1 //===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This utility provides a simple wrapper around the LLVM Execution Engines, 10 // which allow the direct execution of LLVM programs through a Just-In-Time 11 // compiler, or through an interpreter if no JIT is available for this platform. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ForwardingMemoryManager.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/Bitcode/BitcodeReader.h" 18 #include "llvm/CodeGen/CommandFlags.h" 19 #include "llvm/CodeGen/LinkAllCodegenComponents.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/ExecutionEngine/GenericValue.h" 22 #include "llvm/ExecutionEngine/Interpreter.h" 23 #include "llvm/ExecutionEngine/JITEventListener.h" 24 #include "llvm/ExecutionEngine/JITSymbol.h" 25 #include "llvm/ExecutionEngine/MCJIT.h" 26 #include "llvm/ExecutionEngine/ObjectCache.h" 27 #include "llvm/ExecutionEngine/Orc/AbsoluteSymbols.h" 28 #include "llvm/ExecutionEngine/Orc/DebugUtils.h" 29 #include "llvm/ExecutionEngine/Orc/Debugging/DebuggerSupport.h" 30 #include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h" 31 #include "llvm/ExecutionEngine/Orc/EPCGenericRTDyldMemoryManager.h" 32 #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" 33 #include "llvm/ExecutionEngine/Orc/IRPartitionLayer.h" 34 #include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h" 35 #include "llvm/ExecutionEngine/Orc/LLJIT.h" 36 #include "llvm/ExecutionEngine/Orc/ObjectTransformLayer.h" 37 #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h" 38 #include "llvm/ExecutionEngine/Orc/SimpleRemoteEPC.h" 39 #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h" 40 #include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h" 41 #include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h" 42 #include "llvm/ExecutionEngine/Orc/TargetProcess/TargetExecutionUtils.h" 43 #include "llvm/ExecutionEngine/SectionMemoryManager.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Verifier.h" 49 #include "llvm/IRReader/IRReader.h" 50 #include "llvm/Object/Archive.h" 51 #include "llvm/Object/ObjectFile.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/DynamicLibrary.h" 56 #include "llvm/Support/Format.h" 57 #include "llvm/Support/InitLLVM.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/Memory.h" 60 #include "llvm/Support/MemoryBuffer.h" 61 #include "llvm/Support/Path.h" 62 #include "llvm/Support/PluginLoader.h" 63 #include "llvm/Support/Process.h" 64 #include "llvm/Support/Program.h" 65 #include "llvm/Support/SourceMgr.h" 66 #include "llvm/Support/TargetSelect.h" 67 #include "llvm/Support/ToolOutputFile.h" 68 #include "llvm/Support/WithColor.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/TargetParser/Triple.h" 71 #include <cerrno> 72 #include <optional> 73 74 #if !defined(_MSC_VER) && !defined(__MINGW32__) 75 #include <unistd.h> 76 #else 77 #include <io.h> 78 #endif 79 80 #ifdef __CYGWIN__ 81 #include <cygwin/version.h> 82 #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007 83 #define DO_NOTHING_ATEXIT 1 84 #endif 85 #endif 86 87 using namespace llvm; 88 89 static codegen::RegisterCodeGenFlags CGF; 90 91 #define DEBUG_TYPE "lli" 92 93 namespace { 94 95 enum class JITKind { MCJIT, Orc, OrcLazy }; 96 enum class JITLinkerKind { Default, RuntimeDyld, JITLink }; 97 98 cl::opt<std::string> 99 InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-")); 100 101 cl::list<std::string> 102 InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>...")); 103 104 cl::opt<bool> ForceInterpreter("force-interpreter", 105 cl::desc("Force interpretation: disable JIT"), 106 cl::init(false)); 107 108 cl::opt<JITKind> UseJITKind( 109 "jit-kind", cl::desc("Choose underlying JIT kind."), 110 cl::init(JITKind::Orc), 111 cl::values(clEnumValN(JITKind::MCJIT, "mcjit", "MCJIT"), 112 clEnumValN(JITKind::Orc, "orc", "Orc JIT"), 113 clEnumValN(JITKind::OrcLazy, "orc-lazy", 114 "Orc-based lazy JIT."))); 115 116 cl::opt<JITLinkerKind> 117 JITLinker("jit-linker", cl::desc("Choose the dynamic linker/loader."), 118 cl::init(JITLinkerKind::Default), 119 cl::values(clEnumValN(JITLinkerKind::Default, "default", 120 "Default for platform and JIT-kind"), 121 clEnumValN(JITLinkerKind::RuntimeDyld, "rtdyld", 122 "RuntimeDyld"), 123 clEnumValN(JITLinkerKind::JITLink, "jitlink", 124 "Orc-specific linker"))); 125 cl::opt<std::string> OrcRuntime("orc-runtime", 126 cl::desc("Use ORC runtime from given path"), 127 cl::init("")); 128 129 cl::opt<unsigned> 130 LazyJITCompileThreads("compile-threads", 131 cl::desc("Choose the number of compile threads " 132 "(jit-kind=orc-lazy only)"), 133 cl::init(0)); 134 135 cl::list<std::string> 136 ThreadEntryPoints("thread-entry", 137 cl::desc("calls the given entry-point on a new thread " 138 "(jit-kind=orc-lazy only)")); 139 140 cl::opt<bool> PerModuleLazy( 141 "per-module-lazy", 142 cl::desc("Performs lazy compilation on whole module boundaries " 143 "rather than individual functions"), 144 cl::init(false)); 145 146 cl::list<std::string> 147 JITDylibs("jd", 148 cl::desc("Specifies the JITDylib to be used for any subsequent " 149 "-extra-module arguments.")); 150 151 cl::list<std::string> 152 Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking")); 153 154 // The MCJIT supports building for a target address space separate from 155 // the JIT compilation process. Use a forked process and a copying 156 // memory manager with IPC to execute using this functionality. 157 cl::opt<bool> RemoteMCJIT("remote-mcjit", 158 cl::desc("Execute MCJIT'ed code in a separate process."), 159 cl::init(false)); 160 161 // Manually specify the child process for remote execution. This overrides 162 // the simulated remote execution that allocates address space for child 163 // execution. The child process will be executed and will communicate with 164 // lli via stdin/stdout pipes. 165 cl::opt<std::string> 166 ChildExecPath("mcjit-remote-process", 167 cl::desc("Specify the filename of the process to launch " 168 "for remote MCJIT execution. If none is specified," 169 "\n\tremote execution will be simulated in-process."), 170 cl::value_desc("filename"), cl::init("")); 171 172 // Determine optimization level. 173 cl::opt<char> OptLevel("O", 174 cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] " 175 "(default = '-O2')"), 176 cl::Prefix, cl::init('2')); 177 178 cl::opt<std::string> 179 TargetTriple("mtriple", cl::desc("Override target triple for module")); 180 181 cl::opt<std::string> 182 EntryFunc("entry-function", 183 cl::desc("Specify the entry function (default = 'main') " 184 "of the executable"), 185 cl::value_desc("function"), 186 cl::init("main")); 187 188 cl::list<std::string> 189 ExtraModules("extra-module", 190 cl::desc("Extra modules to be loaded"), 191 cl::value_desc("input bitcode")); 192 193 cl::list<std::string> 194 ExtraObjects("extra-object", 195 cl::desc("Extra object files to be loaded"), 196 cl::value_desc("input object")); 197 198 cl::list<std::string> 199 ExtraArchives("extra-archive", 200 cl::desc("Extra archive files to be loaded"), 201 cl::value_desc("input archive")); 202 203 cl::opt<bool> 204 EnableCacheManager("enable-cache-manager", 205 cl::desc("Use cache manager to save/load modules"), 206 cl::init(false)); 207 208 cl::opt<std::string> 209 ObjectCacheDir("object-cache-dir", 210 cl::desc("Directory to store cached object files " 211 "(must be user writable)"), 212 cl::init("")); 213 214 cl::opt<std::string> 215 FakeArgv0("fake-argv0", 216 cl::desc("Override the 'argv[0]' value passed into the executing" 217 " program"), cl::value_desc("executable")); 218 219 cl::opt<bool> 220 DisableCoreFiles("disable-core-files", cl::Hidden, 221 cl::desc("Disable emission of core files if possible")); 222 223 cl::opt<bool> 224 NoLazyCompilation("disable-lazy-compilation", 225 cl::desc("Disable JIT lazy compilation"), 226 cl::init(false)); 227 228 cl::opt<bool> 229 GenerateSoftFloatCalls("soft-float", 230 cl::desc("Generate software floating point library calls"), 231 cl::init(false)); 232 233 cl::opt<bool> NoProcessSymbols( 234 "no-process-syms", 235 cl::desc("Do not resolve lli process symbols in JIT'd code"), 236 cl::init(false)); 237 238 enum class LLJITPlatform { Inactive, Auto, ExecutorNative, GenericIR }; 239 240 cl::opt<LLJITPlatform> Platform( 241 "lljit-platform", cl::desc("Platform to use with LLJIT"), 242 cl::init(LLJITPlatform::Auto), 243 cl::values(clEnumValN(LLJITPlatform::Auto, "Auto", 244 "Like 'ExecutorNative' if ORC runtime " 245 "provided, otherwise like 'GenericIR'"), 246 clEnumValN(LLJITPlatform::ExecutorNative, "ExecutorNative", 247 "Use the native platform for the executor." 248 "Requires -orc-runtime"), 249 clEnumValN(LLJITPlatform::GenericIR, "GenericIR", 250 "Use LLJITGenericIRPlatform"), 251 clEnumValN(LLJITPlatform::Inactive, "Inactive", 252 "Disable platform support explicitly")), 253 cl::Hidden); 254 255 enum class DumpKind { 256 NoDump, 257 DumpFuncsToStdOut, 258 DumpModsToStdOut, 259 DumpModsToDisk, 260 DumpDebugDescriptor, 261 DumpDebugObjects, 262 }; 263 264 cl::opt<DumpKind> OrcDumpKind( 265 "orc-lazy-debug", cl::desc("Debug dumping for the orc-lazy JIT."), 266 cl::init(DumpKind::NoDump), 267 cl::values( 268 clEnumValN(DumpKind::NoDump, "no-dump", "Don't dump anything."), 269 clEnumValN(DumpKind::DumpFuncsToStdOut, "funcs-to-stdout", 270 "Dump function names to stdout."), 271 clEnumValN(DumpKind::DumpModsToStdOut, "mods-to-stdout", 272 "Dump modules to stdout."), 273 clEnumValN(DumpKind::DumpModsToDisk, "mods-to-disk", 274 "Dump modules to the current " 275 "working directory. (WARNING: " 276 "will overwrite existing files)."), 277 clEnumValN(DumpKind::DumpDebugDescriptor, "jit-debug-descriptor", 278 "Dump __jit_debug_descriptor contents to stdout"), 279 clEnumValN(DumpKind::DumpDebugObjects, "jit-debug-objects", 280 "Dump __jit_debug_descriptor in-memory debug " 281 "objects as tool output")), 282 cl::Hidden); 283 284 ExitOnError ExitOnErr; 285 } 286 287 LLVM_ATTRIBUTE_USED void linkComponents() { 288 errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper 289 << (void *)&llvm_orc_deregisterEHFrameSectionWrapper 290 << (void *)&llvm_orc_registerJITLoaderGDBWrapper 291 << (void *)&llvm_orc_registerJITLoaderGDBAllocAction; 292 } 293 294 //===----------------------------------------------------------------------===// 295 // Object cache 296 // 297 // This object cache implementation writes cached objects to disk to the 298 // directory specified by CacheDir, using a filename provided in the module 299 // descriptor. The cache tries to load a saved object using that path if the 300 // file exists. CacheDir defaults to "", in which case objects are cached 301 // alongside their originating bitcodes. 302 // 303 class LLIObjectCache : public ObjectCache { 304 public: 305 LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) { 306 // Add trailing '/' to cache dir if necessary. 307 if (!this->CacheDir.empty() && 308 this->CacheDir[this->CacheDir.size() - 1] != '/') 309 this->CacheDir += '/'; 310 } 311 ~LLIObjectCache() override {} 312 313 void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override { 314 const std::string &ModuleID = M->getModuleIdentifier(); 315 std::string CacheName; 316 if (!getCacheFilename(ModuleID, CacheName)) 317 return; 318 if (!CacheDir.empty()) { // Create user-defined cache dir. 319 SmallString<128> dir(sys::path::parent_path(CacheName)); 320 sys::fs::create_directories(Twine(dir)); 321 } 322 323 std::error_code EC; 324 raw_fd_ostream outfile(CacheName, EC, sys::fs::OF_None); 325 outfile.write(Obj.getBufferStart(), Obj.getBufferSize()); 326 outfile.close(); 327 } 328 329 std::unique_ptr<MemoryBuffer> getObject(const Module* M) override { 330 const std::string &ModuleID = M->getModuleIdentifier(); 331 std::string CacheName; 332 if (!getCacheFilename(ModuleID, CacheName)) 333 return nullptr; 334 // Load the object from the cache filename 335 ErrorOr<std::unique_ptr<MemoryBuffer>> IRObjectBuffer = 336 MemoryBuffer::getFile(CacheName, /*IsText=*/false, 337 /*RequiresNullTerminator=*/false); 338 // If the file isn't there, that's OK. 339 if (!IRObjectBuffer) 340 return nullptr; 341 // MCJIT will want to write into this buffer, and we don't want that 342 // because the file has probably just been mmapped. Instead we make 343 // a copy. The filed-based buffer will be released when it goes 344 // out of scope. 345 return MemoryBuffer::getMemBufferCopy(IRObjectBuffer.get()->getBuffer()); 346 } 347 348 private: 349 std::string CacheDir; 350 351 bool getCacheFilename(StringRef ModID, std::string &CacheName) { 352 if (!ModID.consume_front("file:")) 353 return false; 354 355 std::string CacheSubdir = std::string(ModID); 356 // Transform "X:\foo" => "/X\foo" for convenience on Windows. 357 if (is_style_windows(llvm::sys::path::Style::native) && 358 isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') { 359 CacheSubdir[1] = CacheSubdir[0]; 360 CacheSubdir[0] = '/'; 361 } 362 363 CacheName = CacheDir + CacheSubdir; 364 size_t pos = CacheName.rfind('.'); 365 CacheName.replace(pos, CacheName.length() - pos, ".o"); 366 return true; 367 } 368 }; 369 370 // On Mingw and Cygwin, an external symbol named '__main' is called from the 371 // generated 'main' function to allow static initialization. To avoid linking 372 // problems with remote targets (because lli's remote target support does not 373 // currently handle external linking) we add a secondary module which defines 374 // an empty '__main' function. 375 static void addCygMingExtraModule(ExecutionEngine &EE, LLVMContext &Context, 376 StringRef TargetTripleStr) { 377 IRBuilder<> Builder(Context); 378 Triple TargetTriple(TargetTripleStr); 379 380 // Create a new module. 381 std::unique_ptr<Module> M = std::make_unique<Module>("CygMingHelper", Context); 382 M->setTargetTriple(TargetTripleStr); 383 384 // Create an empty function named "__main". 385 Type *ReturnTy; 386 if (TargetTriple.isArch64Bit()) 387 ReturnTy = Type::getInt64Ty(Context); 388 else 389 ReturnTy = Type::getInt32Ty(Context); 390 Function *Result = 391 Function::Create(FunctionType::get(ReturnTy, {}, false), 392 GlobalValue::ExternalLinkage, "__main", M.get()); 393 394 BasicBlock *BB = BasicBlock::Create(Context, "__main", Result); 395 Builder.SetInsertPoint(BB); 396 Value *ReturnVal = ConstantInt::get(ReturnTy, 0); 397 Builder.CreateRet(ReturnVal); 398 399 // Add this new module to the ExecutionEngine. 400 EE.addModule(std::move(M)); 401 } 402 403 CodeGenOptLevel getOptLevel() { 404 if (auto Level = CodeGenOpt::parseLevel(OptLevel)) 405 return *Level; 406 WithColor::error(errs(), "lli") << "invalid optimization level.\n"; 407 exit(1); 408 } 409 410 [[noreturn]] static void reportError(SMDiagnostic Err, const char *ProgName) { 411 Err.print(ProgName, errs()); 412 exit(1); 413 } 414 415 Error loadDylibs(); 416 int runOrcJIT(const char *ProgName); 417 void disallowOrcOptions(); 418 Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote(); 419 420 //===----------------------------------------------------------------------===// 421 // main Driver function 422 // 423 int main(int argc, char **argv, char * const *envp) { 424 InitLLVM X(argc, argv); 425 426 if (argc > 1) 427 ExitOnErr.setBanner(std::string(argv[0]) + ": "); 428 429 // If we have a native target, initialize it to ensure it is linked in and 430 // usable by the JIT. 431 InitializeNativeTarget(); 432 InitializeNativeTargetAsmPrinter(); 433 InitializeNativeTargetAsmParser(); 434 435 cl::ParseCommandLineOptions(argc, argv, 436 "llvm interpreter & dynamic compiler\n"); 437 438 // If the user doesn't want core files, disable them. 439 if (DisableCoreFiles) 440 sys::Process::PreventCoreFiles(); 441 442 ExitOnErr(loadDylibs()); 443 444 if (EntryFunc.empty()) { 445 WithColor::error(errs(), argv[0]) 446 << "--entry-function name cannot be empty\n"; 447 exit(1); 448 } 449 450 if (UseJITKind == JITKind::MCJIT || ForceInterpreter) 451 disallowOrcOptions(); 452 else 453 return runOrcJIT(argv[0]); 454 455 // Old lli implementation based on ExecutionEngine and MCJIT. 456 LLVMContext Context; 457 458 // Load the bitcode... 459 SMDiagnostic Err; 460 std::unique_ptr<Module> Owner = parseIRFile(InputFile, Err, Context); 461 Module *Mod = Owner.get(); 462 if (!Mod) 463 reportError(Err, argv[0]); 464 465 if (EnableCacheManager) { 466 std::string CacheName("file:"); 467 CacheName.append(InputFile); 468 Mod->setModuleIdentifier(CacheName); 469 } 470 471 // If not jitting lazily, load the whole bitcode file eagerly too. 472 if (NoLazyCompilation) { 473 // Use *argv instead of argv[0] to work around a wrong GCC warning. 474 ExitOnError ExitOnErr(std::string(*argv) + 475 ": bitcode didn't read correctly: "); 476 ExitOnErr(Mod->materializeAll()); 477 } 478 479 std::string ErrorMsg; 480 EngineBuilder builder(std::move(Owner)); 481 builder.setMArch(codegen::getMArch()); 482 builder.setMCPU(codegen::getCPUStr()); 483 builder.setMAttrs(codegen::getFeatureList()); 484 if (auto RM = codegen::getExplicitRelocModel()) 485 builder.setRelocationModel(*RM); 486 if (auto CM = codegen::getExplicitCodeModel()) 487 builder.setCodeModel(*CM); 488 builder.setErrorStr(&ErrorMsg); 489 builder.setEngineKind(ForceInterpreter 490 ? EngineKind::Interpreter 491 : EngineKind::JIT); 492 493 // If we are supposed to override the target triple, do so now. 494 if (!TargetTriple.empty()) 495 Mod->setTargetTriple(Triple::normalize(TargetTriple)); 496 497 // Enable MCJIT if desired. 498 RTDyldMemoryManager *RTDyldMM = nullptr; 499 if (!ForceInterpreter) { 500 if (RemoteMCJIT) 501 RTDyldMM = new ForwardingMemoryManager(); 502 else 503 RTDyldMM = new SectionMemoryManager(); 504 505 // Deliberately construct a temp std::unique_ptr to pass in. Do not null out 506 // RTDyldMM: We still use it below, even though we don't own it. 507 builder.setMCJITMemoryManager( 508 std::unique_ptr<RTDyldMemoryManager>(RTDyldMM)); 509 } else if (RemoteMCJIT) { 510 WithColor::error(errs(), argv[0]) 511 << "remote process execution does not work with the interpreter.\n"; 512 exit(1); 513 } 514 515 builder.setOptLevel(getOptLevel()); 516 517 TargetOptions Options = 518 codegen::InitTargetOptionsFromCodeGenFlags(Triple(TargetTriple)); 519 if (codegen::getFloatABIForCalls() != FloatABI::Default) 520 Options.FloatABIType = codegen::getFloatABIForCalls(); 521 522 builder.setTargetOptions(Options); 523 524 std::unique_ptr<ExecutionEngine> EE(builder.create()); 525 if (!EE) { 526 if (!ErrorMsg.empty()) 527 WithColor::error(errs(), argv[0]) 528 << "error creating EE: " << ErrorMsg << "\n"; 529 else 530 WithColor::error(errs(), argv[0]) << "unknown error creating EE!\n"; 531 exit(1); 532 } 533 534 std::unique_ptr<LLIObjectCache> CacheManager; 535 if (EnableCacheManager) { 536 CacheManager.reset(new LLIObjectCache(ObjectCacheDir)); 537 EE->setObjectCache(CacheManager.get()); 538 } 539 540 // Load any additional modules specified on the command line. 541 for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) { 542 std::unique_ptr<Module> XMod = parseIRFile(ExtraModules[i], Err, Context); 543 if (!XMod) 544 reportError(Err, argv[0]); 545 if (EnableCacheManager) { 546 std::string CacheName("file:"); 547 CacheName.append(ExtraModules[i]); 548 XMod->setModuleIdentifier(CacheName); 549 } 550 EE->addModule(std::move(XMod)); 551 } 552 553 for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) { 554 Expected<object::OwningBinary<object::ObjectFile>> Obj = 555 object::ObjectFile::createObjectFile(ExtraObjects[i]); 556 if (!Obj) { 557 // TODO: Actually report errors helpfully. 558 consumeError(Obj.takeError()); 559 reportError(Err, argv[0]); 560 } 561 object::OwningBinary<object::ObjectFile> &O = Obj.get(); 562 EE->addObjectFile(std::move(O)); 563 } 564 565 for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) { 566 ErrorOr<std::unique_ptr<MemoryBuffer>> ArBufOrErr = 567 MemoryBuffer::getFileOrSTDIN(ExtraArchives[i]); 568 if (!ArBufOrErr) 569 reportError(Err, argv[0]); 570 std::unique_ptr<MemoryBuffer> &ArBuf = ArBufOrErr.get(); 571 572 Expected<std::unique_ptr<object::Archive>> ArOrErr = 573 object::Archive::create(ArBuf->getMemBufferRef()); 574 if (!ArOrErr) { 575 std::string Buf; 576 raw_string_ostream OS(Buf); 577 logAllUnhandledErrors(ArOrErr.takeError(), OS); 578 OS.flush(); 579 errs() << Buf; 580 exit(1); 581 } 582 std::unique_ptr<object::Archive> &Ar = ArOrErr.get(); 583 584 object::OwningBinary<object::Archive> OB(std::move(Ar), std::move(ArBuf)); 585 586 EE->addArchive(std::move(OB)); 587 } 588 589 // If the target is Cygwin/MingW and we are generating remote code, we 590 // need an extra module to help out with linking. 591 if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) { 592 addCygMingExtraModule(*EE, Context, Mod->getTargetTriple()); 593 } 594 595 // The following functions have no effect if their respective profiling 596 // support wasn't enabled in the build configuration. 597 EE->RegisterJITEventListener( 598 JITEventListener::createOProfileJITEventListener()); 599 EE->RegisterJITEventListener( 600 JITEventListener::createIntelJITEventListener()); 601 if (!RemoteMCJIT) 602 EE->RegisterJITEventListener( 603 JITEventListener::createPerfJITEventListener()); 604 605 if (!NoLazyCompilation && RemoteMCJIT) { 606 WithColor::warning(errs(), argv[0]) 607 << "remote mcjit does not support lazy compilation\n"; 608 NoLazyCompilation = true; 609 } 610 EE->DisableLazyCompilation(NoLazyCompilation); 611 612 // If the user specifically requested an argv[0] to pass into the program, 613 // do it now. 614 if (!FakeArgv0.empty()) { 615 InputFile = static_cast<std::string>(FakeArgv0); 616 } else { 617 // Otherwise, if there is a .bc suffix on the executable strip it off, it 618 // might confuse the program. 619 if (StringRef(InputFile).ends_with(".bc")) 620 InputFile.erase(InputFile.length() - 3); 621 } 622 623 // Add the module's name to the start of the vector of arguments to main(). 624 InputArgv.insert(InputArgv.begin(), InputFile); 625 626 // Call the main function from M as if its signature were: 627 // int main (int argc, char **argv, const char **envp) 628 // using the contents of Args to determine argc & argv, and the contents of 629 // EnvVars to determine envp. 630 // 631 Function *EntryFn = Mod->getFunction(EntryFunc); 632 if (!EntryFn) { 633 WithColor::error(errs(), argv[0]) 634 << '\'' << EntryFunc << "\' function not found in module.\n"; 635 return -1; 636 } 637 638 // Reset errno to zero on entry to main. 639 errno = 0; 640 641 int Result = -1; 642 643 // Sanity check use of remote-jit: LLI currently only supports use of the 644 // remote JIT on Unix platforms. 645 if (RemoteMCJIT) { 646 #ifndef LLVM_ON_UNIX 647 WithColor::warning(errs(), argv[0]) 648 << "host does not support external remote targets.\n"; 649 WithColor::note() << "defaulting to local execution\n"; 650 return -1; 651 #else 652 if (ChildExecPath.empty()) { 653 WithColor::error(errs(), argv[0]) 654 << "-remote-mcjit requires -mcjit-remote-process.\n"; 655 exit(1); 656 } else if (!sys::fs::can_execute(ChildExecPath)) { 657 WithColor::error(errs(), argv[0]) 658 << "unable to find usable child executable: '" << ChildExecPath 659 << "'\n"; 660 return -1; 661 } 662 #endif 663 } 664 665 if (!RemoteMCJIT) { 666 // If the program doesn't explicitly call exit, we will need the Exit 667 // function later on to make an explicit call, so get the function now. 668 FunctionCallee Exit = Mod->getOrInsertFunction( 669 "exit", Type::getVoidTy(Context), Type::getInt32Ty(Context)); 670 671 // Run static constructors. 672 if (!ForceInterpreter) { 673 // Give MCJIT a chance to apply relocations and set page permissions. 674 EE->finalizeObject(); 675 } 676 EE->runStaticConstructorsDestructors(false); 677 678 // Trigger compilation separately so code regions that need to be 679 // invalidated will be known. 680 (void)EE->getPointerToFunction(EntryFn); 681 // Clear instruction cache before code will be executed. 682 if (RTDyldMM) 683 static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache(); 684 685 // Run main. 686 Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp); 687 688 // Run static destructors. 689 EE->runStaticConstructorsDestructors(true); 690 691 // If the program didn't call exit explicitly, we should call it now. 692 // This ensures that any atexit handlers get called correctly. 693 if (Function *ExitF = 694 dyn_cast<Function>(Exit.getCallee()->stripPointerCasts())) { 695 if (ExitF->getFunctionType() == Exit.getFunctionType()) { 696 std::vector<GenericValue> Args; 697 GenericValue ResultGV; 698 ResultGV.IntVal = APInt(32, Result); 699 Args.push_back(ResultGV); 700 EE->runFunction(ExitF, Args); 701 WithColor::error(errs(), argv[0]) 702 << "exit(" << Result << ") returned!\n"; 703 abort(); 704 } 705 } 706 WithColor::error(errs(), argv[0]) << "exit defined with wrong prototype!\n"; 707 abort(); 708 } else { 709 // else == "if (RemoteMCJIT)" 710 std::unique_ptr<orc::ExecutorProcessControl> EPC = ExitOnErr(launchRemote()); 711 712 // Remote target MCJIT doesn't (yet) support static constructors. No reason 713 // it couldn't. This is a limitation of the LLI implementation, not the 714 // MCJIT itself. FIXME. 715 716 // Create a remote memory manager. 717 auto RemoteMM = ExitOnErr( 718 orc::EPCGenericRTDyldMemoryManager::CreateWithDefaultBootstrapSymbols( 719 *EPC)); 720 721 // Forward MCJIT's memory manager calls to the remote memory manager. 722 static_cast<ForwardingMemoryManager*>(RTDyldMM)->setMemMgr( 723 std::move(RemoteMM)); 724 725 // Forward MCJIT's symbol resolution calls to the remote. 726 static_cast<ForwardingMemoryManager *>(RTDyldMM)->setResolver( 727 ExitOnErr(RemoteResolver::Create(*EPC))); 728 // Grab the target address of the JIT'd main function on the remote and call 729 // it. 730 // FIXME: argv and envp handling. 731 auto Entry = 732 orc::ExecutorAddr(EE->getFunctionAddress(EntryFn->getName().str())); 733 EE->finalizeObject(); 734 LLVM_DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x" 735 << format("%llx", Entry.getValue()) << "\n"); 736 Result = ExitOnErr(EPC->runAsMain(Entry, {})); 737 738 // Like static constructors, the remote target MCJIT support doesn't handle 739 // this yet. It could. FIXME. 740 741 // Delete the EE - we need to tear it down *before* we terminate the session 742 // with the remote, otherwise it'll crash when it tries to release resources 743 // on a remote that has already been disconnected. 744 EE.reset(); 745 746 // Signal the remote target that we're done JITing. 747 ExitOnErr(EPC->disconnect()); 748 } 749 750 return Result; 751 } 752 753 // JITLink debug support plugins put information about JITed code in this GDB 754 // JIT Interface global from OrcTargetProcess. 755 extern "C" LLVM_ABI struct jit_descriptor __jit_debug_descriptor; 756 757 static struct jit_code_entry * 758 findNextDebugDescriptorEntry(struct jit_code_entry *Latest) { 759 if (Latest == nullptr) 760 return __jit_debug_descriptor.first_entry; 761 if (Latest->next_entry) 762 return Latest->next_entry; 763 return nullptr; 764 } 765 766 static ToolOutputFile &claimToolOutput() { 767 static std::unique_ptr<ToolOutputFile> ToolOutput = nullptr; 768 if (ToolOutput) { 769 WithColor::error(errs(), "lli") 770 << "Can not claim stdout for tool output twice\n"; 771 exit(1); 772 } 773 std::error_code EC; 774 ToolOutput = std::make_unique<ToolOutputFile>("-", EC, sys::fs::OF_None); 775 if (EC) { 776 WithColor::error(errs(), "lli") 777 << "Failed to create tool output file: " << EC.message() << "\n"; 778 exit(1); 779 } 780 return *ToolOutput; 781 } 782 783 static std::function<void(Module &)> createIRDebugDumper() { 784 switch (OrcDumpKind) { 785 case DumpKind::NoDump: 786 case DumpKind::DumpDebugDescriptor: 787 case DumpKind::DumpDebugObjects: 788 return [](Module &M) {}; 789 790 case DumpKind::DumpFuncsToStdOut: 791 return [](Module &M) { 792 printf("[ "); 793 794 for (const auto &F : M) { 795 if (F.isDeclaration()) 796 continue; 797 798 if (F.hasName()) { 799 std::string Name(std::string(F.getName())); 800 printf("%s ", Name.c_str()); 801 } else 802 printf("<anon> "); 803 } 804 805 printf("]\n"); 806 }; 807 808 case DumpKind::DumpModsToStdOut: 809 return [](Module &M) { 810 outs() << "----- Module Start -----\n" << M << "----- Module End -----\n"; 811 }; 812 813 case DumpKind::DumpModsToDisk: 814 return [](Module &M) { 815 std::error_code EC; 816 raw_fd_ostream Out(M.getModuleIdentifier() + ".ll", EC, 817 sys::fs::OF_TextWithCRLF); 818 if (EC) { 819 errs() << "Couldn't open " << M.getModuleIdentifier() 820 << " for dumping.\nError:" << EC.message() << "\n"; 821 exit(1); 822 } 823 Out << M; 824 }; 825 } 826 llvm_unreachable("Unknown DumpKind"); 827 } 828 829 static std::function<void(MemoryBuffer &)> createObjDebugDumper() { 830 switch (OrcDumpKind) { 831 case DumpKind::NoDump: 832 case DumpKind::DumpFuncsToStdOut: 833 case DumpKind::DumpModsToStdOut: 834 case DumpKind::DumpModsToDisk: 835 return [](MemoryBuffer &) {}; 836 837 case DumpKind::DumpDebugDescriptor: { 838 // Dump the empty descriptor at startup once 839 fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n", 840 pointerToJITTargetAddress(__jit_debug_descriptor.first_entry)); 841 return [](MemoryBuffer &) { 842 // Dump new entries as they appear 843 static struct jit_code_entry *Latest = nullptr; 844 while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) { 845 fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n", 846 pointerToJITTargetAddress(NewEntry)); 847 Latest = NewEntry; 848 } 849 }; 850 } 851 852 case DumpKind::DumpDebugObjects: { 853 return [](MemoryBuffer &Obj) { 854 static struct jit_code_entry *Latest = nullptr; 855 static ToolOutputFile &ToolOutput = claimToolOutput(); 856 while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) { 857 ToolOutput.os().write(NewEntry->symfile_addr, NewEntry->symfile_size); 858 Latest = NewEntry; 859 } 860 }; 861 } 862 } 863 llvm_unreachable("Unknown DumpKind"); 864 } 865 866 Error loadDylibs() { 867 for (const auto &Dylib : Dylibs) { 868 std::string ErrMsg; 869 if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg)) 870 return make_error<StringError>(ErrMsg, inconvertibleErrorCode()); 871 } 872 873 return Error::success(); 874 } 875 876 static void exitOnLazyCallThroughFailure() { exit(1); } 877 878 Expected<orc::ThreadSafeModule> 879 loadModule(StringRef Path, orc::ThreadSafeContext TSCtx) { 880 SMDiagnostic Err; 881 auto M = parseIRFile(Path, Err, *TSCtx.getContext()); 882 if (!M) { 883 std::string ErrMsg; 884 { 885 raw_string_ostream ErrMsgStream(ErrMsg); 886 Err.print("lli", ErrMsgStream); 887 } 888 return make_error<StringError>(std::move(ErrMsg), inconvertibleErrorCode()); 889 } 890 891 if (EnableCacheManager) 892 M->setModuleIdentifier("file:" + M->getModuleIdentifier()); 893 894 return orc::ThreadSafeModule(std::move(M), std::move(TSCtx)); 895 } 896 897 int mingw_noop_main(void) { 898 // Cygwin and MinGW insert calls from the main function to the runtime 899 // function __main. The __main function is responsible for setting up main's 900 // environment (e.g. running static constructors), however this is not needed 901 // when running under lli: the executor process will have run non-JIT ctors, 902 // and ORC will take care of running JIT'd ctors. To avoid a missing symbol 903 // error we just implement __main as a no-op. 904 // 905 // FIXME: Move this to ORC-RT (and the ORC-RT substitution library once it 906 // exists). That will allow it to work out-of-process, and for all 907 // ORC tools (the problem isn't lli specific). 908 return 0; 909 } 910 911 // Try to enable debugger support for the given instance. 912 // This alway returns success, but prints a warning if it's not able to enable 913 // debugger support. 914 Error tryEnableDebugSupport(orc::LLJIT &J) { 915 if (auto Err = enableDebuggerSupport(J)) { 916 [[maybe_unused]] std::string ErrMsg = toString(std::move(Err)); 917 LLVM_DEBUG(dbgs() << "lli: " << ErrMsg << "\n"); 918 } 919 return Error::success(); 920 } 921 922 int runOrcJIT(const char *ProgName) { 923 // Start setting up the JIT environment. 924 925 // Parse the main module. 926 orc::ThreadSafeContext TSCtx(std::make_unique<LLVMContext>()); 927 auto MainModule = ExitOnErr(loadModule(InputFile, TSCtx)); 928 929 // Get TargetTriple and DataLayout from the main module if they're explicitly 930 // set. 931 std::optional<Triple> TT; 932 std::optional<DataLayout> DL; 933 MainModule.withModuleDo([&](Module &M) { 934 if (!M.getTargetTriple().empty()) 935 TT = Triple(M.getTargetTriple()); 936 if (!M.getDataLayout().isDefault()) 937 DL = M.getDataLayout(); 938 }); 939 940 orc::LLLazyJITBuilder Builder; 941 942 Builder.setJITTargetMachineBuilder( 943 TT ? orc::JITTargetMachineBuilder(*TT) 944 : ExitOnErr(orc::JITTargetMachineBuilder::detectHost())); 945 946 TT = Builder.getJITTargetMachineBuilder()->getTargetTriple(); 947 if (DL) 948 Builder.setDataLayout(DL); 949 950 if (!codegen::getMArch().empty()) 951 Builder.getJITTargetMachineBuilder()->getTargetTriple().setArchName( 952 codegen::getMArch()); 953 954 Builder.getJITTargetMachineBuilder() 955 ->setCPU(codegen::getCPUStr()) 956 .addFeatures(codegen::getFeatureList()) 957 .setRelocationModel(codegen::getExplicitRelocModel()) 958 .setCodeModel(codegen::getExplicitCodeModel()); 959 960 // Link process symbols unless NoProcessSymbols is set. 961 Builder.setLinkProcessSymbolsByDefault(!NoProcessSymbols); 962 963 // FIXME: Setting a dummy call-through manager in non-lazy mode prevents the 964 // JIT builder to instantiate a default (which would fail with an error for 965 // unsupported architectures). 966 if (UseJITKind != JITKind::OrcLazy) { 967 auto ES = std::make_unique<orc::ExecutionSession>( 968 ExitOnErr(orc::SelfExecutorProcessControl::Create())); 969 Builder.setLazyCallthroughManager( 970 std::make_unique<orc::LazyCallThroughManager>(*ES, orc::ExecutorAddr(), 971 nullptr)); 972 Builder.setExecutionSession(std::move(ES)); 973 } 974 975 Builder.setLazyCompileFailureAddr( 976 orc::ExecutorAddr::fromPtr(exitOnLazyCallThroughFailure)); 977 Builder.setNumCompileThreads(LazyJITCompileThreads); 978 979 // If the object cache is enabled then set a custom compile function 980 // creator to use the cache. 981 std::unique_ptr<LLIObjectCache> CacheManager; 982 if (EnableCacheManager) { 983 984 CacheManager = std::make_unique<LLIObjectCache>(ObjectCacheDir); 985 986 Builder.setCompileFunctionCreator( 987 [&](orc::JITTargetMachineBuilder JTMB) 988 -> Expected<std::unique_ptr<orc::IRCompileLayer::IRCompiler>> { 989 if (LazyJITCompileThreads > 0) 990 return std::make_unique<orc::ConcurrentIRCompiler>(std::move(JTMB), 991 CacheManager.get()); 992 993 auto TM = JTMB.createTargetMachine(); 994 if (!TM) 995 return TM.takeError(); 996 997 return std::make_unique<orc::TMOwningSimpleCompiler>(std::move(*TM), 998 CacheManager.get()); 999 }); 1000 } 1001 1002 // Enable debugging of JIT'd code (only works on JITLink for ELF and MachO). 1003 Builder.setPrePlatformSetup(tryEnableDebugSupport); 1004 1005 // Set up LLJIT platform. 1006 LLJITPlatform P = Platform; 1007 if (P == LLJITPlatform::Auto) 1008 P = OrcRuntime.empty() ? LLJITPlatform::GenericIR 1009 : LLJITPlatform::ExecutorNative; 1010 1011 switch (P) { 1012 case LLJITPlatform::ExecutorNative: { 1013 Builder.setPlatformSetUp(orc::ExecutorNativePlatform(OrcRuntime)); 1014 break; 1015 } 1016 case LLJITPlatform::GenericIR: 1017 // Nothing to do: LLJITBuilder will use this by default. 1018 break; 1019 case LLJITPlatform::Inactive: 1020 Builder.setPlatformSetUp(orc::setUpInactivePlatform); 1021 break; 1022 default: 1023 llvm_unreachable("Unrecognized platform value"); 1024 } 1025 1026 std::unique_ptr<orc::ExecutorProcessControl> EPC = nullptr; 1027 if (JITLinker == JITLinkerKind::JITLink) { 1028 EPC = ExitOnErr(orc::SelfExecutorProcessControl::Create( 1029 std::make_shared<orc::SymbolStringPool>())); 1030 1031 Builder.getJITTargetMachineBuilder() 1032 ->setRelocationModel(Reloc::PIC_) 1033 .setCodeModel(CodeModel::Small); 1034 Builder.setObjectLinkingLayerCreator( 1035 [&](orc::ExecutionSession &ES, const Triple &TT) { 1036 return std::make_unique<orc::ObjectLinkingLayer>(ES); 1037 }); 1038 } 1039 1040 auto J = ExitOnErr(Builder.create()); 1041 1042 auto *ObjLayer = &J->getObjLinkingLayer(); 1043 if (auto *RTDyldObjLayer = dyn_cast<orc::RTDyldObjectLinkingLayer>(ObjLayer)) { 1044 RTDyldObjLayer->registerJITEventListener( 1045 *JITEventListener::createGDBRegistrationListener()); 1046 #if LLVM_USE_OPROFILE 1047 RTDyldObjLayer->registerJITEventListener( 1048 *JITEventListener::createOProfileJITEventListener()); 1049 #endif 1050 #if LLVM_USE_INTEL_JITEVENTS 1051 RTDyldObjLayer->registerJITEventListener( 1052 *JITEventListener::createIntelJITEventListener()); 1053 #endif 1054 #if LLVM_USE_PERF 1055 RTDyldObjLayer->registerJITEventListener( 1056 *JITEventListener::createPerfJITEventListener()); 1057 #endif 1058 } 1059 1060 if (PerModuleLazy) 1061 J->setPartitionFunction(orc::IRPartitionLayer::compileWholeModule); 1062 1063 auto IRDump = createIRDebugDumper(); 1064 J->getIRTransformLayer().setTransform( 1065 [&](orc::ThreadSafeModule TSM, 1066 const orc::MaterializationResponsibility &R) { 1067 TSM.withModuleDo([&](Module &M) { 1068 if (verifyModule(M, &dbgs())) { 1069 dbgs() << "Bad module: " << &M << "\n"; 1070 exit(1); 1071 } 1072 IRDump(M); 1073 }); 1074 return TSM; 1075 }); 1076 1077 auto ObjDump = createObjDebugDumper(); 1078 J->getObjTransformLayer().setTransform( 1079 [&](std::unique_ptr<MemoryBuffer> Obj) 1080 -> Expected<std::unique_ptr<MemoryBuffer>> { 1081 ObjDump(*Obj); 1082 return std::move(Obj); 1083 }); 1084 1085 // If this is a Mingw or Cygwin executor then we need to alias __main to 1086 // orc_rt_int_void_return_0. 1087 if (J->getTargetTriple().isOSCygMing()) 1088 ExitOnErr(J->getProcessSymbolsJITDylib()->define( 1089 orc::absoluteSymbols({{J->mangleAndIntern("__main"), 1090 {orc::ExecutorAddr::fromPtr(mingw_noop_main), 1091 JITSymbolFlags::Exported}}}))); 1092 1093 // Regular modules are greedy: They materialize as a whole and trigger 1094 // materialization for all required symbols recursively. Lazy modules go 1095 // through partitioning and they replace outgoing calls with reexport stubs 1096 // that resolve on call-through. 1097 auto AddModule = [&](orc::JITDylib &JD, orc::ThreadSafeModule M) { 1098 return UseJITKind == JITKind::OrcLazy ? J->addLazyIRModule(JD, std::move(M)) 1099 : J->addIRModule(JD, std::move(M)); 1100 }; 1101 1102 // Add the main module. 1103 ExitOnErr(AddModule(J->getMainJITDylib(), std::move(MainModule))); 1104 1105 // Create JITDylibs and add any extra modules. 1106 { 1107 // Create JITDylibs, keep a map from argument index to dylib. We will use 1108 // -extra-module argument indexes to determine what dylib to use for each 1109 // -extra-module. 1110 std::map<unsigned, orc::JITDylib *> IdxToDylib; 1111 IdxToDylib[0] = &J->getMainJITDylib(); 1112 for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end(); 1113 JDItr != JDEnd; ++JDItr) { 1114 orc::JITDylib *JD = J->getJITDylibByName(*JDItr); 1115 if (!JD) { 1116 JD = &ExitOnErr(J->createJITDylib(*JDItr)); 1117 J->getMainJITDylib().addToLinkOrder(*JD); 1118 JD->addToLinkOrder(J->getMainJITDylib()); 1119 } 1120 IdxToDylib[JITDylibs.getPosition(JDItr - JITDylibs.begin())] = JD; 1121 } 1122 1123 for (auto EMItr = ExtraModules.begin(), EMEnd = ExtraModules.end(); 1124 EMItr != EMEnd; ++EMItr) { 1125 auto M = ExitOnErr(loadModule(*EMItr, TSCtx)); 1126 1127 auto EMIdx = ExtraModules.getPosition(EMItr - ExtraModules.begin()); 1128 assert(EMIdx != 0 && "ExtraModule should have index > 0"); 1129 auto JDItr = std::prev(IdxToDylib.lower_bound(EMIdx)); 1130 auto &JD = *JDItr->second; 1131 ExitOnErr(AddModule(JD, std::move(M))); 1132 } 1133 1134 for (auto EAItr = ExtraArchives.begin(), EAEnd = ExtraArchives.end(); 1135 EAItr != EAEnd; ++EAItr) { 1136 auto EAIdx = ExtraArchives.getPosition(EAItr - ExtraArchives.begin()); 1137 assert(EAIdx != 0 && "ExtraArchive should have index > 0"); 1138 auto JDItr = std::prev(IdxToDylib.lower_bound(EAIdx)); 1139 auto &JD = *JDItr->second; 1140 ExitOnErr(J->linkStaticLibraryInto(JD, EAItr->c_str())); 1141 } 1142 } 1143 1144 // Add the objects. 1145 for (auto &ObjPath : ExtraObjects) { 1146 auto Obj = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ObjPath))); 1147 ExitOnErr(J->addObjectFile(std::move(Obj))); 1148 } 1149 1150 // Run any static constructors. 1151 ExitOnErr(J->initialize(J->getMainJITDylib())); 1152 1153 // Run any -thread-entry points. 1154 std::vector<std::thread> AltEntryThreads; 1155 for (auto &ThreadEntryPoint : ThreadEntryPoints) { 1156 auto EntryPointSym = ExitOnErr(J->lookup(ThreadEntryPoint)); 1157 typedef void (*EntryPointPtr)(); 1158 auto EntryPoint = EntryPointSym.toPtr<EntryPointPtr>(); 1159 AltEntryThreads.push_back(std::thread([EntryPoint]() { EntryPoint(); })); 1160 } 1161 1162 // Resolve and run the main function. 1163 auto MainAddr = ExitOnErr(J->lookup(EntryFunc)); 1164 int Result; 1165 1166 if (EPC) { 1167 // ExecutorProcessControl-based execution with JITLink. 1168 Result = ExitOnErr(EPC->runAsMain(MainAddr, InputArgv)); 1169 } else { 1170 // Manual in-process execution with RuntimeDyld. 1171 using MainFnTy = int(int, char *[]); 1172 auto MainFn = MainAddr.toPtr<MainFnTy *>(); 1173 Result = orc::runAsMain(MainFn, InputArgv, StringRef(InputFile)); 1174 } 1175 1176 // Wait for -entry-point threads. 1177 for (auto &AltEntryThread : AltEntryThreads) 1178 AltEntryThread.join(); 1179 1180 // Run destructors. 1181 ExitOnErr(J->deinitialize(J->getMainJITDylib())); 1182 1183 return Result; 1184 } 1185 1186 void disallowOrcOptions() { 1187 // Make sure nobody used an orc-lazy specific option accidentally. 1188 1189 if (LazyJITCompileThreads != 0) { 1190 errs() << "-compile-threads requires -jit-kind=orc-lazy\n"; 1191 exit(1); 1192 } 1193 1194 if (!ThreadEntryPoints.empty()) { 1195 errs() << "-thread-entry requires -jit-kind=orc-lazy\n"; 1196 exit(1); 1197 } 1198 1199 if (PerModuleLazy) { 1200 errs() << "-per-module-lazy requires -jit-kind=orc-lazy\n"; 1201 exit(1); 1202 } 1203 } 1204 1205 Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote() { 1206 #ifndef LLVM_ON_UNIX 1207 llvm_unreachable("launchRemote not supported on non-Unix platforms"); 1208 #else 1209 int PipeFD[2][2]; 1210 pid_t ChildPID; 1211 1212 // Create two pipes. 1213 if (pipe(PipeFD[0]) != 0 || pipe(PipeFD[1]) != 0) 1214 perror("Error creating pipe: "); 1215 1216 ChildPID = fork(); 1217 1218 if (ChildPID == 0) { 1219 // In the child... 1220 1221 // Close the parent ends of the pipes 1222 close(PipeFD[0][1]); 1223 close(PipeFD[1][0]); 1224 1225 1226 // Execute the child process. 1227 std::unique_ptr<char[]> ChildPath, ChildIn, ChildOut; 1228 { 1229 ChildPath.reset(new char[ChildExecPath.size() + 1]); 1230 std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]); 1231 ChildPath[ChildExecPath.size()] = '\0'; 1232 std::string ChildInStr = utostr(PipeFD[0][0]); 1233 ChildIn.reset(new char[ChildInStr.size() + 1]); 1234 std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]); 1235 ChildIn[ChildInStr.size()] = '\0'; 1236 std::string ChildOutStr = utostr(PipeFD[1][1]); 1237 ChildOut.reset(new char[ChildOutStr.size() + 1]); 1238 std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]); 1239 ChildOut[ChildOutStr.size()] = '\0'; 1240 } 1241 1242 char * const args[] = { &ChildPath[0], &ChildIn[0], &ChildOut[0], nullptr }; 1243 int rc = execv(ChildExecPath.c_str(), args); 1244 if (rc != 0) 1245 perror("Error executing child process: "); 1246 llvm_unreachable("Error executing child process"); 1247 } 1248 // else we're the parent... 1249 1250 // Close the child ends of the pipes 1251 close(PipeFD[0][0]); 1252 close(PipeFD[1][1]); 1253 1254 // Return a SimpleRemoteEPC instance connected to our end of the pipes. 1255 return orc::SimpleRemoteEPC::Create<orc::FDSimpleRemoteEPCTransport>( 1256 std::make_unique<llvm::orc::InPlaceTaskDispatcher>(), 1257 llvm::orc::SimpleRemoteEPC::Setup(), PipeFD[1][0], PipeFD[0][1]); 1258 #endif 1259 } 1260 1261 // For MinGW environments, manually export the __chkstk function from the lli 1262 // executable. 1263 // 1264 // Normally, this function is provided by compiler-rt builtins or libgcc. 1265 // It is named "_alloca" on i386, "___chkstk_ms" on x86_64, and "__chkstk" on 1266 // arm/aarch64. In MSVC configurations, it's named "__chkstk" in all 1267 // configurations. 1268 // 1269 // When Orc tries to resolve symbols at runtime, this succeeds in MSVC 1270 // configurations, somewhat by accident/luck; kernelbase.dll does export a 1271 // symbol named "__chkstk" which gets found by Orc, even if regular applications 1272 // never link against that function from that DLL (it's linked in statically 1273 // from a compiler support library). 1274 // 1275 // The MinGW specific symbol names aren't available in that DLL though. 1276 // Therefore, manually export the relevant symbol from lli, to let it be 1277 // found at runtime during tests. 1278 // 1279 // For real JIT uses, the real compiler support libraries should be linked 1280 // in, somehow; this is a workaround to let tests pass. 1281 // 1282 // We need to make sure that this symbol actually is linked in when we 1283 // try to export it; if no functions allocate a large enough stack area, 1284 // nothing would reference it. Therefore, manually declare it and add a 1285 // reference to it. (Note, the declarations of _alloca/___chkstk_ms/__chkstk 1286 // are somewhat bogus, these functions use a different custom calling 1287 // convention.) 1288 // 1289 // TODO: Move this into libORC at some point, see 1290 // https://github.com/llvm/llvm-project/issues/56603. 1291 #ifdef __MINGW32__ 1292 // This is a MinGW version of #pragma comment(linker, "...") that doesn't 1293 // require compiling with -fms-extensions. 1294 #if defined(__i386__) 1295 #undef _alloca 1296 extern "C" void _alloca(void); 1297 static __attribute__((used)) void (*const ref_func)(void) = _alloca; 1298 static __attribute__((section(".drectve"), used)) const char export_chkstk[] = 1299 "-export:_alloca"; 1300 #elif defined(__x86_64__) 1301 extern "C" void ___chkstk_ms(void); 1302 static __attribute__((used)) void (*const ref_func)(void) = ___chkstk_ms; 1303 static __attribute__((section(".drectve"), used)) const char export_chkstk[] = 1304 "-export:___chkstk_ms"; 1305 #else 1306 extern "C" void __chkstk(void); 1307 static __attribute__((used)) void (*const ref_func)(void) = __chkstk; 1308 static __attribute__((section(".drectve"), used)) const char export_chkstk[] = 1309 "-export:__chkstk"; 1310 #endif 1311 #endif 1312