1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Debuginfod/HTTPClient.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/ProfileData/InstrProfCorrelator.h" 20 #include "llvm/ProfileData/InstrProfReader.h" 21 #include "llvm/ProfileData/InstrProfWriter.h" 22 #include "llvm/ProfileData/MemProf.h" 23 #include "llvm/ProfileData/MemProfReader.h" 24 #include "llvm/ProfileData/ProfileCommon.h" 25 #include "llvm/ProfileData/SampleProfReader.h" 26 #include "llvm/ProfileData/SampleProfWriter.h" 27 #include "llvm/Support/BalancedPartitioning.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Discriminator.h" 30 #include "llvm/Support/Errc.h" 31 #include "llvm/Support/FileSystem.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/FormattedStream.h" 34 #include "llvm/Support/LLVMDriver.h" 35 #include "llvm/Support/MD5.h" 36 #include "llvm/Support/MemoryBuffer.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Support/Regex.h" 39 #include "llvm/Support/ThreadPool.h" 40 #include "llvm/Support/Threading.h" 41 #include "llvm/Support/VirtualFileSystem.h" 42 #include "llvm/Support/WithColor.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cmath> 46 #include <optional> 47 #include <queue> 48 49 using namespace llvm; 50 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 51 52 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 53 // on each subcommand. 54 cl::SubCommand ShowSubcommand( 55 "show", 56 "Takes a profile data file and displays the profiles. See detailed " 57 "documentation in " 58 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 59 cl::SubCommand OrderSubcommand( 60 "order", 61 "Reads temporal profiling traces from a profile and outputs a function " 62 "order that reduces the number of page faults for those traces. See " 63 "detailed documentation in " 64 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 65 cl::SubCommand OverlapSubcommand( 66 "overlap", 67 "Computes and displays the overlap between two profiles. See detailed " 68 "documentation in " 69 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 70 cl::SubCommand MergeSubcommand( 71 "merge", 72 "Takes several profiles and merge them together. See detailed " 73 "documentation in " 74 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 75 76 namespace { 77 enum ProfileKinds { instr, sample, memory }; 78 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 79 80 enum ProfileFormat { 81 PF_None = 0, 82 PF_Text, 83 PF_Compact_Binary, // Deprecated 84 PF_Ext_Binary, 85 PF_GCC, 86 PF_Binary 87 }; 88 89 enum class ShowFormat { Text, Json, Yaml }; 90 } // namespace 91 92 // Common options. 93 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 94 cl::init("-"), cl::desc("Output file"), 95 cl::sub(ShowSubcommand), 96 cl::sub(OrderSubcommand), 97 cl::sub(OverlapSubcommand), 98 cl::sub(MergeSubcommand)); 99 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 100 // will be used. llvm::cl::alias::done() method asserts this condition. 101 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 102 cl::aliasopt(OutputFilename)); 103 104 // Options common to at least two commands. 105 cl::opt<ProfileKinds> ProfileKind( 106 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 107 cl::sub(OverlapSubcommand), cl::init(instr), 108 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 109 clEnumVal(sample, "Sample profile"))); 110 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 111 cl::sub(ShowSubcommand), 112 cl::sub(OrderSubcommand)); 113 cl::opt<unsigned> MaxDbgCorrelationWarnings( 114 "max-debug-info-correlation-warnings", 115 cl::desc("The maximum number of warnings to emit when correlating " 116 "profile from debug info (0 = no limit)"), 117 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 118 cl::opt<std::string> ProfiledBinary( 119 "profiled-binary", cl::init(""), 120 cl::desc("Path to binary from which the profile was collected."), 121 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 122 cl::opt<std::string> DebugInfoFilename( 123 "debug-info", cl::init(""), 124 cl::desc( 125 "For show, read and extract profile metadata from debug info and show " 126 "the functions it found. For merge, use the provided debug info to " 127 "correlate the raw profile."), 128 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 129 cl::opt<std::string> 130 BinaryFilename("binary-file", cl::init(""), 131 cl::desc("For merge, use the provided unstripped bianry to " 132 "correlate the raw profile."), 133 cl::sub(MergeSubcommand)); 134 cl::list<std::string> DebugFileDirectory( 135 "debug-file-directory", 136 cl::desc("Directories to search for object files by build ID")); 137 cl::opt<bool> DebugInfod("debuginfod", cl::init(false), cl::Hidden, 138 cl::sub(MergeSubcommand), 139 cl::desc("Enable debuginfod")); 140 cl::opt<ProfCorrelatorKind> BIDFetcherProfileCorrelate( 141 "correlate", 142 cl::desc("Use debug-info or binary correlation to correlate profiles with " 143 "build id fetcher"), 144 cl::init(InstrProfCorrelator::NONE), 145 cl::values(clEnumValN(InstrProfCorrelator::NONE, "", 146 "No profile correlation"), 147 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info", 148 "Use debug info to correlate"), 149 clEnumValN(InstrProfCorrelator::BINARY, "binary", 150 "Use binary to correlate"))); 151 cl::opt<std::string> FuncNameFilter( 152 "function", 153 cl::desc("Only functions matching the filter are shown in the output. For " 154 "overlapping CSSPGO, this takes a function name with calling " 155 "context."), 156 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand), 157 cl::sub(MergeSubcommand)); 158 159 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 160 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 161 // options. 162 163 // Options specific to merge subcommand. 164 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 165 cl::desc("<filename...>")); 166 cl::list<std::string> WeightedInputFilenames("weighted-input", 167 cl::sub(MergeSubcommand), 168 cl::desc("<weight>,<filename>")); 169 cl::opt<ProfileFormat> OutputFormat( 170 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 171 cl::init(PF_Ext_Binary), 172 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 173 clEnumValN(PF_Ext_Binary, "extbinary", 174 "Extensible binary encoding " 175 "(default)"), 176 clEnumValN(PF_Text, "text", "Text encoding"), 177 clEnumValN(PF_GCC, "gcc", 178 "GCC encoding (only meaningful for -sample)"))); 179 cl::opt<std::string> 180 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 181 cl::desc("Path to file containing newline-separated " 182 "[<weight>,]<filename> entries")); 183 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 184 cl::aliasopt(InputFilenamesFile)); 185 cl::opt<bool> DumpInputFileList( 186 "dump-input-file-list", cl::init(false), cl::Hidden, 187 cl::sub(MergeSubcommand), 188 cl::desc("Dump the list of input files and their weights, then exit")); 189 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 190 cl::sub(MergeSubcommand), 191 cl::desc("Symbol remapping file")); 192 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 193 cl::aliasopt(RemappingFile)); 194 cl::opt<bool> 195 UseMD5("use-md5", cl::init(false), cl::Hidden, 196 cl::desc("Choose to use MD5 to represent string in name table (only " 197 "meaningful for -extbinary)"), 198 cl::sub(MergeSubcommand)); 199 cl::opt<bool> CompressAllSections( 200 "compress-all-sections", cl::init(false), cl::Hidden, 201 cl::sub(MergeSubcommand), 202 cl::desc("Compress all sections when writing the profile (only " 203 "meaningful for -extbinary)")); 204 cl::opt<bool> SampleMergeColdContext( 205 "sample-merge-cold-context", cl::init(false), cl::Hidden, 206 cl::sub(MergeSubcommand), 207 cl::desc( 208 "Merge context sample profiles whose count is below cold threshold")); 209 cl::opt<bool> SampleTrimColdContext( 210 "sample-trim-cold-context", cl::init(false), cl::Hidden, 211 cl::sub(MergeSubcommand), 212 cl::desc( 213 "Trim context sample profiles whose count is below cold threshold")); 214 cl::opt<uint32_t> SampleColdContextFrameDepth( 215 "sample-frame-depth-for-cold-context", cl::init(1), 216 cl::sub(MergeSubcommand), 217 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 218 "context-less base profile")); 219 cl::opt<size_t> OutputSizeLimit( 220 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 221 cl::desc("Trim cold functions until profile size is below specified " 222 "limit in bytes. This uses a heursitic and functions may be " 223 "excessively trimmed")); 224 cl::opt<bool> GenPartialProfile( 225 "gen-partial-profile", cl::init(false), cl::Hidden, 226 cl::sub(MergeSubcommand), 227 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 228 cl::opt<bool> SplitLayout( 229 "split-layout", cl::init(false), cl::Hidden, 230 cl::sub(MergeSubcommand), 231 cl::desc("Split the profile to two sections with one containing sample " 232 "profiles with inlined functions and the other without (only " 233 "meaningful for -extbinary)")); 234 cl::opt<std::string> SupplInstrWithSample( 235 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 236 cl::sub(MergeSubcommand), 237 cl::desc("Supplement an instr profile with sample profile, to correct " 238 "the profile unrepresentativeness issue. The sample " 239 "profile is the input of the flag. Output will be in instr " 240 "format (The flag only works with -instr)")); 241 cl::opt<float> ZeroCounterThreshold( 242 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 243 cl::sub(MergeSubcommand), 244 cl::desc("For the function which is cold in instr profile but hot in " 245 "sample profile, if the ratio of the number of zero counters " 246 "divided by the total number of counters is above the " 247 "threshold, the profile of the function will be regarded as " 248 "being harmful for performance and will be dropped.")); 249 cl::opt<unsigned> SupplMinSizeThreshold( 250 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 251 cl::sub(MergeSubcommand), 252 cl::desc("If the size of a function is smaller than the threshold, " 253 "assume it can be inlined by PGO early inliner and it won't " 254 "be adjusted based on sample profile.")); 255 cl::opt<unsigned> InstrProfColdThreshold( 256 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 257 cl::sub(MergeSubcommand), 258 cl::desc("User specified cold threshold for instr profile which will " 259 "override the cold threshold got from profile summary. ")); 260 // WARNING: This reservoir size value is propagated to any input indexed 261 // profiles for simplicity. Changing this value between invocations could 262 // result in sample bias. 263 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 264 "temporal-profile-trace-reservoir-size", cl::init(100), 265 cl::sub(MergeSubcommand), 266 cl::desc("The maximum number of stored temporal profile traces (default: " 267 "100)")); 268 cl::opt<uint64_t> TemporalProfMaxTraceLength( 269 "temporal-profile-max-trace-length", cl::init(10000), 270 cl::sub(MergeSubcommand), 271 cl::desc("The maximum length of a single temporal profile trace " 272 "(default: 10000)")); 273 cl::opt<std::string> FuncNameNegativeFilter( 274 "no-function", cl::init(""), 275 cl::sub(MergeSubcommand), 276 cl::desc("Exclude functions matching the filter from the output.")); 277 278 cl::opt<FailureMode> 279 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 280 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 281 cl::values(clEnumValN(warnOnly, "warn", 282 "Do not fail and just print warnings."), 283 clEnumValN(failIfAnyAreInvalid, "any", 284 "Fail if any profile is invalid."), 285 clEnumValN(failIfAllAreInvalid, "all", 286 "Fail only if all profiles are invalid."))); 287 288 cl::opt<bool> OutputSparse( 289 "sparse", cl::init(false), cl::sub(MergeSubcommand), 290 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 291 cl::opt<unsigned> NumThreads( 292 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 293 cl::desc("Number of merge threads to use (default: autodetect)")); 294 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 295 cl::aliasopt(NumThreads)); 296 297 cl::opt<std::string> ProfileSymbolListFile( 298 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 299 cl::desc("Path to file containing the list of function symbols " 300 "used to populate profile symbol list")); 301 302 cl::opt<SampleProfileLayout> ProfileLayout( 303 "convert-sample-profile-layout", 304 cl::desc("Convert the generated profile to a profile with a new layout"), 305 cl::sub(MergeSubcommand), cl::init(SPL_None), 306 cl::values( 307 clEnumValN(SPL_Nest, "nest", 308 "Nested profile, the input should be CS flat profile"), 309 clEnumValN(SPL_Flat, "flat", 310 "Profile with nested inlinee flatten out"))); 311 312 cl::opt<bool> DropProfileSymbolList( 313 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 314 cl::sub(MergeSubcommand), 315 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 316 "(only meaningful for -sample)")); 317 318 cl::opt<bool> KeepVTableSymbols( 319 "keep-vtable-symbols", cl::init(false), cl::Hidden, 320 cl::sub(MergeSubcommand), 321 cl::desc("If true, keep the vtable symbols in indexed profiles")); 322 323 // Temporary support for writing the previous version of the format, to enable 324 // some forward compatibility. 325 // TODO: Consider enabling this with future version changes as well, to ease 326 // deployment of newer versions of llvm-profdata. 327 cl::opt<bool> DoWritePrevVersion( 328 "write-prev-version", cl::init(false), cl::Hidden, 329 cl::desc("Write the previous version of indexed format, to enable " 330 "some forward compatibility.")); 331 332 cl::opt<memprof::IndexedVersion> MemProfVersionRequested( 333 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand), 334 cl::desc("Specify the version of the memprof format to use"), 335 cl::init(memprof::Version0), 336 cl::values(clEnumValN(memprof::Version0, "0", "version 0"), 337 clEnumValN(memprof::Version1, "1", "version 1"), 338 clEnumValN(memprof::Version2, "2", "version 2"), 339 clEnumValN(memprof::Version3, "3", "version 3"))); 340 341 cl::opt<bool> MemProfFullSchema( 342 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand), 343 cl::desc("Use the full schema for serialization"), cl::init(false)); 344 345 // Options specific to overlap subcommand. 346 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 347 cl::desc("<base profile file>"), 348 cl::sub(OverlapSubcommand)); 349 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 350 cl::desc("<test profile file>"), 351 cl::sub(OverlapSubcommand)); 352 353 cl::opt<unsigned long long> SimilarityCutoff( 354 "similarity-cutoff", cl::init(0), 355 cl::desc("For sample profiles, list function names (with calling context " 356 "for csspgo) for overlapped functions " 357 "with similarities below the cutoff (percentage times 10000)."), 358 cl::sub(OverlapSubcommand)); 359 360 cl::opt<bool> IsCS( 361 "cs", cl::init(false), 362 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 363 cl::sub(OverlapSubcommand)); 364 365 cl::opt<unsigned long long> OverlapValueCutoff( 366 "value-cutoff", cl::init(-1), 367 cl::desc( 368 "Function level overlap information for every function (with calling " 369 "context for csspgo) in test " 370 "profile with max count value greater then the parameter value"), 371 cl::sub(OverlapSubcommand)); 372 373 // Options specific to show subcommand. 374 cl::opt<bool> ShowCounts("counts", cl::init(false), 375 cl::desc("Show counter values for shown functions"), 376 cl::sub(ShowSubcommand)); 377 cl::opt<ShowFormat> 378 SFormat("show-format", cl::init(ShowFormat::Text), 379 cl::desc("Emit output in the selected format if supported"), 380 cl::sub(ShowSubcommand), 381 cl::values(clEnumValN(ShowFormat::Text, "text", 382 "emit normal text output (default)"), 383 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 384 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 385 // TODO: Consider replacing this with `--show-format=text-encoding`. 386 cl::opt<bool> 387 TextFormat("text", cl::init(false), 388 cl::desc("Show instr profile data in text dump format"), 389 cl::sub(ShowSubcommand)); 390 cl::opt<bool> 391 JsonFormat("json", 392 cl::desc("Show sample profile data in the JSON format " 393 "(deprecated, please use --show-format=json)"), 394 cl::sub(ShowSubcommand)); 395 cl::opt<bool> ShowIndirectCallTargets( 396 "ic-targets", cl::init(false), 397 cl::desc("Show indirect call site target values for shown functions"), 398 cl::sub(ShowSubcommand)); 399 cl::opt<bool> ShowVTables("show-vtables", cl::init(false), 400 cl::desc("Show vtable names for shown functions"), 401 cl::sub(ShowSubcommand)); 402 cl::opt<bool> ShowMemOPSizes( 403 "memop-sizes", cl::init(false), 404 cl::desc("Show the profiled sizes of the memory intrinsic calls " 405 "for shown functions"), 406 cl::sub(ShowSubcommand)); 407 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 408 cl::desc("Show detailed profile summary"), 409 cl::sub(ShowSubcommand)); 410 cl::list<uint32_t> DetailedSummaryCutoffs( 411 cl::CommaSeparated, "detailed-summary-cutoffs", 412 cl::desc( 413 "Cutoff percentages (times 10000) for generating detailed summary"), 414 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 415 cl::opt<bool> 416 ShowHotFuncList("hot-func-list", cl::init(false), 417 cl::desc("Show profile summary of a list of hot functions"), 418 cl::sub(ShowSubcommand)); 419 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 420 cl::desc("Details for each and every function"), 421 cl::sub(ShowSubcommand)); 422 cl::opt<bool> ShowCS("showcs", cl::init(false), 423 cl::desc("Show context sensitive counts"), 424 cl::sub(ShowSubcommand)); 425 cl::opt<ProfileKinds> ShowProfileKind( 426 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 427 cl::init(instr), 428 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 429 clEnumVal(sample, "Sample profile"), 430 clEnumVal(memory, "MemProf memory access profile"))); 431 cl::opt<uint32_t> TopNFunctions( 432 "topn", cl::init(0), 433 cl::desc("Show the list of functions with the largest internal counts"), 434 cl::sub(ShowSubcommand)); 435 cl::opt<uint32_t> ShowValueCutoff( 436 "value-cutoff", cl::init(0), 437 cl::desc("Set the count value cutoff. Functions with the maximum count " 438 "less than this value will not be printed out. (Default is 0)"), 439 cl::sub(ShowSubcommand)); 440 cl::opt<bool> OnlyListBelow( 441 "list-below-cutoff", cl::init(false), 442 cl::desc("Only output names of functions whose max count values are " 443 "below the cutoff value"), 444 cl::sub(ShowSubcommand)); 445 cl::opt<bool> ShowProfileSymbolList( 446 "show-prof-sym-list", cl::init(false), 447 cl::desc("Show profile symbol list if it exists in the profile. "), 448 cl::sub(ShowSubcommand)); 449 cl::opt<bool> ShowSectionInfoOnly( 450 "show-sec-info-only", cl::init(false), 451 cl::desc("Show the information of each section in the sample profile. " 452 "The flag is only usable when the sample profile is in " 453 "extbinary format"), 454 cl::sub(ShowSubcommand)); 455 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 456 cl::desc("Show binary ids in the profile. "), 457 cl::sub(ShowSubcommand)); 458 cl::opt<bool> ShowTemporalProfTraces( 459 "temporal-profile-traces", 460 cl::desc("Show temporal profile traces in the profile."), 461 cl::sub(ShowSubcommand)); 462 463 cl::opt<bool> 464 ShowCovered("covered", cl::init(false), 465 cl::desc("Show only the functions that have been executed."), 466 cl::sub(ShowSubcommand)); 467 468 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 469 cl::desc("Show profile version. "), 470 cl::sub(ShowSubcommand)); 471 472 // Options specific to order subcommand. 473 cl::opt<unsigned> 474 NumTestTraces("num-test-traces", cl::init(0), 475 cl::desc("Keep aside the last <num-test-traces> traces in " 476 "the profile when computing the function order and " 477 "instead use them to evaluate that order"), 478 cl::sub(OrderSubcommand)); 479 480 // We use this string to indicate that there are 481 // multiple static functions map to the same name. 482 const std::string DuplicateNameStr = "----"; 483 484 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") { 485 WithColor::warning(); 486 if (!Whence.empty()) 487 errs() << Whence << ": "; 488 errs() << Message << "\n"; 489 if (!Hint.empty()) 490 WithColor::note() << Hint << "\n"; 491 } 492 493 static void warn(Error E, StringRef Whence = "") { 494 if (E.isA<InstrProfError>()) { 495 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 496 warn(IPE.message(), Whence); 497 }); 498 } 499 } 500 501 static void exitWithError(Twine Message, StringRef Whence = "", 502 StringRef Hint = "") { 503 WithColor::error(); 504 if (!Whence.empty()) 505 errs() << Whence << ": "; 506 errs() << Message << "\n"; 507 if (!Hint.empty()) 508 WithColor::note() << Hint << "\n"; 509 ::exit(1); 510 } 511 512 static void exitWithError(Error E, StringRef Whence = "") { 513 if (E.isA<InstrProfError>()) { 514 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 515 instrprof_error instrError = IPE.get(); 516 StringRef Hint = ""; 517 if (instrError == instrprof_error::unrecognized_format) { 518 // Hint in case user missed specifying the profile type. 519 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 520 } 521 exitWithError(IPE.message(), Whence, Hint); 522 }); 523 return; 524 } 525 526 exitWithError(toString(std::move(E)), Whence); 527 } 528 529 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 530 exitWithError(EC.message(), Whence); 531 } 532 533 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 534 StringRef Whence = "") { 535 if (FailMode == failIfAnyAreInvalid) 536 exitWithErrorCode(EC, Whence); 537 else 538 warn(EC.message(), Whence); 539 } 540 541 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 542 StringRef WhenceFunction = "", 543 bool ShowHint = true) { 544 if (!WhenceFile.empty()) 545 errs() << WhenceFile << ": "; 546 if (!WhenceFunction.empty()) 547 errs() << WhenceFunction << ": "; 548 549 auto IPE = instrprof_error::success; 550 E = handleErrors(std::move(E), 551 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 552 IPE = E->get(); 553 return Error(std::move(E)); 554 }); 555 errs() << toString(std::move(E)) << "\n"; 556 557 if (ShowHint) { 558 StringRef Hint = ""; 559 if (IPE != instrprof_error::success) { 560 switch (IPE) { 561 case instrprof_error::hash_mismatch: 562 case instrprof_error::count_mismatch: 563 case instrprof_error::value_site_count_mismatch: 564 Hint = "Make sure that all profile data to be merged is generated " 565 "from the same binary."; 566 break; 567 default: 568 break; 569 } 570 } 571 572 if (!Hint.empty()) 573 errs() << Hint << "\n"; 574 } 575 } 576 577 namespace { 578 /// A remapper from original symbol names to new symbol names based on a file 579 /// containing a list of mappings from old name to new name. 580 class SymbolRemapper { 581 std::unique_ptr<MemoryBuffer> File; 582 DenseMap<StringRef, StringRef> RemappingTable; 583 584 public: 585 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 586 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 587 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 588 if (!BufOrError) 589 exitWithErrorCode(BufOrError.getError(), InputFile); 590 591 auto Remapper = std::make_unique<SymbolRemapper>(); 592 Remapper->File = std::move(BufOrError.get()); 593 594 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 595 !LineIt.is_at_eof(); ++LineIt) { 596 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 597 if (Parts.first.empty() || Parts.second.empty() || 598 Parts.second.count(' ')) { 599 exitWithError("unexpected line in remapping file", 600 (InputFile + ":" + Twine(LineIt.line_number())).str(), 601 "expected 'old_symbol new_symbol'"); 602 } 603 Remapper->RemappingTable.insert(Parts); 604 } 605 return Remapper; 606 } 607 608 /// Attempt to map the given old symbol into a new symbol. 609 /// 610 /// \return The new symbol, or \p Name if no such symbol was found. 611 StringRef operator()(StringRef Name) { 612 StringRef New = RemappingTable.lookup(Name); 613 return New.empty() ? Name : New; 614 } 615 616 FunctionId operator()(FunctionId Name) { 617 // MD5 name cannot be remapped. 618 if (!Name.isStringRef()) 619 return Name; 620 StringRef New = RemappingTable.lookup(Name.stringRef()); 621 return New.empty() ? Name : FunctionId(New); 622 } 623 }; 624 } 625 626 struct WeightedFile { 627 std::string Filename; 628 uint64_t Weight; 629 }; 630 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 631 632 /// Keep track of merged data and reported errors. 633 struct WriterContext { 634 std::mutex Lock; 635 InstrProfWriter Writer; 636 std::vector<std::pair<Error, std::string>> Errors; 637 std::mutex &ErrLock; 638 SmallSet<instrprof_error, 4> &WriterErrorCodes; 639 640 WriterContext(bool IsSparse, std::mutex &ErrLock, 641 SmallSet<instrprof_error, 4> &WriterErrorCodes, 642 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 643 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion, 644 MemProfVersionRequested, MemProfFullSchema), 645 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {} 646 }; 647 648 /// Computer the overlap b/w profile BaseFilename and TestFileName, 649 /// and store the program level result to Overlap. 650 static void overlapInput(const std::string &BaseFilename, 651 const std::string &TestFilename, WriterContext *WC, 652 OverlapStats &Overlap, 653 const OverlapFuncFilters &FuncFilter, 654 raw_fd_ostream &OS, bool IsCS) { 655 auto FS = vfs::getRealFileSystem(); 656 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 657 if (Error E = ReaderOrErr.takeError()) { 658 // Skip the empty profiles by returning sliently. 659 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 660 if (ErrorCode != instrprof_error::empty_raw_profile) 661 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 662 TestFilename); 663 return; 664 } 665 666 auto Reader = std::move(ReaderOrErr.get()); 667 for (auto &I : *Reader) { 668 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 669 FuncOverlap.setFuncInfo(I.Name, I.Hash); 670 671 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 672 FuncOverlap.dump(OS); 673 } 674 } 675 676 /// Load an input into a writer context. 677 static void 678 loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 679 const InstrProfCorrelator *Correlator, const StringRef ProfiledBinary, 680 WriterContext *WC, const object::BuildIDFetcher *BIDFetcher = nullptr, 681 const ProfCorrelatorKind *BIDFetcherCorrelatorKind = nullptr) { 682 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 683 684 // Copy the filename, because llvm::ThreadPool copied the input "const 685 // WeightedFile &" by value, making a reference to the filename within it 686 // invalid outside of this packaged task. 687 std::string Filename = Input.Filename; 688 689 using ::llvm::memprof::RawMemProfReader; 690 if (RawMemProfReader::hasFormat(Input.Filename)) { 691 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 692 if (!ReaderOrErr) { 693 exitWithError(ReaderOrErr.takeError(), Input.Filename); 694 } 695 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 696 // Check if the profile types can be merged, e.g. clang frontend profiles 697 // should not be merged with memprof profiles. 698 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 699 consumeError(std::move(E)); 700 WC->Errors.emplace_back( 701 make_error<StringError>( 702 "Cannot merge MemProf profile with Clang generated profile.", 703 std::error_code()), 704 Filename); 705 return; 706 } 707 708 auto MemProfError = [&](Error E) { 709 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 710 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 711 Filename); 712 }; 713 714 // Add the frame mappings into the writer context. 715 const auto &IdToFrame = Reader->getFrameMapping(); 716 for (const auto &I : IdToFrame) { 717 bool Succeeded = WC->Writer.addMemProfFrame( 718 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 719 // If we weren't able to add the frame mappings then it doesn't make sense 720 // to try to add the records from this profile. 721 if (!Succeeded) 722 return; 723 } 724 725 // Add the call stacks into the writer context. 726 const auto &CSIdToCallStacks = Reader->getCallStacks(); 727 for (const auto &I : CSIdToCallStacks) { 728 bool Succeeded = WC->Writer.addMemProfCallStack( 729 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 730 // If we weren't able to add the call stacks then it doesn't make sense 731 // to try to add the records from this profile. 732 if (!Succeeded) 733 return; 734 } 735 736 const auto &FunctionProfileData = Reader->getProfileData(); 737 // Add the memprof records into the writer context. 738 for (const auto &[GUID, Record] : FunctionProfileData) { 739 WC->Writer.addMemProfRecord(GUID, Record); 740 } 741 return; 742 } 743 744 auto FS = vfs::getRealFileSystem(); 745 // TODO: This only saves the first non-fatal error from InstrProfReader, and 746 // then added to WriterContext::Errors. However, this is not extensible, if 747 // we have more non-fatal errors from InstrProfReader in the future. How 748 // should this interact with different -failure-mode? 749 std::optional<std::pair<Error, std::string>> ReaderWarning; 750 auto Warn = [&](Error E) { 751 if (ReaderWarning) { 752 consumeError(std::move(E)); 753 return; 754 } 755 // Only show the first time an error occurs in this file. 756 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 757 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 758 }; 759 760 const ProfCorrelatorKind CorrelatorKind = BIDFetcherCorrelatorKind 761 ? *BIDFetcherCorrelatorKind 762 : ProfCorrelatorKind::NONE; 763 auto ReaderOrErr = InstrProfReader::create(Input.Filename, *FS, Correlator, 764 BIDFetcher, CorrelatorKind, Warn); 765 if (Error E = ReaderOrErr.takeError()) { 766 // Skip the empty profiles by returning silently. 767 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 768 if (ErrCode != instrprof_error::empty_raw_profile) 769 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 770 Filename); 771 return; 772 } 773 774 auto Reader = std::move(ReaderOrErr.get()); 775 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 776 consumeError(std::move(E)); 777 WC->Errors.emplace_back( 778 make_error<StringError>( 779 "Merge IR generated profile with Clang generated profile.", 780 std::error_code()), 781 Filename); 782 return; 783 } 784 785 for (auto &I : *Reader) { 786 if (Remapper) 787 I.Name = (*Remapper)(I.Name); 788 const StringRef FuncName = I.Name; 789 bool Reported = false; 790 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 791 if (Reported) { 792 consumeError(std::move(E)); 793 return; 794 } 795 Reported = true; 796 // Only show hint the first time an error occurs. 797 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 798 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 799 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 800 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 801 Input.Filename, FuncName, firstTime); 802 }); 803 } 804 805 if (KeepVTableSymbols) { 806 const InstrProfSymtab &symtab = Reader->getSymtab(); 807 const auto &VTableNames = symtab.getVTableNames(); 808 809 for (const auto &kv : VTableNames) 810 WC->Writer.addVTableName(kv.getKey()); 811 } 812 813 if (Reader->hasTemporalProfile()) { 814 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 815 if (!Traces.empty()) 816 WC->Writer.addTemporalProfileTraces( 817 Traces, Reader->getTemporalProfTraceStreamSize()); 818 } 819 if (Reader->hasError()) { 820 if (Error E = Reader->getError()) { 821 WC->Errors.emplace_back(std::move(E), Filename); 822 return; 823 } 824 } 825 826 std::vector<llvm::object::BuildID> BinaryIds; 827 if (Error E = Reader->readBinaryIds(BinaryIds)) { 828 WC->Errors.emplace_back(std::move(E), Filename); 829 return; 830 } 831 WC->Writer.addBinaryIds(BinaryIds); 832 833 if (ReaderWarning) { 834 WC->Errors.emplace_back(std::move(ReaderWarning->first), 835 ReaderWarning->second); 836 } 837 } 838 839 /// Merge the \p Src writer context into \p Dst. 840 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 841 for (auto &ErrorPair : Src->Errors) 842 Dst->Errors.push_back(std::move(ErrorPair)); 843 Src->Errors.clear(); 844 845 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 846 exitWithError(std::move(E)); 847 848 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 849 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 850 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 851 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 852 if (firstTime) 853 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 854 }); 855 } 856 857 static StringRef 858 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) { 859 return Val.first(); 860 } 861 862 static std::string 863 getFuncName(const SampleProfileMap::value_type &Val) { 864 return Val.second.getContext().toString(); 865 } 866 867 template <typename T> 868 static void filterFunctions(T &ProfileMap) { 869 bool hasFilter = !FuncNameFilter.empty(); 870 bool hasNegativeFilter = !FuncNameNegativeFilter.empty(); 871 if (!hasFilter && !hasNegativeFilter) 872 return; 873 874 // If filter starts with '?' it is MSVC mangled name, not a regex. 875 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+"); 876 if (hasFilter && FuncNameFilter[0] == '?' && 877 ProbablyMSVCMangledName.match(FuncNameFilter)) 878 FuncNameFilter = llvm::Regex::escape(FuncNameFilter); 879 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' && 880 ProbablyMSVCMangledName.match(FuncNameNegativeFilter)) 881 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter); 882 883 size_t Count = ProfileMap.size(); 884 llvm::Regex Pattern(FuncNameFilter); 885 llvm::Regex NegativePattern(FuncNameNegativeFilter); 886 std::string Error; 887 if (hasFilter && !Pattern.isValid(Error)) 888 exitWithError(Error); 889 if (hasNegativeFilter && !NegativePattern.isValid(Error)) 890 exitWithError(Error); 891 892 // Handle MD5 profile, so it is still able to match using the original name. 893 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter)); 894 std::string NegativeMD5Name = 895 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter)); 896 897 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { 898 auto Tmp = I++; 899 const auto &FuncName = getFuncName(*Tmp); 900 // Negative filter has higher precedence than positive filter. 901 if ((hasNegativeFilter && 902 (NegativePattern.match(FuncName) || 903 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) || 904 (hasFilter && !(Pattern.match(FuncName) || 905 (FunctionSamples::UseMD5 && MD5Name == FuncName)))) 906 ProfileMap.erase(Tmp); 907 } 908 909 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions " 910 << "in the original profile are filtered.\n"; 911 } 912 913 static void writeInstrProfile(StringRef OutputFilename, 914 ProfileFormat OutputFormat, 915 InstrProfWriter &Writer) { 916 std::error_code EC; 917 raw_fd_ostream Output(OutputFilename.data(), EC, 918 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 919 : sys::fs::OF_None); 920 if (EC) 921 exitWithErrorCode(EC, OutputFilename); 922 923 if (OutputFormat == PF_Text) { 924 if (Error E = Writer.writeText(Output)) 925 warn(std::move(E)); 926 } else { 927 if (Output.is_displayed()) 928 exitWithError("cannot write a non-text format profile to the terminal"); 929 if (Error E = Writer.write(Output)) 930 warn(std::move(E)); 931 } 932 } 933 934 static void mergeInstrProfile(const WeightedFileVector &Inputs, 935 SymbolRemapper *Remapper, 936 int MaxDbgCorrelationWarnings, 937 const StringRef ProfiledBinary) { 938 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 939 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 940 if (OutputFormat == PF_Compact_Binary) 941 exitWithError("Compact Binary is deprecated"); 942 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 943 OutputFormat != PF_Text) 944 exitWithError("unknown format is specified"); 945 946 // TODO: Maybe we should support correlation with mixture of different 947 // correlation modes(w/wo debug-info/object correlation). 948 if (DebugInfoFilename.empty()) { 949 if (!BinaryFilename.empty() && (DebugInfod || !DebugFileDirectory.empty())) 950 exitWithError("Expected only one of -binary-file, -debuginfod or " 951 "-debug-file-directory"); 952 } else if (!BinaryFilename.empty() || DebugInfod || 953 !DebugFileDirectory.empty()) { 954 exitWithError("Expected only one of -debug-info, -binary-file, -debuginfod " 955 "or -debug-file-directory"); 956 } 957 std::string CorrelateFilename; 958 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 959 if (!DebugInfoFilename.empty()) { 960 CorrelateFilename = DebugInfoFilename; 961 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 962 } else if (!BinaryFilename.empty()) { 963 CorrelateFilename = BinaryFilename; 964 CorrelateKind = ProfCorrelatorKind::BINARY; 965 } 966 967 std::unique_ptr<InstrProfCorrelator> Correlator; 968 if (CorrelateKind != InstrProfCorrelator::NONE) { 969 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 970 .moveInto(Correlator)) 971 exitWithError(std::move(Err), CorrelateFilename); 972 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 973 exitWithError(std::move(Err), CorrelateFilename); 974 } 975 976 ProfCorrelatorKind BIDFetcherCorrelateKind = ProfCorrelatorKind::NONE; 977 std::unique_ptr<object::BuildIDFetcher> BIDFetcher; 978 if (DebugInfod) { 979 llvm::HTTPClient::initialize(); 980 BIDFetcher = std::make_unique<DebuginfodFetcher>(DebugFileDirectory); 981 if (!BIDFetcherProfileCorrelate) 982 exitWithError("Expected --correlate when --debuginfod is provided"); 983 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 984 } else if (!DebugFileDirectory.empty()) { 985 BIDFetcher = std::make_unique<object::BuildIDFetcher>(DebugFileDirectory); 986 if (!BIDFetcherProfileCorrelate) 987 exitWithError("Expected --correlate when --debug-file-directory " 988 "is provided"); 989 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate; 990 } else if (BIDFetcherProfileCorrelate) { 991 exitWithError("Expected --debuginfod or --debug-file-directory when " 992 "--correlate is provided"); 993 } 994 995 std::mutex ErrorLock; 996 SmallSet<instrprof_error, 4> WriterErrorCodes; 997 998 // If NumThreads is not specified, auto-detect a good default. 999 if (NumThreads == 0) 1000 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 1001 unsigned((Inputs.size() + 1) / 2)); 1002 1003 // Initialize the writer contexts. 1004 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 1005 for (unsigned I = 0; I < NumThreads; ++I) 1006 Contexts.emplace_back(std::make_unique<WriterContext>( 1007 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 1008 MaxTraceLength)); 1009 1010 if (NumThreads == 1) { 1011 for (const auto &Input : Inputs) 1012 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 1013 Contexts[0].get(), BIDFetcher.get(), &BIDFetcherCorrelateKind); 1014 } else { 1015 DefaultThreadPool Pool(hardware_concurrency(NumThreads)); 1016 1017 // Load the inputs in parallel (N/NumThreads serial steps). 1018 unsigned Ctx = 0; 1019 for (const auto &Input : Inputs) { 1020 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 1021 Contexts[Ctx].get(), BIDFetcher.get(), 1022 &BIDFetcherCorrelateKind); 1023 Ctx = (Ctx + 1) % NumThreads; 1024 } 1025 Pool.wait(); 1026 1027 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 1028 unsigned Mid = Contexts.size() / 2; 1029 unsigned End = Contexts.size(); 1030 assert(Mid > 0 && "Expected more than one context"); 1031 do { 1032 for (unsigned I = 0; I < Mid; ++I) 1033 Pool.async(mergeWriterContexts, Contexts[I].get(), 1034 Contexts[I + Mid].get()); 1035 Pool.wait(); 1036 if (End & 1) { 1037 Pool.async(mergeWriterContexts, Contexts[0].get(), 1038 Contexts[End - 1].get()); 1039 Pool.wait(); 1040 } 1041 End = Mid; 1042 Mid /= 2; 1043 } while (Mid > 0); 1044 } 1045 1046 // Handle deferred errors encountered during merging. If the number of errors 1047 // is equal to the number of inputs the merge failed. 1048 unsigned NumErrors = 0; 1049 for (std::unique_ptr<WriterContext> &WC : Contexts) { 1050 for (auto &ErrorPair : WC->Errors) { 1051 ++NumErrors; 1052 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 1053 } 1054 } 1055 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 1056 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 1057 exitWithError("no profile can be merged"); 1058 1059 filterFunctions(Contexts[0]->Writer.getProfileData()); 1060 1061 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 1062 } 1063 1064 /// The profile entry for a function in instrumentation profile. 1065 struct InstrProfileEntry { 1066 uint64_t MaxCount = 0; 1067 uint64_t NumEdgeCounters = 0; 1068 float ZeroCounterRatio = 0.0; 1069 InstrProfRecord *ProfRecord; 1070 InstrProfileEntry(InstrProfRecord *Record); 1071 InstrProfileEntry() = default; 1072 }; 1073 1074 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 1075 ProfRecord = Record; 1076 uint64_t CntNum = Record->Counts.size(); 1077 uint64_t ZeroCntNum = 0; 1078 for (size_t I = 0; I < CntNum; ++I) { 1079 MaxCount = std::max(MaxCount, Record->Counts[I]); 1080 ZeroCntNum += !Record->Counts[I]; 1081 } 1082 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 1083 NumEdgeCounters = CntNum; 1084 } 1085 1086 /// Either set all the counters in the instr profile entry \p IFE to 1087 /// -1 / -2 /in order to drop the profile or scale up the 1088 /// counters in \p IFP to be above hot / cold threshold. We use 1089 /// the ratio of zero counters in the profile of a function to 1090 /// decide the profile is helpful or harmful for performance, 1091 /// and to choose whether to scale up or drop it. 1092 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 1093 uint64_t HotInstrThreshold, 1094 uint64_t ColdInstrThreshold, 1095 float ZeroCounterThreshold) { 1096 InstrProfRecord *ProfRecord = IFE.ProfRecord; 1097 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 1098 // If all or most of the counters of the function are zero, the 1099 // profile is unaccountable and should be dropped. Reset all the 1100 // counters to be -1 / -2 and PGO profile-use will drop the profile. 1101 // All counters being -1 also implies that the function is hot so 1102 // PGO profile-use will also set the entry count metadata to be 1103 // above hot threshold. 1104 // All counters being -2 implies that the function is warm so 1105 // PGO profile-use will also set the entry count metadata to be 1106 // above cold threshold. 1107 auto Kind = 1108 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 1109 ProfRecord->setPseudoCount(Kind); 1110 return; 1111 } 1112 1113 // Scale up the MaxCount to be multiple times above hot / cold threshold. 1114 const unsigned MultiplyFactor = 3; 1115 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 1116 uint64_t Numerator = Threshold * MultiplyFactor; 1117 1118 // Make sure Threshold for warm counters is below the HotInstrThreshold. 1119 if (!SetToHot && Threshold >= HotInstrThreshold) { 1120 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 1121 } 1122 1123 uint64_t Denominator = IFE.MaxCount; 1124 if (Numerator <= Denominator) 1125 return; 1126 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 1127 warn(toString(make_error<InstrProfError>(E))); 1128 }); 1129 } 1130 1131 const uint64_t ColdPercentileIdx = 15; 1132 const uint64_t HotPercentileIdx = 11; 1133 1134 using sampleprof::FSDiscriminatorPass; 1135 1136 // Internal options to set FSDiscriminatorPass. Used in merge and show 1137 // commands. 1138 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 1139 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 1140 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 1141 "pass beyond this value. The enum values are defined in " 1142 "Support/Discriminator.h"), 1143 cl::values(clEnumVal(Base, "Use base discriminators only"), 1144 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 1145 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 1146 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 1147 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 1148 1149 static unsigned getDiscriminatorMask() { 1150 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 1151 } 1152 1153 /// Adjust the instr profile in \p WC based on the sample profile in 1154 /// \p Reader. 1155 static void 1156 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 1157 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 1158 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 1159 unsigned InstrProfColdThreshold) { 1160 // Function to its entry in instr profile. 1161 StringMap<InstrProfileEntry> InstrProfileMap; 1162 StringMap<StringRef> StaticFuncMap; 1163 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 1164 1165 auto checkSampleProfileHasFUnique = [&Reader]() { 1166 for (const auto &PD : Reader->getProfiles()) { 1167 auto &FContext = PD.second.getContext(); 1168 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 1169 std::string::npos) { 1170 return true; 1171 } 1172 } 1173 return false; 1174 }; 1175 1176 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 1177 1178 auto buildStaticFuncMap = [&StaticFuncMap, 1179 SampleProfileHasFUnique](const StringRef Name) { 1180 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1181 size_t PrefixPos = StringRef::npos; 1182 for (auto &FilePrefix : FilePrefixes) { 1183 std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter; 1184 PrefixPos = Name.find_insensitive(NamePrefix); 1185 if (PrefixPos == StringRef::npos) 1186 continue; 1187 PrefixPos += NamePrefix.size(); 1188 break; 1189 } 1190 1191 if (PrefixPos == StringRef::npos) { 1192 return; 1193 } 1194 1195 StringRef NewName = Name.drop_front(PrefixPos); 1196 StringRef FName = Name.substr(0, PrefixPos - 1); 1197 if (NewName.size() == 0) { 1198 return; 1199 } 1200 1201 // This name should have a static linkage. 1202 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1203 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1204 1205 // If sample profile and instrumented profile do not agree on symbol 1206 // uniqification. 1207 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1208 // If instrumented profile uses -funique-internal-linkage-symbols, 1209 // we need to trim the name. 1210 if (ProfileHasFUnique) { 1211 NewName = NewName.substr(0, PostfixPos); 1212 } else { 1213 // If sample profile uses -funique-internal-linkage-symbols, 1214 // we build the map. 1215 std::string NStr = 1216 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1217 NewName = StringRef(NStr); 1218 StaticFuncMap[NewName] = Name; 1219 return; 1220 } 1221 } 1222 1223 if (!StaticFuncMap.contains(NewName)) { 1224 StaticFuncMap[NewName] = Name; 1225 } else { 1226 StaticFuncMap[NewName] = DuplicateNameStr; 1227 } 1228 }; 1229 1230 // We need to flatten the SampleFDO profile as the InstrFDO 1231 // profile does not have inlined callsite profiles. 1232 // One caveat is the pre-inlined function -- their samples 1233 // should be collapsed into the caller function. 1234 // Here we do a DFS traversal to get the flatten profile 1235 // info: the sum of entrycount and the max of maxcount. 1236 // Here is the algorithm: 1237 // recursive (FS, root_name) { 1238 // name = FS->getName(); 1239 // get samples for FS; 1240 // if (InstrProf.find(name) { 1241 // root_name = name; 1242 // } else { 1243 // if (name is in static_func map) { 1244 // root_name = static_name; 1245 // } 1246 // } 1247 // update the Map entry for root_name; 1248 // for (subfs: FS) { 1249 // recursive(subfs, root_name); 1250 // } 1251 // } 1252 // 1253 // Here is an example. 1254 // 1255 // SampleProfile: 1256 // foo:12345:1000 1257 // 1: 1000 1258 // 2.1: 1000 1259 // 15: 5000 1260 // 4: bar:1000 1261 // 1: 1000 1262 // 2: goo:3000 1263 // 1: 3000 1264 // 8: bar:40000 1265 // 1: 10000 1266 // 2: goo:30000 1267 // 1: 30000 1268 // 1269 // InstrProfile has two entries: 1270 // foo 1271 // bar.cc;bar 1272 // 1273 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1274 // {"foo", {1000, 5000}} 1275 // {"bar.cc;bar", {11000, 30000}} 1276 // 1277 // foo's has an entry count of 1000, and max body count of 5000. 1278 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1279 // 10000), and max count of 30000 (from the callsite in line 8). 1280 // 1281 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1282 // entry in InstrProfile. 1283 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1284 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1285 &InstrProfileMap](const FunctionSamples &FS, 1286 const StringRef &RootName) { 1287 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1288 const StringRef &RootName, 1289 auto &BuildImpl) -> void { 1290 std::string NameStr = FS.getFunction().str(); 1291 const StringRef Name = NameStr; 1292 const StringRef *NewRootName = &RootName; 1293 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1294 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1295 1296 auto It = InstrProfileMap.find(Name); 1297 if (It != InstrProfileMap.end()) { 1298 NewRootName = &Name; 1299 } else { 1300 auto NewName = StaticFuncMap.find(Name); 1301 if (NewName != StaticFuncMap.end()) { 1302 It = InstrProfileMap.find(NewName->second.str()); 1303 if (NewName->second != DuplicateNameStr) { 1304 NewRootName = &NewName->second; 1305 } 1306 } else { 1307 // Here the EntrySample is of an inlined function, so we should not 1308 // update the EntrySample in the map. 1309 EntrySample = 0; 1310 } 1311 } 1312 EntrySample += FlattenSampleMap[*NewRootName].first; 1313 MaxBodySample = 1314 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1315 FlattenSampleMap[*NewRootName] = 1316 std::make_pair(EntrySample, MaxBodySample); 1317 1318 for (const auto &C : FS.getCallsiteSamples()) 1319 for (const auto &F : C.second) 1320 BuildImpl(F.second, *NewRootName, BuildImpl); 1321 }; 1322 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1323 }; 1324 1325 for (auto &PD : WC->Writer.getProfileData()) { 1326 // Populate IPBuilder. 1327 for (const auto &PDV : PD.getValue()) { 1328 InstrProfRecord Record = PDV.second; 1329 IPBuilder.addRecord(Record); 1330 } 1331 1332 // If a function has multiple entries in instr profile, skip it. 1333 if (PD.getValue().size() != 1) 1334 continue; 1335 1336 // Initialize InstrProfileMap. 1337 InstrProfRecord *R = &PD.getValue().begin()->second; 1338 StringRef FullName = PD.getKey(); 1339 InstrProfileMap[FullName] = InstrProfileEntry(R); 1340 buildStaticFuncMap(FullName); 1341 } 1342 1343 for (auto &PD : Reader->getProfiles()) { 1344 sampleprof::FunctionSamples &FS = PD.second; 1345 std::string Name = FS.getFunction().str(); 1346 BuildMaxSampleMap(FS, Name); 1347 } 1348 1349 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1350 ProfileSummary SamplePS = Reader->getSummary(); 1351 1352 // Compute cold thresholds for instr profile and sample profile. 1353 uint64_t HotSampleThreshold = 1354 ProfileSummaryBuilder::getEntryForPercentile( 1355 SamplePS.getDetailedSummary(), 1356 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1357 .MinCount; 1358 uint64_t ColdSampleThreshold = 1359 ProfileSummaryBuilder::getEntryForPercentile( 1360 SamplePS.getDetailedSummary(), 1361 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1362 .MinCount; 1363 uint64_t HotInstrThreshold = 1364 ProfileSummaryBuilder::getEntryForPercentile( 1365 InstrPS.getDetailedSummary(), 1366 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1367 .MinCount; 1368 uint64_t ColdInstrThreshold = 1369 InstrProfColdThreshold 1370 ? InstrProfColdThreshold 1371 : ProfileSummaryBuilder::getEntryForPercentile( 1372 InstrPS.getDetailedSummary(), 1373 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1374 .MinCount; 1375 1376 // Find hot/warm functions in sample profile which is cold in instr profile 1377 // and adjust the profiles of those functions in the instr profile. 1378 for (const auto &E : FlattenSampleMap) { 1379 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1380 if (SampleMaxCount < ColdSampleThreshold) 1381 continue; 1382 StringRef Name = E.first(); 1383 auto It = InstrProfileMap.find(Name); 1384 if (It == InstrProfileMap.end()) { 1385 auto NewName = StaticFuncMap.find(Name); 1386 if (NewName != StaticFuncMap.end()) { 1387 It = InstrProfileMap.find(NewName->second.str()); 1388 if (NewName->second == DuplicateNameStr) { 1389 WithColor::warning() 1390 << "Static function " << Name 1391 << " has multiple promoted names, cannot adjust profile.\n"; 1392 } 1393 } 1394 } 1395 if (It == InstrProfileMap.end() || 1396 It->second.MaxCount > ColdInstrThreshold || 1397 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1398 continue; 1399 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1400 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1401 ColdInstrThreshold, ZeroCounterThreshold); 1402 } 1403 } 1404 1405 /// The main function to supplement instr profile with sample profile. 1406 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1407 /// sample profile. \p OutputFilename specifies the output profile name. 1408 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1409 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1410 /// specifies the minimal size for the functions whose profile will be 1411 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1412 /// a function contains too many zero counters and whether its profile 1413 /// should be dropped. \p InstrProfColdThreshold is the user specified 1414 /// cold threshold which will override the cold threshold got from the 1415 /// instr profile summary. 1416 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1417 StringRef SampleFilename, bool OutputSparse, 1418 unsigned SupplMinSizeThreshold, 1419 float ZeroCounterThreshold, 1420 unsigned InstrProfColdThreshold) { 1421 if (OutputFilename == "-") 1422 exitWithError("cannot write indexed profdata format to stdout"); 1423 if (Inputs.size() != 1) 1424 exitWithError("expect one input to be an instr profile"); 1425 if (Inputs[0].Weight != 1) 1426 exitWithError("expect instr profile doesn't have weight"); 1427 1428 StringRef InstrFilename = Inputs[0].Filename; 1429 1430 // Read sample profile. 1431 LLVMContext Context; 1432 auto FS = vfs::getRealFileSystem(); 1433 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1434 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1435 if (std::error_code EC = ReaderOrErr.getError()) 1436 exitWithErrorCode(EC, SampleFilename); 1437 auto Reader = std::move(ReaderOrErr.get()); 1438 if (std::error_code EC = Reader->read()) 1439 exitWithErrorCode(EC, SampleFilename); 1440 1441 // Read instr profile. 1442 std::mutex ErrorLock; 1443 SmallSet<instrprof_error, 4> WriterErrorCodes; 1444 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1445 WriterErrorCodes); 1446 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1447 if (WC->Errors.size() > 0) 1448 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1449 1450 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1451 InstrProfColdThreshold); 1452 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1453 } 1454 1455 /// Make a copy of the given function samples with all symbol names remapped 1456 /// by the provided symbol remapper. 1457 static sampleprof::FunctionSamples 1458 remapSamples(const sampleprof::FunctionSamples &Samples, 1459 SymbolRemapper &Remapper, sampleprof_error &Error) { 1460 sampleprof::FunctionSamples Result; 1461 Result.setFunction(Remapper(Samples.getFunction())); 1462 Result.addTotalSamples(Samples.getTotalSamples()); 1463 Result.addHeadSamples(Samples.getHeadSamples()); 1464 for (const auto &BodySample : Samples.getBodySamples()) { 1465 uint32_t MaskedDiscriminator = 1466 BodySample.first.Discriminator & getDiscriminatorMask(); 1467 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1468 BodySample.second.getSamples()); 1469 for (const auto &Target : BodySample.second.getCallTargets()) { 1470 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1471 MaskedDiscriminator, 1472 Remapper(Target.first), Target.second); 1473 } 1474 } 1475 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1476 sampleprof::FunctionSamplesMap &Target = 1477 Result.functionSamplesAt(CallsiteSamples.first); 1478 for (const auto &Callsite : CallsiteSamples.second) { 1479 sampleprof::FunctionSamples Remapped = 1480 remapSamples(Callsite.second, Remapper, Error); 1481 mergeSampleProfErrors(Error, 1482 Target[Remapped.getFunction()].merge(Remapped)); 1483 } 1484 } 1485 return Result; 1486 } 1487 1488 static sampleprof::SampleProfileFormat FormatMap[] = { 1489 sampleprof::SPF_None, 1490 sampleprof::SPF_Text, 1491 sampleprof::SPF_None, 1492 sampleprof::SPF_Ext_Binary, 1493 sampleprof::SPF_GCC, 1494 sampleprof::SPF_Binary}; 1495 1496 static std::unique_ptr<MemoryBuffer> 1497 getInputFileBuf(const StringRef &InputFile) { 1498 if (InputFile == "") 1499 return {}; 1500 1501 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1502 if (!BufOrError) 1503 exitWithErrorCode(BufOrError.getError(), InputFile); 1504 1505 return std::move(*BufOrError); 1506 } 1507 1508 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1509 sampleprof::ProfileSymbolList &PSL) { 1510 if (!Buffer) 1511 return; 1512 1513 SmallVector<StringRef, 32> SymbolVec; 1514 StringRef Data = Buffer->getBuffer(); 1515 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1516 1517 for (StringRef SymbolStr : SymbolVec) 1518 PSL.add(SymbolStr.trim()); 1519 } 1520 1521 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1522 ProfileFormat OutputFormat, 1523 MemoryBuffer *Buffer, 1524 sampleprof::ProfileSymbolList &WriterList, 1525 bool CompressAllSections, bool UseMD5, 1526 bool GenPartialProfile) { 1527 if (SplitLayout) { 1528 if (OutputFormat == PF_Binary) 1529 warn("-split-layout is ignored. Specify -extbinary to enable it"); 1530 else 1531 Writer.setUseCtxSplitLayout(); 1532 } 1533 1534 populateProfileSymbolList(Buffer, WriterList); 1535 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1536 warn("Profile Symbol list is not empty but the output format is not " 1537 "ExtBinary format. The list will be lost in the output. "); 1538 1539 Writer.setProfileSymbolList(&WriterList); 1540 1541 if (CompressAllSections) { 1542 if (OutputFormat != PF_Ext_Binary) 1543 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1544 else 1545 Writer.setToCompressAllSections(); 1546 } 1547 if (UseMD5) { 1548 if (OutputFormat != PF_Ext_Binary) 1549 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1550 else 1551 Writer.setUseMD5(); 1552 } 1553 if (GenPartialProfile) { 1554 if (OutputFormat != PF_Ext_Binary) 1555 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1556 else 1557 Writer.setPartialProfile(); 1558 } 1559 } 1560 1561 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1562 SymbolRemapper *Remapper, 1563 StringRef ProfileSymbolListFile, 1564 size_t OutputSizeLimit) { 1565 using namespace sampleprof; 1566 SampleProfileMap ProfileMap; 1567 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1568 LLVMContext Context; 1569 sampleprof::ProfileSymbolList WriterList; 1570 std::optional<bool> ProfileIsProbeBased; 1571 std::optional<bool> ProfileIsCS; 1572 for (const auto &Input : Inputs) { 1573 auto FS = vfs::getRealFileSystem(); 1574 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1575 FSDiscriminatorPassOption); 1576 if (std::error_code EC = ReaderOrErr.getError()) { 1577 warnOrExitGivenError(FailMode, EC, Input.Filename); 1578 continue; 1579 } 1580 1581 // We need to keep the readers around until after all the files are 1582 // read so that we do not lose the function names stored in each 1583 // reader's memory. The function names are needed to write out the 1584 // merged profile map. 1585 Readers.push_back(std::move(ReaderOrErr.get())); 1586 const auto Reader = Readers.back().get(); 1587 if (std::error_code EC = Reader->read()) { 1588 warnOrExitGivenError(FailMode, EC, Input.Filename); 1589 Readers.pop_back(); 1590 continue; 1591 } 1592 1593 SampleProfileMap &Profiles = Reader->getProfiles(); 1594 if (ProfileIsProbeBased && 1595 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1596 exitWithError( 1597 "cannot merge probe-based profile with non-probe-based profile"); 1598 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1599 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1600 exitWithError("cannot merge CS profile with non-CS profile"); 1601 ProfileIsCS = FunctionSamples::ProfileIsCS; 1602 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1603 I != E; ++I) { 1604 sampleprof_error Result = sampleprof_error::success; 1605 FunctionSamples Remapped = 1606 Remapper ? remapSamples(I->second, *Remapper, Result) 1607 : FunctionSamples(); 1608 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1609 SampleContext FContext = Samples.getContext(); 1610 mergeSampleProfErrors(Result, 1611 ProfileMap[FContext].merge(Samples, Input.Weight)); 1612 if (Result != sampleprof_error::success) { 1613 std::error_code EC = make_error_code(Result); 1614 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1615 FContext.toString()); 1616 } 1617 } 1618 1619 if (!DropProfileSymbolList) { 1620 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1621 Reader->getProfileSymbolList(); 1622 if (ReaderList) 1623 WriterList.merge(*ReaderList); 1624 } 1625 } 1626 1627 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1628 // Use threshold calculated from profile summary unless specified. 1629 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1630 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1631 uint64_t SampleProfColdThreshold = 1632 ProfileSummaryBuilder::getColdCountThreshold( 1633 (Summary->getDetailedSummary())); 1634 1635 // Trim and merge cold context profile using cold threshold above; 1636 SampleContextTrimmer(ProfileMap) 1637 .trimAndMergeColdContextProfiles( 1638 SampleProfColdThreshold, SampleTrimColdContext, 1639 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1640 } 1641 1642 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1643 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1644 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1645 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1646 ProfileConverter CSConverter(ProfileMap); 1647 CSConverter.convertCSProfiles(); 1648 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1649 } 1650 1651 filterFunctions(ProfileMap); 1652 1653 auto WriterOrErr = 1654 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1655 if (std::error_code EC = WriterOrErr.getError()) 1656 exitWithErrorCode(EC, OutputFilename); 1657 1658 auto Writer = std::move(WriterOrErr.get()); 1659 // WriterList will have StringRef refering to string in Buffer. 1660 // Make sure Buffer lives as long as WriterList. 1661 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1662 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1663 CompressAllSections, UseMD5, GenPartialProfile); 1664 1665 // If OutputSizeLimit is 0 (default), it is the same as write(). 1666 if (std::error_code EC = 1667 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1668 exitWithErrorCode(EC); 1669 } 1670 1671 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1672 StringRef WeightStr, FileName; 1673 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1674 1675 uint64_t Weight; 1676 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1677 exitWithError("input weight must be a positive integer"); 1678 1679 return {std::string(FileName), Weight}; 1680 } 1681 1682 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1683 StringRef Filename = WF.Filename; 1684 uint64_t Weight = WF.Weight; 1685 1686 // If it's STDIN just pass it on. 1687 if (Filename == "-") { 1688 WNI.push_back({std::string(Filename), Weight}); 1689 return; 1690 } 1691 1692 llvm::sys::fs::file_status Status; 1693 llvm::sys::fs::status(Filename, Status); 1694 if (!llvm::sys::fs::exists(Status)) 1695 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1696 Filename); 1697 // If it's a source file, collect it. 1698 if (llvm::sys::fs::is_regular_file(Status)) { 1699 WNI.push_back({std::string(Filename), Weight}); 1700 return; 1701 } 1702 1703 if (llvm::sys::fs::is_directory(Status)) { 1704 std::error_code EC; 1705 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1706 F != E && !EC; F.increment(EC)) { 1707 if (llvm::sys::fs::is_regular_file(F->path())) { 1708 addWeightedInput(WNI, {F->path(), Weight}); 1709 } 1710 } 1711 if (EC) 1712 exitWithErrorCode(EC, Filename); 1713 } 1714 } 1715 1716 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1717 WeightedFileVector &WFV) { 1718 if (!Buffer) 1719 return; 1720 1721 SmallVector<StringRef, 8> Entries; 1722 StringRef Data = Buffer->getBuffer(); 1723 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1724 for (const StringRef &FileWeightEntry : Entries) { 1725 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1726 // Skip comments. 1727 if (SanitizedEntry.starts_with("#")) 1728 continue; 1729 // If there's no comma, it's an unweighted profile. 1730 else if (!SanitizedEntry.contains(',')) 1731 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1732 else 1733 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1734 } 1735 } 1736 1737 static int merge_main(StringRef ProgName) { 1738 WeightedFileVector WeightedInputs; 1739 for (StringRef Filename : InputFilenames) 1740 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1741 for (StringRef WeightedFilename : WeightedInputFilenames) 1742 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1743 1744 // Make sure that the file buffer stays alive for the duration of the 1745 // weighted input vector's lifetime. 1746 auto Buffer = getInputFileBuf(InputFilenamesFile); 1747 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1748 1749 if (WeightedInputs.empty()) 1750 exitWithError("no input files specified. See " + ProgName + " merge -help"); 1751 1752 if (DumpInputFileList) { 1753 for (auto &WF : WeightedInputs) 1754 outs() << WF.Weight << "," << WF.Filename << "\n"; 1755 return 0; 1756 } 1757 1758 std::unique_ptr<SymbolRemapper> Remapper; 1759 if (!RemappingFile.empty()) 1760 Remapper = SymbolRemapper::create(RemappingFile); 1761 1762 if (!SupplInstrWithSample.empty()) { 1763 if (ProfileKind != instr) 1764 exitWithError( 1765 "-supplement-instr-with-sample can only work with -instr. "); 1766 1767 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1768 SupplMinSizeThreshold, ZeroCounterThreshold, 1769 InstrProfColdThreshold); 1770 return 0; 1771 } 1772 1773 if (ProfileKind == instr) 1774 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1775 ProfiledBinary); 1776 else 1777 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1778 OutputSizeLimit); 1779 return 0; 1780 } 1781 1782 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1783 static void overlapInstrProfile(const std::string &BaseFilename, 1784 const std::string &TestFilename, 1785 const OverlapFuncFilters &FuncFilter, 1786 raw_fd_ostream &OS, bool IsCS) { 1787 std::mutex ErrorLock; 1788 SmallSet<instrprof_error, 4> WriterErrorCodes; 1789 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1790 WeightedFile WeightedInput{BaseFilename, 1}; 1791 OverlapStats Overlap; 1792 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1793 if (E) 1794 exitWithError(std::move(E), "error in getting profile count sums"); 1795 if (Overlap.Base.CountSum < 1.0f) { 1796 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1797 exit(0); 1798 } 1799 if (Overlap.Test.CountSum < 1.0f) { 1800 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1801 exit(0); 1802 } 1803 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1804 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1805 IsCS); 1806 Overlap.dump(OS); 1807 } 1808 1809 namespace { 1810 struct SampleOverlapStats { 1811 SampleContext BaseName; 1812 SampleContext TestName; 1813 // Number of overlap units 1814 uint64_t OverlapCount = 0; 1815 // Total samples of overlap units 1816 uint64_t OverlapSample = 0; 1817 // Number of and total samples of units that only present in base or test 1818 // profile 1819 uint64_t BaseUniqueCount = 0; 1820 uint64_t BaseUniqueSample = 0; 1821 uint64_t TestUniqueCount = 0; 1822 uint64_t TestUniqueSample = 0; 1823 // Number of units and total samples in base or test profile 1824 uint64_t BaseCount = 0; 1825 uint64_t BaseSample = 0; 1826 uint64_t TestCount = 0; 1827 uint64_t TestSample = 0; 1828 // Number of and total samples of units that present in at least one profile 1829 uint64_t UnionCount = 0; 1830 uint64_t UnionSample = 0; 1831 // Weighted similarity 1832 double Similarity = 0.0; 1833 // For SampleOverlapStats instances representing functions, weights of the 1834 // function in base and test profiles 1835 double BaseWeight = 0.0; 1836 double TestWeight = 0.0; 1837 1838 SampleOverlapStats() = default; 1839 }; 1840 } // end anonymous namespace 1841 1842 namespace { 1843 struct FuncSampleStats { 1844 uint64_t SampleSum = 0; 1845 uint64_t MaxSample = 0; 1846 uint64_t HotBlockCount = 0; 1847 FuncSampleStats() = default; 1848 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1849 uint64_t HotBlockCount) 1850 : SampleSum(SampleSum), MaxSample(MaxSample), 1851 HotBlockCount(HotBlockCount) {} 1852 }; 1853 } // end anonymous namespace 1854 1855 namespace { 1856 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1857 1858 // Class for updating merging steps for two sorted maps. The class should be 1859 // instantiated with a map iterator type. 1860 template <class T> class MatchStep { 1861 public: 1862 MatchStep() = delete; 1863 1864 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1865 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1866 SecondEnd(SecondEnd), Status(MS_None) {} 1867 1868 bool areBothFinished() const { 1869 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1870 } 1871 1872 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1873 1874 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1875 1876 /// Advance one step based on the previous match status unless the previous 1877 /// status is MS_None. Then update Status based on the comparison between two 1878 /// container iterators at the current step. If the previous status is 1879 /// MS_None, it means two iterators are at the beginning and no comparison has 1880 /// been made, so we simply update Status without advancing the iterators. 1881 void updateOneStep(); 1882 1883 T getFirstIter() const { return FirstIter; } 1884 1885 T getSecondIter() const { return SecondIter; } 1886 1887 MatchStatus getMatchStatus() const { return Status; } 1888 1889 private: 1890 // Current iterator and end iterator of the first container. 1891 T FirstIter; 1892 T FirstEnd; 1893 // Current iterator and end iterator of the second container. 1894 T SecondIter; 1895 T SecondEnd; 1896 // Match status of the current step. 1897 MatchStatus Status; 1898 }; 1899 } // end anonymous namespace 1900 1901 template <class T> void MatchStep<T>::updateOneStep() { 1902 switch (Status) { 1903 case MS_Match: 1904 ++FirstIter; 1905 ++SecondIter; 1906 break; 1907 case MS_FirstUnique: 1908 ++FirstIter; 1909 break; 1910 case MS_SecondUnique: 1911 ++SecondIter; 1912 break; 1913 case MS_None: 1914 break; 1915 } 1916 1917 // Update Status according to iterators at the current step. 1918 if (areBothFinished()) 1919 return; 1920 if (FirstIter != FirstEnd && 1921 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1922 Status = MS_FirstUnique; 1923 else if (SecondIter != SecondEnd && 1924 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1925 Status = MS_SecondUnique; 1926 else 1927 Status = MS_Match; 1928 } 1929 1930 // Return the sum of line/block samples, the max line/block sample, and the 1931 // number of line/block samples above the given threshold in a function 1932 // including its inlinees. 1933 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1934 FuncSampleStats &FuncStats, 1935 uint64_t HotThreshold) { 1936 for (const auto &L : Func.getBodySamples()) { 1937 uint64_t Sample = L.second.getSamples(); 1938 FuncStats.SampleSum += Sample; 1939 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1940 if (Sample >= HotThreshold) 1941 ++FuncStats.HotBlockCount; 1942 } 1943 1944 for (const auto &C : Func.getCallsiteSamples()) { 1945 for (const auto &F : C.second) 1946 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1947 } 1948 } 1949 1950 /// Predicate that determines if a function is hot with a given threshold. We 1951 /// keep it separate from its callsites for possible extension in the future. 1952 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1953 uint64_t HotThreshold) { 1954 // We intentionally compare the maximum sample count in a function with the 1955 // HotThreshold to get an approximate determination on hot functions. 1956 return (FuncStats.MaxSample >= HotThreshold); 1957 } 1958 1959 namespace { 1960 class SampleOverlapAggregator { 1961 public: 1962 SampleOverlapAggregator(const std::string &BaseFilename, 1963 const std::string &TestFilename, 1964 double LowSimilarityThreshold, double Epsilon, 1965 const OverlapFuncFilters &FuncFilter) 1966 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1967 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1968 FuncFilter(FuncFilter) {} 1969 1970 /// Detect 0-sample input profile and report to output stream. This interface 1971 /// should be called after loadProfiles(). 1972 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1973 1974 /// Write out function-level similarity statistics for functions specified by 1975 /// options --function, --value-cutoff, and --similarity-cutoff. 1976 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1977 1978 /// Write out program-level similarity and overlap statistics. 1979 void dumpProgramSummary(raw_fd_ostream &OS) const; 1980 1981 /// Write out hot-function and hot-block statistics for base_profile, 1982 /// test_profile, and their overlap. For both cases, the overlap HO is 1983 /// calculated as follows: 1984 /// Given the number of functions (or blocks) that are hot in both profiles 1985 /// HCommon and the number of functions (or blocks) that are hot in at 1986 /// least one profile HUnion, HO = HCommon / HUnion. 1987 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1988 1989 /// This function tries matching functions in base and test profiles. For each 1990 /// pair of matched functions, it aggregates the function-level 1991 /// similarity into a profile-level similarity. It also dump function-level 1992 /// similarity information of functions specified by --function, 1993 /// --value-cutoff, and --similarity-cutoff options. The program-level 1994 /// similarity PS is computed as follows: 1995 /// Given function-level similarity FS(A) for all function A, the 1996 /// weight of function A in base profile WB(A), and the weight of function 1997 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1998 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1999 /// meaning no-overlap. 2000 void computeSampleProfileOverlap(raw_fd_ostream &OS); 2001 2002 /// Initialize ProfOverlap with the sum of samples in base and test 2003 /// profiles. This function also computes and keeps the sum of samples and 2004 /// max sample counts of each function in BaseStats and TestStats for later 2005 /// use to avoid re-computations. 2006 void initializeSampleProfileOverlap(); 2007 2008 /// Load profiles specified by BaseFilename and TestFilename. 2009 std::error_code loadProfiles(); 2010 2011 using FuncSampleStatsMap = 2012 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 2013 2014 private: 2015 SampleOverlapStats ProfOverlap; 2016 SampleOverlapStats HotFuncOverlap; 2017 SampleOverlapStats HotBlockOverlap; 2018 std::string BaseFilename; 2019 std::string TestFilename; 2020 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 2021 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 2022 // BaseStats and TestStats hold FuncSampleStats for each function, with 2023 // function name as the key. 2024 FuncSampleStatsMap BaseStats; 2025 FuncSampleStatsMap TestStats; 2026 // Low similarity threshold in floating point number 2027 double LowSimilarityThreshold; 2028 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 2029 // for tracking hot blocks. 2030 uint64_t BaseHotThreshold; 2031 uint64_t TestHotThreshold; 2032 // A small threshold used to round the results of floating point accumulations 2033 // to resolve imprecision. 2034 const double Epsilon; 2035 std::multimap<double, SampleOverlapStats, std::greater<double>> 2036 FuncSimilarityDump; 2037 // FuncFilter carries specifications in options --value-cutoff and 2038 // --function. 2039 OverlapFuncFilters FuncFilter; 2040 // Column offsets for printing the function-level details table. 2041 static const unsigned int TestWeightCol = 15; 2042 static const unsigned int SimilarityCol = 30; 2043 static const unsigned int OverlapCol = 43; 2044 static const unsigned int BaseUniqueCol = 53; 2045 static const unsigned int TestUniqueCol = 67; 2046 static const unsigned int BaseSampleCol = 81; 2047 static const unsigned int TestSampleCol = 96; 2048 static const unsigned int FuncNameCol = 111; 2049 2050 /// Return a similarity of two line/block sample counters in the same 2051 /// function in base and test profiles. The line/block-similarity BS(i) is 2052 /// computed as follows: 2053 /// For an offsets i, given the sample count at i in base profile BB(i), 2054 /// the sample count at i in test profile BT(i), the sum of sample counts 2055 /// in this function in base profile SB, and the sum of sample counts in 2056 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 2057 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 2058 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 2059 const SampleOverlapStats &FuncOverlap) const; 2060 2061 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 2062 uint64_t HotBlockCount); 2063 2064 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 2065 FuncSampleStatsMap &HotFunc, 2066 uint64_t HotThreshold) const; 2067 2068 void computeHotFuncOverlap(); 2069 2070 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2071 /// Difference for two sample units in a matched function according to the 2072 /// given match status. 2073 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 2074 uint64_t HotBlockCount, 2075 SampleOverlapStats &FuncOverlap, 2076 double &Difference, MatchStatus Status); 2077 2078 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 2079 /// Difference for unmatched callees that only present in one profile in a 2080 /// matched caller function. 2081 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 2082 SampleOverlapStats &FuncOverlap, 2083 double &Difference, MatchStatus Status); 2084 2085 /// This function updates sample overlap statistics of an overlap function in 2086 /// base and test profile. It also calculates a function-internal similarity 2087 /// FIS as follows: 2088 /// For offsets i that have samples in at least one profile in this 2089 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 2090 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 2091 /// 0.0 meaning no overlap. 2092 double computeSampleFunctionInternalOverlap( 2093 const sampleprof::FunctionSamples &BaseFunc, 2094 const sampleprof::FunctionSamples &TestFunc, 2095 SampleOverlapStats &FuncOverlap); 2096 2097 /// Function-level similarity (FS) is a weighted value over function internal 2098 /// similarity (FIS). This function computes a function's FS from its FIS by 2099 /// applying the weight. 2100 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 2101 uint64_t TestFuncSample) const; 2102 2103 /// The function-level similarity FS(A) for a function A is computed as 2104 /// follows: 2105 /// Compute a function-internal similarity FIS(A) by 2106 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 2107 /// function A in base profile WB(A), and the weight of function A in test 2108 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 2109 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 2110 double 2111 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 2112 const sampleprof::FunctionSamples *TestFunc, 2113 SampleOverlapStats *FuncOverlap, 2114 uint64_t BaseFuncSample, 2115 uint64_t TestFuncSample); 2116 2117 /// Profile-level similarity (PS) is a weighted aggregate over function-level 2118 /// similarities (FS). This method weights the FS value by the function 2119 /// weights in the base and test profiles for the aggregation. 2120 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 2121 uint64_t TestFuncSample) const; 2122 }; 2123 } // end anonymous namespace 2124 2125 bool SampleOverlapAggregator::detectZeroSampleProfile( 2126 raw_fd_ostream &OS) const { 2127 bool HaveZeroSample = false; 2128 if (ProfOverlap.BaseSample == 0) { 2129 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 2130 HaveZeroSample = true; 2131 } 2132 if (ProfOverlap.TestSample == 0) { 2133 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 2134 HaveZeroSample = true; 2135 } 2136 return HaveZeroSample; 2137 } 2138 2139 double SampleOverlapAggregator::computeBlockSimilarity( 2140 uint64_t BaseSample, uint64_t TestSample, 2141 const SampleOverlapStats &FuncOverlap) const { 2142 double BaseFrac = 0.0; 2143 double TestFrac = 0.0; 2144 if (FuncOverlap.BaseSample > 0) 2145 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 2146 if (FuncOverlap.TestSample > 0) 2147 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 2148 return 1.0 - std::fabs(BaseFrac - TestFrac); 2149 } 2150 2151 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 2152 uint64_t TestSample, 2153 uint64_t HotBlockCount) { 2154 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 2155 bool IsTestHot = (TestSample >= TestHotThreshold); 2156 if (!IsBaseHot && !IsTestHot) 2157 return; 2158 2159 HotBlockOverlap.UnionCount += HotBlockCount; 2160 if (IsBaseHot) 2161 HotBlockOverlap.BaseCount += HotBlockCount; 2162 if (IsTestHot) 2163 HotBlockOverlap.TestCount += HotBlockCount; 2164 if (IsBaseHot && IsTestHot) 2165 HotBlockOverlap.OverlapCount += HotBlockCount; 2166 } 2167 2168 void SampleOverlapAggregator::getHotFunctions( 2169 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 2170 uint64_t HotThreshold) const { 2171 for (const auto &F : ProfStats) { 2172 if (isFunctionHot(F.second, HotThreshold)) 2173 HotFunc.emplace(F.first, F.second); 2174 } 2175 } 2176 2177 void SampleOverlapAggregator::computeHotFuncOverlap() { 2178 FuncSampleStatsMap BaseHotFunc; 2179 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 2180 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 2181 2182 FuncSampleStatsMap TestHotFunc; 2183 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 2184 HotFuncOverlap.TestCount = TestHotFunc.size(); 2185 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 2186 2187 for (const auto &F : BaseHotFunc) { 2188 if (TestHotFunc.count(F.first)) 2189 ++HotFuncOverlap.OverlapCount; 2190 else 2191 ++HotFuncOverlap.UnionCount; 2192 } 2193 } 2194 2195 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2196 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2197 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2198 assert(Status != MS_None && 2199 "Match status should be updated before updating overlap statistics"); 2200 if (Status == MS_FirstUnique) { 2201 TestSample = 0; 2202 FuncOverlap.BaseUniqueSample += BaseSample; 2203 } else if (Status == MS_SecondUnique) { 2204 BaseSample = 0; 2205 FuncOverlap.TestUniqueSample += TestSample; 2206 } else { 2207 ++FuncOverlap.OverlapCount; 2208 } 2209 2210 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2211 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2212 Difference += 2213 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2214 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2215 } 2216 2217 void SampleOverlapAggregator::updateForUnmatchedCallee( 2218 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2219 double &Difference, MatchStatus Status) { 2220 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2221 "Status must be either of the two unmatched cases"); 2222 FuncSampleStats FuncStats; 2223 if (Status == MS_FirstUnique) { 2224 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2225 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2226 FuncStats.HotBlockCount, FuncOverlap, 2227 Difference, Status); 2228 } else { 2229 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2230 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2231 FuncStats.HotBlockCount, FuncOverlap, 2232 Difference, Status); 2233 } 2234 } 2235 2236 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2237 const sampleprof::FunctionSamples &BaseFunc, 2238 const sampleprof::FunctionSamples &TestFunc, 2239 SampleOverlapStats &FuncOverlap) { 2240 2241 using namespace sampleprof; 2242 2243 double Difference = 0; 2244 2245 // Accumulate Difference for regular line/block samples in the function. 2246 // We match them through sort-merge join algorithm because 2247 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2248 // by their offsets. 2249 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2250 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2251 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2252 BlockIterStep.updateOneStep(); 2253 while (!BlockIterStep.areBothFinished()) { 2254 uint64_t BaseSample = 2255 BlockIterStep.isFirstFinished() 2256 ? 0 2257 : BlockIterStep.getFirstIter()->second.getSamples(); 2258 uint64_t TestSample = 2259 BlockIterStep.isSecondFinished() 2260 ? 0 2261 : BlockIterStep.getSecondIter()->second.getSamples(); 2262 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2263 Difference, BlockIterStep.getMatchStatus()); 2264 2265 BlockIterStep.updateOneStep(); 2266 } 2267 2268 // Accumulate Difference for callsite lines in the function. We match 2269 // them through sort-merge algorithm because 2270 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2271 // ordered by their offsets. 2272 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2273 BaseFunc.getCallsiteSamples().cbegin(), 2274 BaseFunc.getCallsiteSamples().cend(), 2275 TestFunc.getCallsiteSamples().cbegin(), 2276 TestFunc.getCallsiteSamples().cend()); 2277 CallsiteIterStep.updateOneStep(); 2278 while (!CallsiteIterStep.areBothFinished()) { 2279 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2280 assert(CallsiteStepStatus != MS_None && 2281 "Match status should be updated before entering loop body"); 2282 2283 if (CallsiteStepStatus != MS_Match) { 2284 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2285 ? CallsiteIterStep.getFirstIter() 2286 : CallsiteIterStep.getSecondIter(); 2287 for (const auto &F : Callsite->second) 2288 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2289 CallsiteStepStatus); 2290 } else { 2291 // There may be multiple inlinees at the same offset, so we need to try 2292 // matching all of them. This match is implemented through sort-merge 2293 // algorithm because callsite records at the same offset are ordered by 2294 // function names. 2295 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2296 CallsiteIterStep.getFirstIter()->second.cbegin(), 2297 CallsiteIterStep.getFirstIter()->second.cend(), 2298 CallsiteIterStep.getSecondIter()->second.cbegin(), 2299 CallsiteIterStep.getSecondIter()->second.cend()); 2300 CalleeIterStep.updateOneStep(); 2301 while (!CalleeIterStep.areBothFinished()) { 2302 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2303 if (CalleeStepStatus != MS_Match) { 2304 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2305 ? CalleeIterStep.getFirstIter() 2306 : CalleeIterStep.getSecondIter(); 2307 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2308 CalleeStepStatus); 2309 } else { 2310 // An inlined function can contain other inlinees inside, so compute 2311 // the Difference recursively. 2312 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2313 CalleeIterStep.getFirstIter()->second, 2314 CalleeIterStep.getSecondIter()->second, 2315 FuncOverlap); 2316 } 2317 CalleeIterStep.updateOneStep(); 2318 } 2319 } 2320 CallsiteIterStep.updateOneStep(); 2321 } 2322 2323 // Difference reflects the total differences of line/block samples in this 2324 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2325 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2326 return (2.0 - Difference) / 2; 2327 } 2328 2329 double SampleOverlapAggregator::weightForFuncSimilarity( 2330 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2331 uint64_t TestFuncSample) const { 2332 // Compute the weight as the distance between the function weights in two 2333 // profiles. 2334 double BaseFrac = 0.0; 2335 double TestFrac = 0.0; 2336 assert(ProfOverlap.BaseSample > 0 && 2337 "Total samples in base profile should be greater than 0"); 2338 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2339 assert(ProfOverlap.TestSample > 0 && 2340 "Total samples in test profile should be greater than 0"); 2341 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2342 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2343 2344 // Take WeightDistance into the similarity. 2345 return FuncInternalSimilarity * (1 - WeightDistance); 2346 } 2347 2348 double 2349 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2350 uint64_t BaseFuncSample, 2351 uint64_t TestFuncSample) const { 2352 2353 double BaseFrac = 0.0; 2354 double TestFrac = 0.0; 2355 assert(ProfOverlap.BaseSample > 0 && 2356 "Total samples in base profile should be greater than 0"); 2357 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2358 assert(ProfOverlap.TestSample > 0 && 2359 "Total samples in test profile should be greater than 0"); 2360 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2361 return FuncSimilarity * (BaseFrac + TestFrac); 2362 } 2363 2364 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2365 const sampleprof::FunctionSamples *BaseFunc, 2366 const sampleprof::FunctionSamples *TestFunc, 2367 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2368 uint64_t TestFuncSample) { 2369 // Default function internal similarity before weighted, meaning two functions 2370 // has no overlap. 2371 const double DefaultFuncInternalSimilarity = 0; 2372 double FuncSimilarity; 2373 double FuncInternalSimilarity; 2374 2375 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2376 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2377 // similarity. 2378 if (!BaseFunc || !TestFunc) { 2379 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2380 } else { 2381 assert(FuncOverlap != nullptr && 2382 "FuncOverlap should be provided in this case"); 2383 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2384 *BaseFunc, *TestFunc, *FuncOverlap); 2385 // Now, FuncInternalSimilarity may be a little less than 0 due to 2386 // imprecision of floating point accumulations. Make it zero if the 2387 // difference is below Epsilon. 2388 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2389 ? 0 2390 : FuncInternalSimilarity; 2391 } 2392 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2393 BaseFuncSample, TestFuncSample); 2394 return FuncSimilarity; 2395 } 2396 2397 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2398 using namespace sampleprof; 2399 2400 std::unordered_map<SampleContext, const FunctionSamples *, 2401 SampleContext::Hash> 2402 BaseFuncProf; 2403 const auto &BaseProfiles = BaseReader->getProfiles(); 2404 for (const auto &BaseFunc : BaseProfiles) { 2405 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2406 } 2407 ProfOverlap.UnionCount = BaseFuncProf.size(); 2408 2409 const auto &TestProfiles = TestReader->getProfiles(); 2410 for (const auto &TestFunc : TestProfiles) { 2411 SampleOverlapStats FuncOverlap; 2412 FuncOverlap.TestName = TestFunc.second.getContext(); 2413 assert(TestStats.count(FuncOverlap.TestName) && 2414 "TestStats should have records for all functions in test profile " 2415 "except inlinees"); 2416 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2417 2418 bool Matched = false; 2419 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2420 if (Match == BaseFuncProf.end()) { 2421 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2422 ++ProfOverlap.TestUniqueCount; 2423 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2424 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2425 2426 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2427 2428 double FuncSimilarity = computeSampleFunctionOverlap( 2429 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2430 ProfOverlap.Similarity += 2431 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2432 2433 ++ProfOverlap.UnionCount; 2434 ProfOverlap.UnionSample += FuncStats.SampleSum; 2435 } else { 2436 ++ProfOverlap.OverlapCount; 2437 2438 // Two functions match with each other. Compute function-level overlap and 2439 // aggregate them into profile-level overlap. 2440 FuncOverlap.BaseName = Match->second->getContext(); 2441 assert(BaseStats.count(FuncOverlap.BaseName) && 2442 "BaseStats should have records for all functions in base profile " 2443 "except inlinees"); 2444 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2445 2446 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2447 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2448 FuncOverlap.TestSample); 2449 ProfOverlap.Similarity += 2450 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2451 FuncOverlap.TestSample); 2452 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2453 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2454 2455 // Accumulate the percentage of base unique and test unique samples into 2456 // ProfOverlap. 2457 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2458 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2459 2460 // Remove matched base functions for later reporting functions not found 2461 // in test profile. 2462 BaseFuncProf.erase(Match); 2463 Matched = true; 2464 } 2465 2466 // Print function-level similarity information if specified by options. 2467 assert(TestStats.count(FuncOverlap.TestName) && 2468 "TestStats should have records for all functions in test profile " 2469 "except inlinees"); 2470 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2471 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2472 (Matched && !FuncFilter.NameFilter.empty() && 2473 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2474 std::string::npos)) { 2475 assert(ProfOverlap.BaseSample > 0 && 2476 "Total samples in base profile should be greater than 0"); 2477 FuncOverlap.BaseWeight = 2478 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2479 assert(ProfOverlap.TestSample > 0 && 2480 "Total samples in test profile should be greater than 0"); 2481 FuncOverlap.TestWeight = 2482 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2483 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2484 } 2485 } 2486 2487 // Traverse through functions in base profile but not in test profile. 2488 for (const auto &F : BaseFuncProf) { 2489 assert(BaseStats.count(F.second->getContext()) && 2490 "BaseStats should have records for all functions in base profile " 2491 "except inlinees"); 2492 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2493 ++ProfOverlap.BaseUniqueCount; 2494 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2495 2496 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2497 2498 double FuncSimilarity = computeSampleFunctionOverlap( 2499 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2500 ProfOverlap.Similarity += 2501 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2502 2503 ProfOverlap.UnionSample += FuncStats.SampleSum; 2504 } 2505 2506 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2507 // of floating point accumulations. Make it 1.0 if the difference is below 2508 // Epsilon. 2509 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2510 ? 1 2511 : ProfOverlap.Similarity; 2512 2513 computeHotFuncOverlap(); 2514 } 2515 2516 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2517 const auto &BaseProf = BaseReader->getProfiles(); 2518 for (const auto &I : BaseProf) { 2519 ++ProfOverlap.BaseCount; 2520 FuncSampleStats FuncStats; 2521 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2522 ProfOverlap.BaseSample += FuncStats.SampleSum; 2523 BaseStats.emplace(I.second.getContext(), FuncStats); 2524 } 2525 2526 const auto &TestProf = TestReader->getProfiles(); 2527 for (const auto &I : TestProf) { 2528 ++ProfOverlap.TestCount; 2529 FuncSampleStats FuncStats; 2530 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2531 ProfOverlap.TestSample += FuncStats.SampleSum; 2532 TestStats.emplace(I.second.getContext(), FuncStats); 2533 } 2534 2535 ProfOverlap.BaseName = StringRef(BaseFilename); 2536 ProfOverlap.TestName = StringRef(TestFilename); 2537 } 2538 2539 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2540 using namespace sampleprof; 2541 2542 if (FuncSimilarityDump.empty()) 2543 return; 2544 2545 formatted_raw_ostream FOS(OS); 2546 FOS << "Function-level details:\n"; 2547 FOS << "Base weight"; 2548 FOS.PadToColumn(TestWeightCol); 2549 FOS << "Test weight"; 2550 FOS.PadToColumn(SimilarityCol); 2551 FOS << "Similarity"; 2552 FOS.PadToColumn(OverlapCol); 2553 FOS << "Overlap"; 2554 FOS.PadToColumn(BaseUniqueCol); 2555 FOS << "Base unique"; 2556 FOS.PadToColumn(TestUniqueCol); 2557 FOS << "Test unique"; 2558 FOS.PadToColumn(BaseSampleCol); 2559 FOS << "Base samples"; 2560 FOS.PadToColumn(TestSampleCol); 2561 FOS << "Test samples"; 2562 FOS.PadToColumn(FuncNameCol); 2563 FOS << "Function name\n"; 2564 for (const auto &F : FuncSimilarityDump) { 2565 double OverlapPercent = 2566 F.second.UnionSample > 0 2567 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2568 : 0; 2569 double BaseUniquePercent = 2570 F.second.BaseSample > 0 2571 ? static_cast<double>(F.second.BaseUniqueSample) / 2572 F.second.BaseSample 2573 : 0; 2574 double TestUniquePercent = 2575 F.second.TestSample > 0 2576 ? static_cast<double>(F.second.TestUniqueSample) / 2577 F.second.TestSample 2578 : 0; 2579 2580 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2581 FOS.PadToColumn(TestWeightCol); 2582 FOS << format("%.2f%%", F.second.TestWeight * 100); 2583 FOS.PadToColumn(SimilarityCol); 2584 FOS << format("%.2f%%", F.second.Similarity * 100); 2585 FOS.PadToColumn(OverlapCol); 2586 FOS << format("%.2f%%", OverlapPercent * 100); 2587 FOS.PadToColumn(BaseUniqueCol); 2588 FOS << format("%.2f%%", BaseUniquePercent * 100); 2589 FOS.PadToColumn(TestUniqueCol); 2590 FOS << format("%.2f%%", TestUniquePercent * 100); 2591 FOS.PadToColumn(BaseSampleCol); 2592 FOS << F.second.BaseSample; 2593 FOS.PadToColumn(TestSampleCol); 2594 FOS << F.second.TestSample; 2595 FOS.PadToColumn(FuncNameCol); 2596 FOS << F.second.TestName.toString() << "\n"; 2597 } 2598 } 2599 2600 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2601 OS << "Profile overlap infomation for base_profile: " 2602 << ProfOverlap.BaseName.toString() 2603 << " and test_profile: " << ProfOverlap.TestName.toString() 2604 << "\nProgram level:\n"; 2605 2606 OS << " Whole program profile similarity: " 2607 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2608 2609 assert(ProfOverlap.UnionSample > 0 && 2610 "Total samples in two profile should be greater than 0"); 2611 double OverlapPercent = 2612 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2613 assert(ProfOverlap.BaseSample > 0 && 2614 "Total samples in base profile should be greater than 0"); 2615 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2616 ProfOverlap.BaseSample; 2617 assert(ProfOverlap.TestSample > 0 && 2618 "Total samples in test profile should be greater than 0"); 2619 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2620 ProfOverlap.TestSample; 2621 2622 OS << " Whole program sample overlap: " 2623 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2624 OS << " percentage of samples unique in base profile: " 2625 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2626 OS << " percentage of samples unique in test profile: " 2627 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2628 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2629 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2630 2631 assert(ProfOverlap.UnionCount > 0 && 2632 "There should be at least one function in two input profiles"); 2633 double FuncOverlapPercent = 2634 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2635 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2636 << "\n"; 2637 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2638 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2639 << "\n"; 2640 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2641 << "\n"; 2642 } 2643 2644 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2645 raw_fd_ostream &OS) const { 2646 assert(HotFuncOverlap.UnionCount > 0 && 2647 "There should be at least one hot function in two input profiles"); 2648 OS << " Hot-function overlap: " 2649 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2650 HotFuncOverlap.UnionCount * 100) 2651 << "\n"; 2652 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2653 OS << " hot functions unique in base profile: " 2654 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2655 OS << " hot functions unique in test profile: " 2656 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2657 2658 assert(HotBlockOverlap.UnionCount > 0 && 2659 "There should be at least one hot block in two input profiles"); 2660 OS << " Hot-block overlap: " 2661 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2662 HotBlockOverlap.UnionCount * 100) 2663 << "\n"; 2664 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2665 OS << " hot blocks unique in base profile: " 2666 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2667 OS << " hot blocks unique in test profile: " 2668 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2669 } 2670 2671 std::error_code SampleOverlapAggregator::loadProfiles() { 2672 using namespace sampleprof; 2673 2674 LLVMContext Context; 2675 auto FS = vfs::getRealFileSystem(); 2676 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2677 FSDiscriminatorPassOption); 2678 if (std::error_code EC = BaseReaderOrErr.getError()) 2679 exitWithErrorCode(EC, BaseFilename); 2680 2681 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2682 FSDiscriminatorPassOption); 2683 if (std::error_code EC = TestReaderOrErr.getError()) 2684 exitWithErrorCode(EC, TestFilename); 2685 2686 BaseReader = std::move(BaseReaderOrErr.get()); 2687 TestReader = std::move(TestReaderOrErr.get()); 2688 2689 if (std::error_code EC = BaseReader->read()) 2690 exitWithErrorCode(EC, BaseFilename); 2691 if (std::error_code EC = TestReader->read()) 2692 exitWithErrorCode(EC, TestFilename); 2693 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2694 exitWithError( 2695 "cannot compare probe-based profile with non-probe-based profile"); 2696 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2697 exitWithError("cannot compare CS profile with non-CS profile"); 2698 2699 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2700 // profile summary. 2701 ProfileSummary &BasePS = BaseReader->getSummary(); 2702 ProfileSummary &TestPS = TestReader->getSummary(); 2703 BaseHotThreshold = 2704 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2705 TestHotThreshold = 2706 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2707 2708 return std::error_code(); 2709 } 2710 2711 void overlapSampleProfile(const std::string &BaseFilename, 2712 const std::string &TestFilename, 2713 const OverlapFuncFilters &FuncFilter, 2714 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2715 using namespace sampleprof; 2716 2717 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2718 // report 2--3 places after decimal point in percentage numbers. 2719 SampleOverlapAggregator OverlapAggr( 2720 BaseFilename, TestFilename, 2721 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2722 if (std::error_code EC = OverlapAggr.loadProfiles()) 2723 exitWithErrorCode(EC); 2724 2725 OverlapAggr.initializeSampleProfileOverlap(); 2726 if (OverlapAggr.detectZeroSampleProfile(OS)) 2727 return; 2728 2729 OverlapAggr.computeSampleProfileOverlap(OS); 2730 2731 OverlapAggr.dumpProgramSummary(OS); 2732 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2733 OverlapAggr.dumpFuncSimilarity(OS); 2734 } 2735 2736 static int overlap_main() { 2737 std::error_code EC; 2738 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2739 if (EC) 2740 exitWithErrorCode(EC, OutputFilename); 2741 2742 if (ProfileKind == instr) 2743 overlapInstrProfile(BaseFilename, TestFilename, 2744 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2745 OS, IsCS); 2746 else 2747 overlapSampleProfile(BaseFilename, TestFilename, 2748 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2749 SimilarityCutoff, OS); 2750 2751 return 0; 2752 } 2753 2754 namespace { 2755 struct ValueSitesStats { 2756 ValueSitesStats() = default; 2757 uint64_t TotalNumValueSites = 0; 2758 uint64_t TotalNumValueSitesWithValueProfile = 0; 2759 uint64_t TotalNumValues = 0; 2760 std::vector<unsigned> ValueSitesHistogram; 2761 }; 2762 } // namespace 2763 2764 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2765 ValueSitesStats &Stats, raw_fd_ostream &OS, 2766 InstrProfSymtab *Symtab) { 2767 uint32_t NS = Func.getNumValueSites(VK); 2768 Stats.TotalNumValueSites += NS; 2769 for (size_t I = 0; I < NS; ++I) { 2770 auto VD = Func.getValueArrayForSite(VK, I); 2771 uint32_t NV = VD.size(); 2772 if (NV == 0) 2773 continue; 2774 Stats.TotalNumValues += NV; 2775 Stats.TotalNumValueSitesWithValueProfile++; 2776 if (NV > Stats.ValueSitesHistogram.size()) 2777 Stats.ValueSitesHistogram.resize(NV, 0); 2778 Stats.ValueSitesHistogram[NV - 1]++; 2779 2780 uint64_t SiteSum = 0; 2781 for (const auto &V : VD) 2782 SiteSum += V.Count; 2783 if (SiteSum == 0) 2784 SiteSum = 1; 2785 2786 for (const auto &V : VD) { 2787 OS << "\t[ " << format("%2u", I) << ", "; 2788 if (Symtab == nullptr) 2789 OS << format("%4" PRIu64, V.Value); 2790 else 2791 OS << Symtab->getFuncOrVarName(V.Value); 2792 OS << ", " << format("%10" PRId64, V.Count) << " ] (" 2793 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n"; 2794 } 2795 } 2796 } 2797 2798 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2799 ValueSitesStats &Stats) { 2800 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2801 OS << " Total number of sites with values: " 2802 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2803 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2804 2805 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2806 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2807 if (Stats.ValueSitesHistogram[I] > 0) 2808 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2809 } 2810 } 2811 2812 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2813 if (SFormat == ShowFormat::Json) 2814 exitWithError("JSON output is not supported for instr profiles"); 2815 if (SFormat == ShowFormat::Yaml) 2816 exitWithError("YAML output is not supported for instr profiles"); 2817 auto FS = vfs::getRealFileSystem(); 2818 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2819 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2820 if (ShowDetailedSummary && Cutoffs.empty()) { 2821 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2822 } 2823 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2824 if (Error E = ReaderOrErr.takeError()) 2825 exitWithError(std::move(E), Filename); 2826 2827 auto Reader = std::move(ReaderOrErr.get()); 2828 bool IsIRInstr = Reader->isIRLevelProfile(); 2829 size_t ShownFunctions = 0; 2830 size_t BelowCutoffFunctions = 0; 2831 int NumVPKind = IPVK_Last - IPVK_First + 1; 2832 std::vector<ValueSitesStats> VPStats(NumVPKind); 2833 2834 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2835 const std::pair<std::string, uint64_t> &v2) { 2836 return v1.second > v2.second; 2837 }; 2838 2839 std::priority_queue<std::pair<std::string, uint64_t>, 2840 std::vector<std::pair<std::string, uint64_t>>, 2841 decltype(MinCmp)> 2842 HottestFuncs(MinCmp); 2843 2844 if (!TextFormat && OnlyListBelow) { 2845 OS << "The list of functions with the maximum counter less than " 2846 << ShowValueCutoff << ":\n"; 2847 } 2848 2849 // Add marker so that IR-level instrumentation round-trips properly. 2850 if (TextFormat && IsIRInstr) 2851 OS << ":ir\n"; 2852 2853 for (const auto &Func : *Reader) { 2854 if (Reader->isIRLevelProfile()) { 2855 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2856 if (FuncIsCS != ShowCS) 2857 continue; 2858 } 2859 bool Show = ShowAllFunctions || 2860 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2861 2862 bool doTextFormatDump = (Show && TextFormat); 2863 2864 if (doTextFormatDump) { 2865 InstrProfSymtab &Symtab = Reader->getSymtab(); 2866 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2867 OS); 2868 continue; 2869 } 2870 2871 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2872 Builder.addRecord(Func); 2873 2874 if (ShowCovered) { 2875 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2876 OS << Func.Name << "\n"; 2877 continue; 2878 } 2879 2880 uint64_t FuncMax = 0; 2881 uint64_t FuncSum = 0; 2882 2883 auto PseudoKind = Func.getCountPseudoKind(); 2884 if (PseudoKind != InstrProfRecord::NotPseudo) { 2885 if (Show) { 2886 if (!ShownFunctions) 2887 OS << "Counters:\n"; 2888 ++ShownFunctions; 2889 OS << " " << Func.Name << ":\n" 2890 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2891 << " Counters: " << Func.Counts.size(); 2892 if (PseudoKind == InstrProfRecord::PseudoHot) 2893 OS << " <PseudoHot>\n"; 2894 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2895 OS << " <PseudoWarm>\n"; 2896 else 2897 llvm_unreachable("Unknown PseudoKind"); 2898 } 2899 continue; 2900 } 2901 2902 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2903 FuncMax = std::max(FuncMax, Func.Counts[I]); 2904 FuncSum += Func.Counts[I]; 2905 } 2906 2907 if (FuncMax < ShowValueCutoff) { 2908 ++BelowCutoffFunctions; 2909 if (OnlyListBelow) { 2910 OS << " " << Func.Name << ": (Max = " << FuncMax 2911 << " Sum = " << FuncSum << ")\n"; 2912 } 2913 continue; 2914 } else if (OnlyListBelow) 2915 continue; 2916 2917 if (TopNFunctions) { 2918 if (HottestFuncs.size() == TopNFunctions) { 2919 if (HottestFuncs.top().second < FuncMax) { 2920 HottestFuncs.pop(); 2921 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2922 } 2923 } else 2924 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2925 } 2926 2927 if (Show) { 2928 if (!ShownFunctions) 2929 OS << "Counters:\n"; 2930 2931 ++ShownFunctions; 2932 2933 OS << " " << Func.Name << ":\n" 2934 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2935 << " Counters: " << Func.Counts.size() << "\n"; 2936 if (!IsIRInstr) 2937 OS << " Function count: " << Func.Counts[0] << "\n"; 2938 2939 if (ShowIndirectCallTargets) 2940 OS << " Indirect Call Site Count: " 2941 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2942 2943 if (ShowVTables) 2944 OS << " Number of instrumented vtables: " 2945 << Func.getNumValueSites(IPVK_VTableTarget) << "\n"; 2946 2947 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2948 if (ShowMemOPSizes && NumMemOPCalls > 0) 2949 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2950 << "\n"; 2951 2952 if (ShowCounts) { 2953 OS << " Block counts: ["; 2954 size_t Start = (IsIRInstr ? 0 : 1); 2955 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2956 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2957 } 2958 OS << "]\n"; 2959 } 2960 2961 if (ShowIndirectCallTargets) { 2962 OS << " Indirect Target Results:\n"; 2963 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2964 VPStats[IPVK_IndirectCallTarget], OS, 2965 &(Reader->getSymtab())); 2966 } 2967 2968 if (ShowVTables) { 2969 OS << " VTable Results:\n"; 2970 traverseAllValueSites(Func, IPVK_VTableTarget, 2971 VPStats[IPVK_VTableTarget], OS, 2972 &(Reader->getSymtab())); 2973 } 2974 2975 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2976 OS << " Memory Intrinsic Size Results:\n"; 2977 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2978 nullptr); 2979 } 2980 } 2981 } 2982 if (Reader->hasError()) 2983 exitWithError(Reader->getError(), Filename); 2984 2985 if (TextFormat || ShowCovered) 2986 return 0; 2987 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2988 bool IsIR = Reader->isIRLevelProfile(); 2989 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2990 if (IsIR) 2991 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2992 OS << "\n"; 2993 if (ShowAllFunctions || !FuncNameFilter.empty()) 2994 OS << "Functions shown: " << ShownFunctions << "\n"; 2995 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2996 if (ShowValueCutoff > 0) { 2997 OS << "Number of functions with maximum count (< " << ShowValueCutoff 2998 << "): " << BelowCutoffFunctions << "\n"; 2999 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 3000 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 3001 } 3002 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 3003 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 3004 3005 if (TopNFunctions) { 3006 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 3007 while (!HottestFuncs.empty()) { 3008 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 3009 HottestFuncs.pop(); 3010 } 3011 OS << "Top " << TopNFunctions 3012 << " functions with the largest internal block counts: \n"; 3013 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 3014 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 3015 } 3016 3017 if (ShownFunctions && ShowIndirectCallTargets) { 3018 OS << "Statistics for indirect call sites profile:\n"; 3019 showValueSitesStats(OS, IPVK_IndirectCallTarget, 3020 VPStats[IPVK_IndirectCallTarget]); 3021 } 3022 3023 if (ShownFunctions && ShowVTables) { 3024 OS << "Statistics for vtable profile:\n"; 3025 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]); 3026 } 3027 3028 if (ShownFunctions && ShowMemOPSizes) { 3029 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 3030 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 3031 } 3032 3033 if (ShowDetailedSummary) { 3034 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 3035 OS << "Total count: " << PS->getTotalCount() << "\n"; 3036 PS->printDetailedSummary(OS); 3037 } 3038 3039 if (ShowBinaryIds) 3040 if (Error E = Reader->printBinaryIds(OS)) 3041 exitWithError(std::move(E), Filename); 3042 3043 if (ShowProfileVersion) 3044 OS << "Profile version: " << Reader->getVersion() << "\n"; 3045 3046 if (ShowTemporalProfTraces) { 3047 auto &Traces = Reader->getTemporalProfTraces(); 3048 OS << "Temporal Profile Traces (samples=" << Traces.size() 3049 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 3050 for (unsigned i = 0; i < Traces.size(); i++) { 3051 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 3052 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 3053 for (auto &NameRef : Traces[i].FunctionNameRefs) 3054 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 3055 } 3056 } 3057 3058 return 0; 3059 } 3060 3061 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 3062 raw_fd_ostream &OS) { 3063 if (!Reader->dumpSectionInfo(OS)) { 3064 WithColor::warning() << "-show-sec-info-only is only supported for " 3065 << "sample profile in extbinary format and is " 3066 << "ignored for other formats.\n"; 3067 return; 3068 } 3069 } 3070 3071 namespace { 3072 struct HotFuncInfo { 3073 std::string FuncName; 3074 uint64_t TotalCount = 0; 3075 double TotalCountPercent = 0.0f; 3076 uint64_t MaxCount = 0; 3077 uint64_t EntryCount = 0; 3078 3079 HotFuncInfo() = default; 3080 3081 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 3082 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 3083 MaxCount(MS), EntryCount(ES) {} 3084 }; 3085 } // namespace 3086 3087 // Print out detailed information about hot functions in PrintValues vector. 3088 // Users specify titles and offset of every columns through ColumnTitle and 3089 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 3090 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 3091 // print out or let it be an empty string. 3092 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 3093 const std::vector<int> &ColumnOffset, 3094 const std::vector<HotFuncInfo> &PrintValues, 3095 uint64_t HotFuncCount, uint64_t TotalFuncCount, 3096 uint64_t HotProfCount, uint64_t TotalProfCount, 3097 const std::string &HotFuncMetric, 3098 uint32_t TopNFunctions, raw_fd_ostream &OS) { 3099 assert(ColumnOffset.size() == ColumnTitle.size() && 3100 "ColumnOffset and ColumnTitle should have the same size"); 3101 assert(ColumnTitle.size() >= 4 && 3102 "ColumnTitle should have at least 4 elements"); 3103 assert(TotalFuncCount > 0 && 3104 "There should be at least one function in the profile"); 3105 double TotalProfPercent = 0; 3106 if (TotalProfCount > 0) 3107 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 3108 3109 formatted_raw_ostream FOS(OS); 3110 FOS << HotFuncCount << " out of " << TotalFuncCount 3111 << " functions with profile (" 3112 << format("%.2f%%", 3113 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 3114 << ") are considered hot functions"; 3115 if (!HotFuncMetric.empty()) 3116 FOS << " (" << HotFuncMetric << ")"; 3117 FOS << ".\n"; 3118 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 3119 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 3120 3121 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 3122 FOS.PadToColumn(ColumnOffset[I]); 3123 FOS << ColumnTitle[I]; 3124 } 3125 FOS << "\n"; 3126 3127 uint32_t Count = 0; 3128 for (const auto &R : PrintValues) { 3129 if (TopNFunctions && (Count++ == TopNFunctions)) 3130 break; 3131 FOS.PadToColumn(ColumnOffset[0]); 3132 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 3133 FOS.PadToColumn(ColumnOffset[1]); 3134 FOS << R.MaxCount; 3135 FOS.PadToColumn(ColumnOffset[2]); 3136 FOS << R.EntryCount; 3137 FOS.PadToColumn(ColumnOffset[3]); 3138 FOS << R.FuncName << "\n"; 3139 } 3140 } 3141 3142 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 3143 ProfileSummary &PS, uint32_t TopN, 3144 raw_fd_ostream &OS) { 3145 using namespace sampleprof; 3146 3147 const uint32_t HotFuncCutoff = 990000; 3148 auto &SummaryVector = PS.getDetailedSummary(); 3149 uint64_t MinCountThreshold = 0; 3150 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 3151 if (SummaryEntry.Cutoff == HotFuncCutoff) { 3152 MinCountThreshold = SummaryEntry.MinCount; 3153 break; 3154 } 3155 } 3156 3157 // Traverse all functions in the profile and keep only hot functions. 3158 // The following loop also calculates the sum of total samples of all 3159 // functions. 3160 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 3161 std::greater<uint64_t>> 3162 HotFunc; 3163 uint64_t ProfileTotalSample = 0; 3164 uint64_t HotFuncSample = 0; 3165 uint64_t HotFuncCount = 0; 3166 3167 for (const auto &I : Profiles) { 3168 FuncSampleStats FuncStats; 3169 const FunctionSamples &FuncProf = I.second; 3170 ProfileTotalSample += FuncProf.getTotalSamples(); 3171 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 3172 3173 if (isFunctionHot(FuncStats, MinCountThreshold)) { 3174 HotFunc.emplace(FuncProf.getTotalSamples(), 3175 std::make_pair(&(I.second), FuncStats.MaxSample)); 3176 HotFuncSample += FuncProf.getTotalSamples(); 3177 ++HotFuncCount; 3178 } 3179 } 3180 3181 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 3182 "Entry sample", "Function name"}; 3183 std::vector<int> ColumnOffset{0, 24, 42, 58}; 3184 std::string Metric = 3185 std::string("max sample >= ") + std::to_string(MinCountThreshold); 3186 std::vector<HotFuncInfo> PrintValues; 3187 for (const auto &FuncPair : HotFunc) { 3188 const FunctionSamples &Func = *FuncPair.second.first; 3189 double TotalSamplePercent = 3190 (ProfileTotalSample > 0) 3191 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 3192 : 0; 3193 PrintValues.emplace_back( 3194 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 3195 TotalSamplePercent, FuncPair.second.second, 3196 Func.getHeadSamplesEstimate())); 3197 } 3198 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 3199 Profiles.size(), HotFuncSample, ProfileTotalSample, 3200 Metric, TopN, OS); 3201 3202 return 0; 3203 } 3204 3205 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3206 if (SFormat == ShowFormat::Yaml) 3207 exitWithError("YAML output is not supported for sample profiles"); 3208 using namespace sampleprof; 3209 LLVMContext Context; 3210 auto FS = vfs::getRealFileSystem(); 3211 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3212 FSDiscriminatorPassOption); 3213 if (std::error_code EC = ReaderOrErr.getError()) 3214 exitWithErrorCode(EC, Filename); 3215 3216 auto Reader = std::move(ReaderOrErr.get()); 3217 if (ShowSectionInfoOnly) { 3218 showSectionInfo(Reader.get(), OS); 3219 return 0; 3220 } 3221 3222 if (std::error_code EC = Reader->read()) 3223 exitWithErrorCode(EC, Filename); 3224 3225 if (ShowAllFunctions || FuncNameFilter.empty()) { 3226 if (SFormat == ShowFormat::Json) 3227 Reader->dumpJson(OS); 3228 else 3229 Reader->dump(OS); 3230 } else { 3231 if (SFormat == ShowFormat::Json) 3232 exitWithError( 3233 "the JSON format is supported only when all functions are to " 3234 "be printed"); 3235 3236 // TODO: parse context string to support filtering by contexts. 3237 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3238 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3239 } 3240 3241 if (ShowProfileSymbolList) { 3242 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3243 Reader->getProfileSymbolList(); 3244 ReaderList->dump(OS); 3245 } 3246 3247 if (ShowDetailedSummary) { 3248 auto &PS = Reader->getSummary(); 3249 PS.printSummary(OS); 3250 PS.printDetailedSummary(OS); 3251 } 3252 3253 if (ShowHotFuncList || TopNFunctions) 3254 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3255 TopNFunctions, OS); 3256 3257 return 0; 3258 } 3259 3260 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3261 if (SFormat == ShowFormat::Json) 3262 exitWithError("JSON output is not supported for MemProf"); 3263 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3264 Filename, ProfiledBinary, /*KeepNames=*/true); 3265 if (Error E = ReaderOr.takeError()) 3266 // Since the error can be related to the profile or the binary we do not 3267 // pass whence. Instead additional context is provided where necessary in 3268 // the error message. 3269 exitWithError(std::move(E), /*Whence*/ ""); 3270 3271 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3272 ReaderOr.get().release()); 3273 3274 Reader->printYAML(OS); 3275 return 0; 3276 } 3277 3278 static int showDebugInfoCorrelation(const std::string &Filename, 3279 ShowFormat SFormat, raw_fd_ostream &OS) { 3280 if (SFormat == ShowFormat::Json) 3281 exitWithError("JSON output is not supported for debug info correlation"); 3282 std::unique_ptr<InstrProfCorrelator> Correlator; 3283 if (auto Err = 3284 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3285 .moveInto(Correlator)) 3286 exitWithError(std::move(Err), Filename); 3287 if (SFormat == ShowFormat::Yaml) { 3288 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3289 exitWithError(std::move(Err), Filename); 3290 return 0; 3291 } 3292 3293 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3294 exitWithError(std::move(Err), Filename); 3295 3296 InstrProfSymtab Symtab; 3297 if (auto Err = Symtab.create( 3298 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3299 exitWithError(std::move(Err), Filename); 3300 3301 if (ShowProfileSymbolList) 3302 Symtab.dumpNames(OS); 3303 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3304 // counters the section holds. 3305 if (ShowDetailedSummary) 3306 OS << "Counters section size: 0x" 3307 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3308 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3309 3310 return 0; 3311 } 3312 3313 static int show_main(StringRef ProgName) { 3314 if (Filename.empty() && DebugInfoFilename.empty()) 3315 exitWithError( 3316 "the positional argument '<profdata-file>' is required unless '--" + 3317 DebugInfoFilename.ArgStr + "' is provided"); 3318 3319 if (Filename == OutputFilename) { 3320 errs() << ProgName 3321 << " show: Input file name cannot be the same as the output file " 3322 "name!\n"; 3323 return 1; 3324 } 3325 if (JsonFormat) 3326 SFormat = ShowFormat::Json; 3327 3328 std::error_code EC; 3329 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3330 if (EC) 3331 exitWithErrorCode(EC, OutputFilename); 3332 3333 if (ShowAllFunctions && !FuncNameFilter.empty()) 3334 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3335 3336 if (!DebugInfoFilename.empty()) 3337 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3338 3339 if (ShowProfileKind == instr) 3340 return showInstrProfile(SFormat, OS); 3341 if (ShowProfileKind == sample) 3342 return showSampleProfile(SFormat, OS); 3343 return showMemProfProfile(SFormat, OS); 3344 } 3345 3346 static int order_main() { 3347 std::error_code EC; 3348 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3349 if (EC) 3350 exitWithErrorCode(EC, OutputFilename); 3351 auto FS = vfs::getRealFileSystem(); 3352 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3353 if (Error E = ReaderOrErr.takeError()) 3354 exitWithError(std::move(E), Filename); 3355 3356 auto Reader = std::move(ReaderOrErr.get()); 3357 for (auto &I : *Reader) { 3358 // Read all entries 3359 (void)I; 3360 } 3361 ArrayRef Traces = Reader->getTemporalProfTraces(); 3362 if (NumTestTraces && NumTestTraces >= Traces.size()) 3363 exitWithError( 3364 "--" + NumTestTraces.ArgStr + 3365 " must be smaller than the total number of traces: expected: < " + 3366 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces)); 3367 ArrayRef TestTraces = Traces.take_back(NumTestTraces); 3368 Traces = Traces.drop_back(NumTestTraces); 3369 3370 std::vector<BPFunctionNode> Nodes; 3371 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes); 3372 BalancedPartitioningConfig Config; 3373 BalancedPartitioning BP(Config); 3374 BP.run(Nodes); 3375 3376 OS << "# Ordered " << Nodes.size() << " functions\n"; 3377 if (!TestTraces.empty()) { 3378 // Since we don't know the symbol sizes, we assume 32 functions per page. 3379 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber; 3380 for (auto &Node : Nodes) 3381 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32; 3382 3383 SmallSet<unsigned, 0> TouchedPages; 3384 unsigned Area = 0; 3385 for (auto &Trace : TestTraces) { 3386 for (auto Id : Trace.FunctionNameRefs) { 3387 auto It = IdToPageNumber.find(Id); 3388 if (It == IdToPageNumber.end()) 3389 continue; 3390 TouchedPages.insert(It->getSecond()); 3391 Area += TouchedPages.size(); 3392 } 3393 TouchedPages.clear(); 3394 } 3395 OS << "# Total area under the page fault curve: " << (float)Area << "\n"; 3396 } 3397 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3398 "linkage and this output does not take that into account. Some " 3399 "post-processing may be required before passing to the linker via " 3400 "-order_file.\n"; 3401 for (auto &N : Nodes) { 3402 auto [Filename, ParsedFuncName] = 3403 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3404 if (!Filename.empty()) 3405 OS << "# " << Filename << "\n"; 3406 OS << ParsedFuncName << "\n"; 3407 } 3408 return 0; 3409 } 3410 3411 int llvm_profdata_main(int argc, char **argvNonConst, 3412 const llvm::ToolContext &) { 3413 const char **argv = const_cast<const char **>(argvNonConst); 3414 3415 StringRef ProgName(sys::path::filename(argv[0])); 3416 3417 if (argc < 2) { 3418 errs() 3419 << ProgName 3420 << ": No subcommand specified! Run llvm-profdata --help for usage.\n"; 3421 return 1; 3422 } 3423 3424 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3425 3426 if (ShowSubcommand) 3427 return show_main(ProgName); 3428 3429 if (OrderSubcommand) 3430 return order_main(); 3431 3432 if (OverlapSubcommand) 3433 return overlap_main(); 3434 3435 if (MergeSubcommand) 3436 return merge_main(ProgName); 3437 3438 errs() << ProgName 3439 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3440 return 1; 3441 } 3442