWithError( 3298 "--" + NumTestTraces.ArgStr + 3299 " must be smaller than the total number of traces: expected: < " + 3300 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces)); 3301 ArrayRef TestTraces = Traces.take_back(NumTestTraces); 3302 Traces = Traces.drop_back(NumTestTraces); 3303 3304 std::vector<BPFunctionNode> Nodes; 3305 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes); 3306 BalancedPartitioningConfig Config; 3307 BalancedPartitioning BP(Config); 3308 BP.run(Nodes); 3309 3310 OS << "# Ordered " << Nodes.size() << " functions\n"; 3311 if (!TestTraces.empty()) { 3312 // Since we don't know the symbol sizes, we assume 32 functions per page. 3313 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber; 3314 for (auto &Node : Nodes) 3315 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32; 3316 3317 SmallSet<unsigned, 0> TouchedPages; 3318 unsigned Area = 0; 3319 for (auto &Trace : TestTraces) { 3320 for (auto Id : Trace.FunctionNameRefs) { 3321 auto It = IdToPageNumber.find(Id); 3322 if (It == IdToPageNumber.end()) 3323 continue; 3324 TouchedPages.insert(It->getSecond()); 3325 Area += TouchedPages.size(); 3326 } 3327 TouchedPages.clear(); 3328 } 3329 OS << "# Total area under the page fault curve: " << (float)Area << "\n"; 3330 } 3331 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3332 "linkage and this output does not take that into account. Some " 3333 "post-processing may be required before passing to the linker via " 3334 "-order_file.\n"; 3335 for (auto &N : Nodes) { 3336 auto [Filename, ParsedFuncName] = 3337 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3338 if (!Filename.empty()) 3339 OS << "# " << Filename << "\n"; 3340 OS << ParsedFuncName << "\n"; 3341 } 3342 return 0; 3343 } 3344 3345 int llvm_profdata_main(int argc, char **argvNonConst, 3346 const llvm::ToolContext &) { 3347 const char **argv = const_cast<const char **>(argvNonConst); 3348 3349 StringRef ProgName(sys::path::filename(argv[0])); 3350 3351 if (argc < 2) { 3352 errs() << ProgName 3353 << ": No subcommand specified! Run llvm-profata --help for usage.\n"; 3354 return 1; 3355 } 3356 3357 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3358 3359 if (ShowSubcommand) 3360 return show_main(ProgName); 3361 3362 if (OrderSubcommand) 3363 return order_main(); 3364 3365 if (OverlapSubcommand) 3366 return overlap_main(); 3367 3368 if (MergeSubcommand) 3369 return merge_main(ProgName); 3370 3371 errs() << ProgName 3372 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3373 return 1; 3374 } 3375