xref: /llvm-project/llvm/tools/lli/lli.cpp (revision 9052b37ab1aa67a039b34356f37236fecc42bac2)
1 //===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This utility provides a simple wrapper around the LLVM Execution Engines,
10 // which allow the direct execution of LLVM programs through a Just-In-Time
11 // compiler, or through an interpreter if no JIT is available for this platform.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ForwardingMemoryManager.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/Bitcode/BitcodeReader.h"
18 #include "llvm/CodeGen/CommandFlags.h"
19 #include "llvm/CodeGen/LinkAllCodegenComponents.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ExecutionEngine/Interpreter.h"
23 #include "llvm/ExecutionEngine/JITEventListener.h"
24 #include "llvm/ExecutionEngine/JITSymbol.h"
25 #include "llvm/ExecutionEngine/MCJIT.h"
26 #include "llvm/ExecutionEngine/ObjectCache.h"
27 #include "llvm/ExecutionEngine/Orc/AbsoluteSymbols.h"
28 #include "llvm/ExecutionEngine/Orc/DebugUtils.h"
29 #include "llvm/ExecutionEngine/Orc/Debugging/DebuggerSupport.h"
30 #include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h"
31 #include "llvm/ExecutionEngine/Orc/EPCGenericRTDyldMemoryManager.h"
32 #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
33 #include "llvm/ExecutionEngine/Orc/IRPartitionLayer.h"
34 #include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
35 #include "llvm/ExecutionEngine/Orc/LLJIT.h"
36 #include "llvm/ExecutionEngine/Orc/ObjectTransformLayer.h"
37 #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
38 #include "llvm/ExecutionEngine/Orc/SimpleRemoteEPC.h"
39 #include "llvm/ExecutionEngine/Orc/SymbolStringPool.h"
40 #include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h"
41 #include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h"
42 #include "llvm/ExecutionEngine/Orc/TargetProcess/TargetExecutionUtils.h"
43 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Verifier.h"
49 #include "llvm/IRReader/IRReader.h"
50 #include "llvm/Object/Archive.h"
51 #include "llvm/Object/ObjectFile.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/DynamicLibrary.h"
56 #include "llvm/Support/Format.h"
57 #include "llvm/Support/InitLLVM.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/Memory.h"
60 #include "llvm/Support/MemoryBuffer.h"
61 #include "llvm/Support/Path.h"
62 #include "llvm/Support/PluginLoader.h"
63 #include "llvm/Support/Process.h"
64 #include "llvm/Support/Program.h"
65 #include "llvm/Support/SourceMgr.h"
66 #include "llvm/Support/TargetSelect.h"
67 #include "llvm/Support/ToolOutputFile.h"
68 #include "llvm/Support/WithColor.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/TargetParser/Triple.h"
71 #include <cerrno>
72 #include <optional>
73 
74 #if !defined(_MSC_VER) && !defined(__MINGW32__)
75 #include <unistd.h>
76 #else
77 #include <io.h>
78 #endif
79 
80 #ifdef __CYGWIN__
81 #include <cygwin/version.h>
82 #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007
83 #define DO_NOTHING_ATEXIT 1
84 #endif
85 #endif
86 
87 using namespace llvm;
88 
89 static codegen::RegisterCodeGenFlags CGF;
90 
91 #define DEBUG_TYPE "lli"
92 
93 namespace {
94 
95   enum class JITKind { MCJIT, Orc, OrcLazy };
96   enum class JITLinkerKind { Default, RuntimeDyld, JITLink };
97 
98   cl::opt<std::string>
99   InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-"));
100 
101   cl::list<std::string>
102   InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
103 
104   cl::opt<bool> ForceInterpreter("force-interpreter",
105                                  cl::desc("Force interpretation: disable JIT"),
106                                  cl::init(false));
107 
108   cl::opt<JITKind> UseJITKind(
109       "jit-kind", cl::desc("Choose underlying JIT kind."),
110       cl::init(JITKind::Orc),
111       cl::values(clEnumValN(JITKind::MCJIT, "mcjit", "MCJIT"),
112                  clEnumValN(JITKind::Orc, "orc", "Orc JIT"),
113                  clEnumValN(JITKind::OrcLazy, "orc-lazy",
114                             "Orc-based lazy JIT.")));
115 
116   cl::opt<JITLinkerKind>
117       JITLinker("jit-linker", cl::desc("Choose the dynamic linker/loader."),
118                 cl::init(JITLinkerKind::Default),
119                 cl::values(clEnumValN(JITLinkerKind::Default, "default",
120                                       "Default for platform and JIT-kind"),
121                            clEnumValN(JITLinkerKind::RuntimeDyld, "rtdyld",
122                                       "RuntimeDyld"),
123                            clEnumValN(JITLinkerKind::JITLink, "jitlink",
124                                       "Orc-specific linker")));
125   cl::opt<std::string> OrcRuntime("orc-runtime",
126                                   cl::desc("Use ORC runtime from given path"),
127                                   cl::init(""));
128 
129   cl::opt<unsigned>
130   LazyJITCompileThreads("compile-threads",
131                         cl::desc("Choose the number of compile threads "
132                                  "(jit-kind=orc-lazy only)"),
133                         cl::init(0));
134 
135   cl::list<std::string>
136   ThreadEntryPoints("thread-entry",
137                     cl::desc("calls the given entry-point on a new thread "
138                              "(jit-kind=orc-lazy only)"));
139 
140   cl::opt<bool> PerModuleLazy(
141       "per-module-lazy",
142       cl::desc("Performs lazy compilation on whole module boundaries "
143                "rather than individual functions"),
144       cl::init(false));
145 
146   cl::list<std::string>
147       JITDylibs("jd",
148                 cl::desc("Specifies the JITDylib to be used for any subsequent "
149                          "-extra-module arguments."));
150 
151   cl::list<std::string>
152       Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking"));
153 
154   // The MCJIT supports building for a target address space separate from
155   // the JIT compilation process. Use a forked process and a copying
156   // memory manager with IPC to execute using this functionality.
157   cl::opt<bool> RemoteMCJIT("remote-mcjit",
158     cl::desc("Execute MCJIT'ed code in a separate process."),
159     cl::init(false));
160 
161   // Manually specify the child process for remote execution. This overrides
162   // the simulated remote execution that allocates address space for child
163   // execution. The child process will be executed and will communicate with
164   // lli via stdin/stdout pipes.
165   cl::opt<std::string>
166   ChildExecPath("mcjit-remote-process",
167                 cl::desc("Specify the filename of the process to launch "
168                          "for remote MCJIT execution.  If none is specified,"
169                          "\n\tremote execution will be simulated in-process."),
170                 cl::value_desc("filename"), cl::init(""));
171 
172   // Determine optimization level.
173   cl::opt<char> OptLevel("O",
174                          cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
175                                   "(default = '-O2')"),
176                          cl::Prefix, cl::init('2'));
177 
178   cl::opt<std::string>
179   TargetTriple("mtriple", cl::desc("Override target triple for module"));
180 
181   cl::opt<std::string>
182   EntryFunc("entry-function",
183             cl::desc("Specify the entry function (default = 'main') "
184                      "of the executable"),
185             cl::value_desc("function"),
186             cl::init("main"));
187 
188   cl::list<std::string>
189   ExtraModules("extra-module",
190          cl::desc("Extra modules to be loaded"),
191          cl::value_desc("input bitcode"));
192 
193   cl::list<std::string>
194   ExtraObjects("extra-object",
195          cl::desc("Extra object files to be loaded"),
196          cl::value_desc("input object"));
197 
198   cl::list<std::string>
199   ExtraArchives("extra-archive",
200          cl::desc("Extra archive files to be loaded"),
201          cl::value_desc("input archive"));
202 
203   cl::opt<bool>
204   EnableCacheManager("enable-cache-manager",
205         cl::desc("Use cache manager to save/load modules"),
206         cl::init(false));
207 
208   cl::opt<std::string>
209   ObjectCacheDir("object-cache-dir",
210                   cl::desc("Directory to store cached object files "
211                            "(must be user writable)"),
212                   cl::init(""));
213 
214   cl::opt<std::string>
215   FakeArgv0("fake-argv0",
216             cl::desc("Override the 'argv[0]' value passed into the executing"
217                      " program"), cl::value_desc("executable"));
218 
219   cl::opt<bool>
220   DisableCoreFiles("disable-core-files", cl::Hidden,
221                    cl::desc("Disable emission of core files if possible"));
222 
223   cl::opt<bool>
224   NoLazyCompilation("disable-lazy-compilation",
225                   cl::desc("Disable JIT lazy compilation"),
226                   cl::init(false));
227 
228   cl::opt<bool>
229   GenerateSoftFloatCalls("soft-float",
230     cl::desc("Generate software floating point library calls"),
231     cl::init(false));
232 
233   cl::opt<bool> NoProcessSymbols(
234       "no-process-syms",
235       cl::desc("Do not resolve lli process symbols in JIT'd code"),
236       cl::init(false));
237 
238   enum class LLJITPlatform { Inactive, Auto, ExecutorNative, GenericIR };
239 
240   cl::opt<LLJITPlatform> Platform(
241       "lljit-platform", cl::desc("Platform to use with LLJIT"),
242       cl::init(LLJITPlatform::Auto),
243       cl::values(clEnumValN(LLJITPlatform::Auto, "Auto",
244                             "Like 'ExecutorNative' if ORC runtime "
245                             "provided, otherwise like 'GenericIR'"),
246                  clEnumValN(LLJITPlatform::ExecutorNative, "ExecutorNative",
247                             "Use the native platform for the executor."
248                             "Requires -orc-runtime"),
249                  clEnumValN(LLJITPlatform::GenericIR, "GenericIR",
250                             "Use LLJITGenericIRPlatform"),
251                  clEnumValN(LLJITPlatform::Inactive, "Inactive",
252                             "Disable platform support explicitly")),
253       cl::Hidden);
254 
255   enum class DumpKind {
256     NoDump,
257     DumpFuncsToStdOut,
258     DumpModsToStdOut,
259     DumpModsToDisk,
260     DumpDebugDescriptor,
261     DumpDebugObjects,
262   };
263 
264   cl::opt<DumpKind> OrcDumpKind(
265       "orc-lazy-debug", cl::desc("Debug dumping for the orc-lazy JIT."),
266       cl::init(DumpKind::NoDump),
267       cl::values(
268           clEnumValN(DumpKind::NoDump, "no-dump", "Don't dump anything."),
269           clEnumValN(DumpKind::DumpFuncsToStdOut, "funcs-to-stdout",
270                      "Dump function names to stdout."),
271           clEnumValN(DumpKind::DumpModsToStdOut, "mods-to-stdout",
272                      "Dump modules to stdout."),
273           clEnumValN(DumpKind::DumpModsToDisk, "mods-to-disk",
274                      "Dump modules to the current "
275                      "working directory. (WARNING: "
276                      "will overwrite existing files)."),
277           clEnumValN(DumpKind::DumpDebugDescriptor, "jit-debug-descriptor",
278                      "Dump __jit_debug_descriptor contents to stdout"),
279           clEnumValN(DumpKind::DumpDebugObjects, "jit-debug-objects",
280                      "Dump __jit_debug_descriptor in-memory debug "
281                      "objects as tool output")),
282       cl::Hidden);
283 
284   ExitOnError ExitOnErr;
285 }
286 
287 LLVM_ATTRIBUTE_USED void linkComponents() {
288   errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper
289          << (void *)&llvm_orc_deregisterEHFrameSectionWrapper
290          << (void *)&llvm_orc_registerJITLoaderGDBWrapper
291          << (void *)&llvm_orc_registerJITLoaderGDBAllocAction;
292 }
293 
294 //===----------------------------------------------------------------------===//
295 // Object cache
296 //
297 // This object cache implementation writes cached objects to disk to the
298 // directory specified by CacheDir, using a filename provided in the module
299 // descriptor. The cache tries to load a saved object using that path if the
300 // file exists. CacheDir defaults to "", in which case objects are cached
301 // alongside their originating bitcodes.
302 //
303 class LLIObjectCache : public ObjectCache {
304 public:
305   LLIObjectCache(const std::string& CacheDir) : CacheDir(CacheDir) {
306     // Add trailing '/' to cache dir if necessary.
307     if (!this->CacheDir.empty() &&
308         this->CacheDir[this->CacheDir.size() - 1] != '/')
309       this->CacheDir += '/';
310   }
311   ~LLIObjectCache() override {}
312 
313   void notifyObjectCompiled(const Module *M, MemoryBufferRef Obj) override {
314     const std::string &ModuleID = M->getModuleIdentifier();
315     std::string CacheName;
316     if (!getCacheFilename(ModuleID, CacheName))
317       return;
318     if (!CacheDir.empty()) { // Create user-defined cache dir.
319       SmallString<128> dir(sys::path::parent_path(CacheName));
320       sys::fs::create_directories(Twine(dir));
321     }
322 
323     std::error_code EC;
324     raw_fd_ostream outfile(CacheName, EC, sys::fs::OF_None);
325     outfile.write(Obj.getBufferStart(), Obj.getBufferSize());
326     outfile.close();
327   }
328 
329   std::unique_ptr<MemoryBuffer> getObject(const Module* M) override {
330     const std::string &ModuleID = M->getModuleIdentifier();
331     std::string CacheName;
332     if (!getCacheFilename(ModuleID, CacheName))
333       return nullptr;
334     // Load the object from the cache filename
335     ErrorOr<std::unique_ptr<MemoryBuffer>> IRObjectBuffer =
336         MemoryBuffer::getFile(CacheName, /*IsText=*/false,
337                               /*RequiresNullTerminator=*/false);
338     // If the file isn't there, that's OK.
339     if (!IRObjectBuffer)
340       return nullptr;
341     // MCJIT will want to write into this buffer, and we don't want that
342     // because the file has probably just been mmapped.  Instead we make
343     // a copy.  The filed-based buffer will be released when it goes
344     // out of scope.
345     return MemoryBuffer::getMemBufferCopy(IRObjectBuffer.get()->getBuffer());
346   }
347 
348 private:
349   std::string CacheDir;
350 
351   bool getCacheFilename(StringRef ModID, std::string &CacheName) {
352     if (!ModID.consume_front("file:"))
353       return false;
354 
355     std::string CacheSubdir = std::string(ModID);
356     // Transform "X:\foo" => "/X\foo" for convenience on Windows.
357     if (is_style_windows(llvm::sys::path::Style::native) &&
358         isalpha(CacheSubdir[0]) && CacheSubdir[1] == ':') {
359       CacheSubdir[1] = CacheSubdir[0];
360       CacheSubdir[0] = '/';
361     }
362 
363     CacheName = CacheDir + CacheSubdir;
364     size_t pos = CacheName.rfind('.');
365     CacheName.replace(pos, CacheName.length() - pos, ".o");
366     return true;
367   }
368 };
369 
370 // On Mingw and Cygwin, an external symbol named '__main' is called from the
371 // generated 'main' function to allow static initialization.  To avoid linking
372 // problems with remote targets (because lli's remote target support does not
373 // currently handle external linking) we add a secondary module which defines
374 // an empty '__main' function.
375 static void addCygMingExtraModule(ExecutionEngine &EE, LLVMContext &Context,
376                                   StringRef TargetTripleStr) {
377   IRBuilder<> Builder(Context);
378   Triple TargetTriple(TargetTripleStr);
379 
380   // Create a new module.
381   std::unique_ptr<Module> M = std::make_unique<Module>("CygMingHelper", Context);
382   M->setTargetTriple(TargetTripleStr);
383 
384   // Create an empty function named "__main".
385   Type *ReturnTy;
386   if (TargetTriple.isArch64Bit())
387     ReturnTy = Type::getInt64Ty(Context);
388   else
389     ReturnTy = Type::getInt32Ty(Context);
390   Function *Result =
391       Function::Create(FunctionType::get(ReturnTy, {}, false),
392                        GlobalValue::ExternalLinkage, "__main", M.get());
393 
394   BasicBlock *BB = BasicBlock::Create(Context, "__main", Result);
395   Builder.SetInsertPoint(BB);
396   Value *ReturnVal = ConstantInt::get(ReturnTy, 0);
397   Builder.CreateRet(ReturnVal);
398 
399   // Add this new module to the ExecutionEngine.
400   EE.addModule(std::move(M));
401 }
402 
403 CodeGenOptLevel getOptLevel() {
404   if (auto Level = CodeGenOpt::parseLevel(OptLevel))
405     return *Level;
406   WithColor::error(errs(), "lli") << "invalid optimization level.\n";
407   exit(1);
408 }
409 
410 [[noreturn]] static void reportError(SMDiagnostic Err, const char *ProgName) {
411   Err.print(ProgName, errs());
412   exit(1);
413 }
414 
415 Error loadDylibs();
416 int runOrcJIT(const char *ProgName);
417 void disallowOrcOptions();
418 Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote();
419 
420 //===----------------------------------------------------------------------===//
421 // main Driver function
422 //
423 int main(int argc, char **argv, char * const *envp) {
424   InitLLVM X(argc, argv);
425 
426   if (argc > 1)
427     ExitOnErr.setBanner(std::string(argv[0]) + ": ");
428 
429   // If we have a native target, initialize it to ensure it is linked in and
430   // usable by the JIT.
431   InitializeNativeTarget();
432   InitializeNativeTargetAsmPrinter();
433   InitializeNativeTargetAsmParser();
434 
435   cl::ParseCommandLineOptions(argc, argv,
436                               "llvm interpreter & dynamic compiler\n");
437 
438   // If the user doesn't want core files, disable them.
439   if (DisableCoreFiles)
440     sys::Process::PreventCoreFiles();
441 
442   ExitOnErr(loadDylibs());
443 
444   if (EntryFunc.empty()) {
445     WithColor::error(errs(), argv[0])
446         << "--entry-function name cannot be empty\n";
447     exit(1);
448   }
449 
450   if (UseJITKind == JITKind::MCJIT || ForceInterpreter)
451     disallowOrcOptions();
452   else
453     return runOrcJIT(argv[0]);
454 
455   // Old lli implementation based on ExecutionEngine and MCJIT.
456   LLVMContext Context;
457 
458   // Load the bitcode...
459   SMDiagnostic Err;
460   std::unique_ptr<Module> Owner = parseIRFile(InputFile, Err, Context);
461   Module *Mod = Owner.get();
462   if (!Mod)
463     reportError(Err, argv[0]);
464 
465   if (EnableCacheManager) {
466     std::string CacheName("file:");
467     CacheName.append(InputFile);
468     Mod->setModuleIdentifier(CacheName);
469   }
470 
471   // If not jitting lazily, load the whole bitcode file eagerly too.
472   if (NoLazyCompilation) {
473     // Use *argv instead of argv[0] to work around a wrong GCC warning.
474     ExitOnError ExitOnErr(std::string(*argv) +
475                           ": bitcode didn't read correctly: ");
476     ExitOnErr(Mod->materializeAll());
477   }
478 
479   std::string ErrorMsg;
480   EngineBuilder builder(std::move(Owner));
481   builder.setMArch(codegen::getMArch());
482   builder.setMCPU(codegen::getCPUStr());
483   builder.setMAttrs(codegen::getFeatureList());
484   if (auto RM = codegen::getExplicitRelocModel())
485     builder.setRelocationModel(*RM);
486   if (auto CM = codegen::getExplicitCodeModel())
487     builder.setCodeModel(*CM);
488   builder.setErrorStr(&ErrorMsg);
489   builder.setEngineKind(ForceInterpreter
490                         ? EngineKind::Interpreter
491                         : EngineKind::JIT);
492 
493   // If we are supposed to override the target triple, do so now.
494   if (!TargetTriple.empty())
495     Mod->setTargetTriple(Triple::normalize(TargetTriple));
496 
497   // Enable MCJIT if desired.
498   RTDyldMemoryManager *RTDyldMM = nullptr;
499   if (!ForceInterpreter) {
500     if (RemoteMCJIT)
501       RTDyldMM = new ForwardingMemoryManager();
502     else
503       RTDyldMM = new SectionMemoryManager();
504 
505     // Deliberately construct a temp std::unique_ptr to pass in. Do not null out
506     // RTDyldMM: We still use it below, even though we don't own it.
507     builder.setMCJITMemoryManager(
508       std::unique_ptr<RTDyldMemoryManager>(RTDyldMM));
509   } else if (RemoteMCJIT) {
510     WithColor::error(errs(), argv[0])
511         << "remote process execution does not work with the interpreter.\n";
512     exit(1);
513   }
514 
515   builder.setOptLevel(getOptLevel());
516 
517   TargetOptions Options =
518       codegen::InitTargetOptionsFromCodeGenFlags(Triple(TargetTriple));
519   if (codegen::getFloatABIForCalls() != FloatABI::Default)
520     Options.FloatABIType = codegen::getFloatABIForCalls();
521 
522   builder.setTargetOptions(Options);
523 
524   std::unique_ptr<ExecutionEngine> EE(builder.create());
525   if (!EE) {
526     if (!ErrorMsg.empty())
527       WithColor::error(errs(), argv[0])
528           << "error creating EE: " << ErrorMsg << "\n";
529     else
530       WithColor::error(errs(), argv[0]) << "unknown error creating EE!\n";
531     exit(1);
532   }
533 
534   std::unique_ptr<LLIObjectCache> CacheManager;
535   if (EnableCacheManager) {
536     CacheManager.reset(new LLIObjectCache(ObjectCacheDir));
537     EE->setObjectCache(CacheManager.get());
538   }
539 
540   // Load any additional modules specified on the command line.
541   for (unsigned i = 0, e = ExtraModules.size(); i != e; ++i) {
542     std::unique_ptr<Module> XMod = parseIRFile(ExtraModules[i], Err, Context);
543     if (!XMod)
544       reportError(Err, argv[0]);
545     if (EnableCacheManager) {
546       std::string CacheName("file:");
547       CacheName.append(ExtraModules[i]);
548       XMod->setModuleIdentifier(CacheName);
549     }
550     EE->addModule(std::move(XMod));
551   }
552 
553   for (unsigned i = 0, e = ExtraObjects.size(); i != e; ++i) {
554     Expected<object::OwningBinary<object::ObjectFile>> Obj =
555         object::ObjectFile::createObjectFile(ExtraObjects[i]);
556     if (!Obj) {
557       // TODO: Actually report errors helpfully.
558       consumeError(Obj.takeError());
559       reportError(Err, argv[0]);
560     }
561     object::OwningBinary<object::ObjectFile> &O = Obj.get();
562     EE->addObjectFile(std::move(O));
563   }
564 
565   for (unsigned i = 0, e = ExtraArchives.size(); i != e; ++i) {
566     ErrorOr<std::unique_ptr<MemoryBuffer>> ArBufOrErr =
567         MemoryBuffer::getFileOrSTDIN(ExtraArchives[i]);
568     if (!ArBufOrErr)
569       reportError(Err, argv[0]);
570     std::unique_ptr<MemoryBuffer> &ArBuf = ArBufOrErr.get();
571 
572     Expected<std::unique_ptr<object::Archive>> ArOrErr =
573         object::Archive::create(ArBuf->getMemBufferRef());
574     if (!ArOrErr) {
575       std::string Buf;
576       raw_string_ostream OS(Buf);
577       logAllUnhandledErrors(ArOrErr.takeError(), OS);
578       OS.flush();
579       errs() << Buf;
580       exit(1);
581     }
582     std::unique_ptr<object::Archive> &Ar = ArOrErr.get();
583 
584     object::OwningBinary<object::Archive> OB(std::move(Ar), std::move(ArBuf));
585 
586     EE->addArchive(std::move(OB));
587   }
588 
589   // If the target is Cygwin/MingW and we are generating remote code, we
590   // need an extra module to help out with linking.
591   if (RemoteMCJIT && Triple(Mod->getTargetTriple()).isOSCygMing()) {
592     addCygMingExtraModule(*EE, Context, Mod->getTargetTriple());
593   }
594 
595   // The following functions have no effect if their respective profiling
596   // support wasn't enabled in the build configuration.
597   EE->RegisterJITEventListener(
598                 JITEventListener::createOProfileJITEventListener());
599   EE->RegisterJITEventListener(
600                 JITEventListener::createIntelJITEventListener());
601   if (!RemoteMCJIT)
602     EE->RegisterJITEventListener(
603                 JITEventListener::createPerfJITEventListener());
604 
605   if (!NoLazyCompilation && RemoteMCJIT) {
606     WithColor::warning(errs(), argv[0])
607         << "remote mcjit does not support lazy compilation\n";
608     NoLazyCompilation = true;
609   }
610   EE->DisableLazyCompilation(NoLazyCompilation);
611 
612   // If the user specifically requested an argv[0] to pass into the program,
613   // do it now.
614   if (!FakeArgv0.empty()) {
615     InputFile = static_cast<std::string>(FakeArgv0);
616   } else {
617     // Otherwise, if there is a .bc suffix on the executable strip it off, it
618     // might confuse the program.
619     if (StringRef(InputFile).ends_with(".bc"))
620       InputFile.erase(InputFile.length() - 3);
621   }
622 
623   // Add the module's name to the start of the vector of arguments to main().
624   InputArgv.insert(InputArgv.begin(), InputFile);
625 
626   // Call the main function from M as if its signature were:
627   //   int main (int argc, char **argv, const char **envp)
628   // using the contents of Args to determine argc & argv, and the contents of
629   // EnvVars to determine envp.
630   //
631   Function *EntryFn = Mod->getFunction(EntryFunc);
632   if (!EntryFn) {
633     WithColor::error(errs(), argv[0])
634         << '\'' << EntryFunc << "\' function not found in module.\n";
635     return -1;
636   }
637 
638   // Reset errno to zero on entry to main.
639   errno = 0;
640 
641   int Result = -1;
642 
643   // Sanity check use of remote-jit: LLI currently only supports use of the
644   // remote JIT on Unix platforms.
645   if (RemoteMCJIT) {
646 #ifndef LLVM_ON_UNIX
647     WithColor::warning(errs(), argv[0])
648         << "host does not support external remote targets.\n";
649     WithColor::note() << "defaulting to local execution\n";
650     return -1;
651 #else
652     if (ChildExecPath.empty()) {
653       WithColor::error(errs(), argv[0])
654           << "-remote-mcjit requires -mcjit-remote-process.\n";
655       exit(1);
656     } else if (!sys::fs::can_execute(ChildExecPath)) {
657       WithColor::error(errs(), argv[0])
658           << "unable to find usable child executable: '" << ChildExecPath
659           << "'\n";
660       return -1;
661     }
662 #endif
663   }
664 
665   if (!RemoteMCJIT) {
666     // If the program doesn't explicitly call exit, we will need the Exit
667     // function later on to make an explicit call, so get the function now.
668     FunctionCallee Exit = Mod->getOrInsertFunction(
669         "exit", Type::getVoidTy(Context), Type::getInt32Ty(Context));
670 
671     // Run static constructors.
672     if (!ForceInterpreter) {
673       // Give MCJIT a chance to apply relocations and set page permissions.
674       EE->finalizeObject();
675     }
676     EE->runStaticConstructorsDestructors(false);
677 
678     // Trigger compilation separately so code regions that need to be
679     // invalidated will be known.
680     (void)EE->getPointerToFunction(EntryFn);
681     // Clear instruction cache before code will be executed.
682     if (RTDyldMM)
683       static_cast<SectionMemoryManager*>(RTDyldMM)->invalidateInstructionCache();
684 
685     // Run main.
686     Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
687 
688     // Run static destructors.
689     EE->runStaticConstructorsDestructors(true);
690 
691     // If the program didn't call exit explicitly, we should call it now.
692     // This ensures that any atexit handlers get called correctly.
693     if (Function *ExitF =
694             dyn_cast<Function>(Exit.getCallee()->stripPointerCasts())) {
695       if (ExitF->getFunctionType() == Exit.getFunctionType()) {
696         std::vector<GenericValue> Args;
697         GenericValue ResultGV;
698         ResultGV.IntVal = APInt(32, Result);
699         Args.push_back(ResultGV);
700         EE->runFunction(ExitF, Args);
701         WithColor::error(errs(), argv[0])
702             << "exit(" << Result << ") returned!\n";
703         abort();
704       }
705     }
706     WithColor::error(errs(), argv[0]) << "exit defined with wrong prototype!\n";
707     abort();
708   } else {
709     // else == "if (RemoteMCJIT)"
710     std::unique_ptr<orc::ExecutorProcessControl> EPC = ExitOnErr(launchRemote());
711 
712     // Remote target MCJIT doesn't (yet) support static constructors. No reason
713     // it couldn't. This is a limitation of the LLI implementation, not the
714     // MCJIT itself. FIXME.
715 
716     // Create a remote memory manager.
717     auto RemoteMM = ExitOnErr(
718         orc::EPCGenericRTDyldMemoryManager::CreateWithDefaultBootstrapSymbols(
719             *EPC));
720 
721     // Forward MCJIT's memory manager calls to the remote memory manager.
722     static_cast<ForwardingMemoryManager*>(RTDyldMM)->setMemMgr(
723       std::move(RemoteMM));
724 
725     // Forward MCJIT's symbol resolution calls to the remote.
726     static_cast<ForwardingMemoryManager *>(RTDyldMM)->setResolver(
727         ExitOnErr(RemoteResolver::Create(*EPC)));
728     // Grab the target address of the JIT'd main function on the remote and call
729     // it.
730     // FIXME: argv and envp handling.
731     auto Entry =
732         orc::ExecutorAddr(EE->getFunctionAddress(EntryFn->getName().str()));
733     EE->finalizeObject();
734     LLVM_DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at 0x"
735                       << format("%llx", Entry.getValue()) << "\n");
736     Result = ExitOnErr(EPC->runAsMain(Entry, {}));
737 
738     // Like static constructors, the remote target MCJIT support doesn't handle
739     // this yet. It could. FIXME.
740 
741     // Delete the EE - we need to tear it down *before* we terminate the session
742     // with the remote, otherwise it'll crash when it tries to release resources
743     // on a remote that has already been disconnected.
744     EE.reset();
745 
746     // Signal the remote target that we're done JITing.
747     ExitOnErr(EPC->disconnect());
748   }
749 
750   return Result;
751 }
752 
753 // JITLink debug support plugins put information about JITed code in this GDB
754 // JIT Interface global from OrcTargetProcess.
755 extern "C" LLVM_ABI struct jit_descriptor __jit_debug_descriptor;
756 
757 static struct jit_code_entry *
758 findNextDebugDescriptorEntry(struct jit_code_entry *Latest) {
759   if (Latest == nullptr)
760     return __jit_debug_descriptor.first_entry;
761   if (Latest->next_entry)
762     return Latest->next_entry;
763   return nullptr;
764 }
765 
766 static ToolOutputFile &claimToolOutput() {
767   static std::unique_ptr<ToolOutputFile> ToolOutput = nullptr;
768   if (ToolOutput) {
769     WithColor::error(errs(), "lli")
770         << "Can not claim stdout for tool output twice\n";
771     exit(1);
772   }
773   std::error_code EC;
774   ToolOutput = std::make_unique<ToolOutputFile>("-", EC, sys::fs::OF_None);
775   if (EC) {
776     WithColor::error(errs(), "lli")
777         << "Failed to create tool output file: " << EC.message() << "\n";
778     exit(1);
779   }
780   return *ToolOutput;
781 }
782 
783 static std::function<void(Module &)> createIRDebugDumper() {
784   switch (OrcDumpKind) {
785   case DumpKind::NoDump:
786   case DumpKind::DumpDebugDescriptor:
787   case DumpKind::DumpDebugObjects:
788     return [](Module &M) {};
789 
790   case DumpKind::DumpFuncsToStdOut:
791     return [](Module &M) {
792       printf("[ ");
793 
794       for (const auto &F : M) {
795         if (F.isDeclaration())
796           continue;
797 
798         if (F.hasName()) {
799           std::string Name(std::string(F.getName()));
800           printf("%s ", Name.c_str());
801         } else
802           printf("<anon> ");
803       }
804 
805       printf("]\n");
806     };
807 
808   case DumpKind::DumpModsToStdOut:
809     return [](Module &M) {
810       outs() << "----- Module Start -----\n" << M << "----- Module End -----\n";
811     };
812 
813   case DumpKind::DumpModsToDisk:
814     return [](Module &M) {
815       std::error_code EC;
816       raw_fd_ostream Out(M.getModuleIdentifier() + ".ll", EC,
817                          sys::fs::OF_TextWithCRLF);
818       if (EC) {
819         errs() << "Couldn't open " << M.getModuleIdentifier()
820                << " for dumping.\nError:" << EC.message() << "\n";
821         exit(1);
822       }
823       Out << M;
824     };
825   }
826   llvm_unreachable("Unknown DumpKind");
827 }
828 
829 static std::function<void(MemoryBuffer &)> createObjDebugDumper() {
830   switch (OrcDumpKind) {
831   case DumpKind::NoDump:
832   case DumpKind::DumpFuncsToStdOut:
833   case DumpKind::DumpModsToStdOut:
834   case DumpKind::DumpModsToDisk:
835     return [](MemoryBuffer &) {};
836 
837   case DumpKind::DumpDebugDescriptor: {
838     // Dump the empty descriptor at startup once
839     fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n",
840             pointerToJITTargetAddress(__jit_debug_descriptor.first_entry));
841     return [](MemoryBuffer &) {
842       // Dump new entries as they appear
843       static struct jit_code_entry *Latest = nullptr;
844       while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) {
845         fprintf(stderr, "jit_debug_descriptor 0x%016" PRIx64 "\n",
846                 pointerToJITTargetAddress(NewEntry));
847         Latest = NewEntry;
848       }
849     };
850   }
851 
852   case DumpKind::DumpDebugObjects: {
853     return [](MemoryBuffer &Obj) {
854       static struct jit_code_entry *Latest = nullptr;
855       static ToolOutputFile &ToolOutput = claimToolOutput();
856       while (auto *NewEntry = findNextDebugDescriptorEntry(Latest)) {
857         ToolOutput.os().write(NewEntry->symfile_addr, NewEntry->symfile_size);
858         Latest = NewEntry;
859       }
860     };
861   }
862   }
863   llvm_unreachable("Unknown DumpKind");
864 }
865 
866 Error loadDylibs() {
867   for (const auto &Dylib : Dylibs) {
868     std::string ErrMsg;
869     if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
870       return make_error<StringError>(ErrMsg, inconvertibleErrorCode());
871   }
872 
873   return Error::success();
874 }
875 
876 static void exitOnLazyCallThroughFailure() { exit(1); }
877 
878 Expected<orc::ThreadSafeModule>
879 loadModule(StringRef Path, orc::ThreadSafeContext TSCtx) {
880   SMDiagnostic Err;
881   auto M = parseIRFile(Path, Err, *TSCtx.getContext());
882   if (!M) {
883     std::string ErrMsg;
884     {
885       raw_string_ostream ErrMsgStream(ErrMsg);
886       Err.print("lli", ErrMsgStream);
887     }
888     return make_error<StringError>(std::move(ErrMsg), inconvertibleErrorCode());
889   }
890 
891   if (EnableCacheManager)
892     M->setModuleIdentifier("file:" + M->getModuleIdentifier());
893 
894   return orc::ThreadSafeModule(std::move(M), std::move(TSCtx));
895 }
896 
897 int mingw_noop_main(void) {
898   // Cygwin and MinGW insert calls from the main function to the runtime
899   // function __main. The __main function is responsible for setting up main's
900   // environment (e.g. running static constructors), however this is not needed
901   // when running under lli: the executor process will have run non-JIT ctors,
902   // and ORC will take care of running JIT'd ctors. To avoid a missing symbol
903   // error we just implement __main as a no-op.
904   //
905   // FIXME: Move this to ORC-RT (and the ORC-RT substitution library once it
906   //        exists). That will allow it to work out-of-process, and for all
907   //        ORC tools (the problem isn't lli specific).
908   return 0;
909 }
910 
911 // Try to enable debugger support for the given instance.
912 // This alway returns success, but prints a warning if it's not able to enable
913 // debugger support.
914 Error tryEnableDebugSupport(orc::LLJIT &J) {
915   if (auto Err = enableDebuggerSupport(J)) {
916     [[maybe_unused]] std::string ErrMsg = toString(std::move(Err));
917     LLVM_DEBUG(dbgs() << "lli: " << ErrMsg << "\n");
918   }
919   return Error::success();
920 }
921 
922 int runOrcJIT(const char *ProgName) {
923   // Start setting up the JIT environment.
924 
925   // Parse the main module.
926   orc::ThreadSafeContext TSCtx(std::make_unique<LLVMContext>());
927   auto MainModule = ExitOnErr(loadModule(InputFile, TSCtx));
928 
929   // Get TargetTriple and DataLayout from the main module if they're explicitly
930   // set.
931   std::optional<Triple> TT;
932   std::optional<DataLayout> DL;
933   MainModule.withModuleDo([&](Module &M) {
934       if (!M.getTargetTriple().empty())
935         TT = Triple(M.getTargetTriple());
936       if (!M.getDataLayout().isDefault())
937         DL = M.getDataLayout();
938     });
939 
940   orc::LLLazyJITBuilder Builder;
941 
942   Builder.setJITTargetMachineBuilder(
943       TT ? orc::JITTargetMachineBuilder(*TT)
944          : ExitOnErr(orc::JITTargetMachineBuilder::detectHost()));
945 
946   TT = Builder.getJITTargetMachineBuilder()->getTargetTriple();
947   if (DL)
948     Builder.setDataLayout(DL);
949 
950   if (!codegen::getMArch().empty())
951     Builder.getJITTargetMachineBuilder()->getTargetTriple().setArchName(
952         codegen::getMArch());
953 
954   Builder.getJITTargetMachineBuilder()
955       ->setCPU(codegen::getCPUStr())
956       .addFeatures(codegen::getFeatureList())
957       .setRelocationModel(codegen::getExplicitRelocModel())
958       .setCodeModel(codegen::getExplicitCodeModel());
959 
960   // Link process symbols unless NoProcessSymbols is set.
961   Builder.setLinkProcessSymbolsByDefault(!NoProcessSymbols);
962 
963   // FIXME: Setting a dummy call-through manager in non-lazy mode prevents the
964   // JIT builder to instantiate a default (which would fail with an error for
965   // unsupported architectures).
966   if (UseJITKind != JITKind::OrcLazy) {
967     auto ES = std::make_unique<orc::ExecutionSession>(
968         ExitOnErr(orc::SelfExecutorProcessControl::Create()));
969     Builder.setLazyCallthroughManager(
970         std::make_unique<orc::LazyCallThroughManager>(*ES, orc::ExecutorAddr(),
971                                                       nullptr));
972     Builder.setExecutionSession(std::move(ES));
973   }
974 
975   Builder.setLazyCompileFailureAddr(
976       orc::ExecutorAddr::fromPtr(exitOnLazyCallThroughFailure));
977   Builder.setNumCompileThreads(LazyJITCompileThreads);
978 
979   // If the object cache is enabled then set a custom compile function
980   // creator to use the cache.
981   std::unique_ptr<LLIObjectCache> CacheManager;
982   if (EnableCacheManager) {
983 
984     CacheManager = std::make_unique<LLIObjectCache>(ObjectCacheDir);
985 
986     Builder.setCompileFunctionCreator(
987       [&](orc::JITTargetMachineBuilder JTMB)
988             -> Expected<std::unique_ptr<orc::IRCompileLayer::IRCompiler>> {
989         if (LazyJITCompileThreads > 0)
990           return std::make_unique<orc::ConcurrentIRCompiler>(std::move(JTMB),
991                                                         CacheManager.get());
992 
993         auto TM = JTMB.createTargetMachine();
994         if (!TM)
995           return TM.takeError();
996 
997         return std::make_unique<orc::TMOwningSimpleCompiler>(std::move(*TM),
998                                                         CacheManager.get());
999       });
1000   }
1001 
1002   // Enable debugging of JIT'd code (only works on JITLink for ELF and MachO).
1003   Builder.setPrePlatformSetup(tryEnableDebugSupport);
1004 
1005   // Set up LLJIT platform.
1006   LLJITPlatform P = Platform;
1007   if (P == LLJITPlatform::Auto)
1008     P = OrcRuntime.empty() ? LLJITPlatform::GenericIR
1009                            : LLJITPlatform::ExecutorNative;
1010 
1011   switch (P) {
1012   case LLJITPlatform::ExecutorNative: {
1013     Builder.setPlatformSetUp(orc::ExecutorNativePlatform(OrcRuntime));
1014     break;
1015   }
1016   case LLJITPlatform::GenericIR:
1017     // Nothing to do: LLJITBuilder will use this by default.
1018     break;
1019   case LLJITPlatform::Inactive:
1020     Builder.setPlatformSetUp(orc::setUpInactivePlatform);
1021     break;
1022   default:
1023     llvm_unreachable("Unrecognized platform value");
1024   }
1025 
1026   std::unique_ptr<orc::ExecutorProcessControl> EPC = nullptr;
1027   if (JITLinker == JITLinkerKind::JITLink) {
1028     EPC = ExitOnErr(orc::SelfExecutorProcessControl::Create(
1029         std::make_shared<orc::SymbolStringPool>()));
1030 
1031     Builder.getJITTargetMachineBuilder()
1032         ->setRelocationModel(Reloc::PIC_)
1033         .setCodeModel(CodeModel::Small);
1034     Builder.setObjectLinkingLayerCreator(
1035         [&](orc::ExecutionSession &ES, const Triple &TT) {
1036           return std::make_unique<orc::ObjectLinkingLayer>(ES);
1037         });
1038   }
1039 
1040   auto J = ExitOnErr(Builder.create());
1041 
1042   auto *ObjLayer = &J->getObjLinkingLayer();
1043   if (auto *RTDyldObjLayer = dyn_cast<orc::RTDyldObjectLinkingLayer>(ObjLayer)) {
1044     RTDyldObjLayer->registerJITEventListener(
1045         *JITEventListener::createGDBRegistrationListener());
1046 #if LLVM_USE_OPROFILE
1047     RTDyldObjLayer->registerJITEventListener(
1048         *JITEventListener::createOProfileJITEventListener());
1049 #endif
1050 #if LLVM_USE_INTEL_JITEVENTS
1051     RTDyldObjLayer->registerJITEventListener(
1052         *JITEventListener::createIntelJITEventListener());
1053 #endif
1054 #if LLVM_USE_PERF
1055     RTDyldObjLayer->registerJITEventListener(
1056         *JITEventListener::createPerfJITEventListener());
1057 #endif
1058   }
1059 
1060   if (PerModuleLazy)
1061     J->setPartitionFunction(orc::IRPartitionLayer::compileWholeModule);
1062 
1063   auto IRDump = createIRDebugDumper();
1064   J->getIRTransformLayer().setTransform(
1065       [&](orc::ThreadSafeModule TSM,
1066           const orc::MaterializationResponsibility &R) {
1067         TSM.withModuleDo([&](Module &M) {
1068           if (verifyModule(M, &dbgs())) {
1069             dbgs() << "Bad module: " << &M << "\n";
1070             exit(1);
1071           }
1072           IRDump(M);
1073         });
1074         return TSM;
1075       });
1076 
1077   auto ObjDump = createObjDebugDumper();
1078   J->getObjTransformLayer().setTransform(
1079       [&](std::unique_ptr<MemoryBuffer> Obj)
1080           -> Expected<std::unique_ptr<MemoryBuffer>> {
1081         ObjDump(*Obj);
1082         return std::move(Obj);
1083       });
1084 
1085   // If this is a Mingw or Cygwin executor then we need to alias __main to
1086   // orc_rt_int_void_return_0.
1087   if (J->getTargetTriple().isOSCygMing())
1088     ExitOnErr(J->getProcessSymbolsJITDylib()->define(
1089         orc::absoluteSymbols({{J->mangleAndIntern("__main"),
1090                                {orc::ExecutorAddr::fromPtr(mingw_noop_main),
1091                                 JITSymbolFlags::Exported}}})));
1092 
1093   // Regular modules are greedy: They materialize as a whole and trigger
1094   // materialization for all required symbols recursively. Lazy modules go
1095   // through partitioning and they replace outgoing calls with reexport stubs
1096   // that resolve on call-through.
1097   auto AddModule = [&](orc::JITDylib &JD, orc::ThreadSafeModule M) {
1098     return UseJITKind == JITKind::OrcLazy ? J->addLazyIRModule(JD, std::move(M))
1099                                           : J->addIRModule(JD, std::move(M));
1100   };
1101 
1102   // Add the main module.
1103   ExitOnErr(AddModule(J->getMainJITDylib(), std::move(MainModule)));
1104 
1105   // Create JITDylibs and add any extra modules.
1106   {
1107     // Create JITDylibs, keep a map from argument index to dylib. We will use
1108     // -extra-module argument indexes to determine what dylib to use for each
1109     // -extra-module.
1110     std::map<unsigned, orc::JITDylib *> IdxToDylib;
1111     IdxToDylib[0] = &J->getMainJITDylib();
1112     for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end();
1113          JDItr != JDEnd; ++JDItr) {
1114       orc::JITDylib *JD = J->getJITDylibByName(*JDItr);
1115       if (!JD) {
1116         JD = &ExitOnErr(J->createJITDylib(*JDItr));
1117         J->getMainJITDylib().addToLinkOrder(*JD);
1118         JD->addToLinkOrder(J->getMainJITDylib());
1119       }
1120       IdxToDylib[JITDylibs.getPosition(JDItr - JITDylibs.begin())] = JD;
1121     }
1122 
1123     for (auto EMItr = ExtraModules.begin(), EMEnd = ExtraModules.end();
1124          EMItr != EMEnd; ++EMItr) {
1125       auto M = ExitOnErr(loadModule(*EMItr, TSCtx));
1126 
1127       auto EMIdx = ExtraModules.getPosition(EMItr - ExtraModules.begin());
1128       assert(EMIdx != 0 && "ExtraModule should have index > 0");
1129       auto JDItr = std::prev(IdxToDylib.lower_bound(EMIdx));
1130       auto &JD = *JDItr->second;
1131       ExitOnErr(AddModule(JD, std::move(M)));
1132     }
1133 
1134     for (auto EAItr = ExtraArchives.begin(), EAEnd = ExtraArchives.end();
1135          EAItr != EAEnd; ++EAItr) {
1136       auto EAIdx = ExtraArchives.getPosition(EAItr - ExtraArchives.begin());
1137       assert(EAIdx != 0 && "ExtraArchive should have index > 0");
1138       auto JDItr = std::prev(IdxToDylib.lower_bound(EAIdx));
1139       auto &JD = *JDItr->second;
1140       ExitOnErr(J->linkStaticLibraryInto(JD, EAItr->c_str()));
1141     }
1142   }
1143 
1144   // Add the objects.
1145   for (auto &ObjPath : ExtraObjects) {
1146     auto Obj = ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ObjPath)));
1147     ExitOnErr(J->addObjectFile(std::move(Obj)));
1148   }
1149 
1150   // Run any static constructors.
1151   ExitOnErr(J->initialize(J->getMainJITDylib()));
1152 
1153   // Run any -thread-entry points.
1154   std::vector<std::thread> AltEntryThreads;
1155   for (auto &ThreadEntryPoint : ThreadEntryPoints) {
1156     auto EntryPointSym = ExitOnErr(J->lookup(ThreadEntryPoint));
1157     typedef void (*EntryPointPtr)();
1158     auto EntryPoint = EntryPointSym.toPtr<EntryPointPtr>();
1159     AltEntryThreads.push_back(std::thread([EntryPoint]() { EntryPoint(); }));
1160   }
1161 
1162   // Resolve and run the main function.
1163   auto MainAddr = ExitOnErr(J->lookup(EntryFunc));
1164   int Result;
1165 
1166   if (EPC) {
1167     // ExecutorProcessControl-based execution with JITLink.
1168     Result = ExitOnErr(EPC->runAsMain(MainAddr, InputArgv));
1169   } else {
1170     // Manual in-process execution with RuntimeDyld.
1171     using MainFnTy = int(int, char *[]);
1172     auto MainFn = MainAddr.toPtr<MainFnTy *>();
1173     Result = orc::runAsMain(MainFn, InputArgv, StringRef(InputFile));
1174   }
1175 
1176   // Wait for -entry-point threads.
1177   for (auto &AltEntryThread : AltEntryThreads)
1178     AltEntryThread.join();
1179 
1180   // Run destructors.
1181   ExitOnErr(J->deinitialize(J->getMainJITDylib()));
1182 
1183   return Result;
1184 }
1185 
1186 void disallowOrcOptions() {
1187   // Make sure nobody used an orc-lazy specific option accidentally.
1188 
1189   if (LazyJITCompileThreads != 0) {
1190     errs() << "-compile-threads requires -jit-kind=orc-lazy\n";
1191     exit(1);
1192   }
1193 
1194   if (!ThreadEntryPoints.empty()) {
1195     errs() << "-thread-entry requires -jit-kind=orc-lazy\n";
1196     exit(1);
1197   }
1198 
1199   if (PerModuleLazy) {
1200     errs() << "-per-module-lazy requires -jit-kind=orc-lazy\n";
1201     exit(1);
1202   }
1203 }
1204 
1205 Expected<std::unique_ptr<orc::ExecutorProcessControl>> launchRemote() {
1206 #ifndef LLVM_ON_UNIX
1207   llvm_unreachable("launchRemote not supported on non-Unix platforms");
1208 #else
1209   int PipeFD[2][2];
1210   pid_t ChildPID;
1211 
1212   // Create two pipes.
1213   if (pipe(PipeFD[0]) != 0 || pipe(PipeFD[1]) != 0)
1214     perror("Error creating pipe: ");
1215 
1216   ChildPID = fork();
1217 
1218   if (ChildPID == 0) {
1219     // In the child...
1220 
1221     // Close the parent ends of the pipes
1222     close(PipeFD[0][1]);
1223     close(PipeFD[1][0]);
1224 
1225 
1226     // Execute the child process.
1227     std::unique_ptr<char[]> ChildPath, ChildIn, ChildOut;
1228     {
1229       ChildPath.reset(new char[ChildExecPath.size() + 1]);
1230       std::copy(ChildExecPath.begin(), ChildExecPath.end(), &ChildPath[0]);
1231       ChildPath[ChildExecPath.size()] = '\0';
1232       std::string ChildInStr = utostr(PipeFD[0][0]);
1233       ChildIn.reset(new char[ChildInStr.size() + 1]);
1234       std::copy(ChildInStr.begin(), ChildInStr.end(), &ChildIn[0]);
1235       ChildIn[ChildInStr.size()] = '\0';
1236       std::string ChildOutStr = utostr(PipeFD[1][1]);
1237       ChildOut.reset(new char[ChildOutStr.size() + 1]);
1238       std::copy(ChildOutStr.begin(), ChildOutStr.end(), &ChildOut[0]);
1239       ChildOut[ChildOutStr.size()] = '\0';
1240     }
1241 
1242     char * const args[] = { &ChildPath[0], &ChildIn[0], &ChildOut[0], nullptr };
1243     int rc = execv(ChildExecPath.c_str(), args);
1244     if (rc != 0)
1245       perror("Error executing child process: ");
1246     llvm_unreachable("Error executing child process");
1247   }
1248   // else we're the parent...
1249 
1250   // Close the child ends of the pipes
1251   close(PipeFD[0][0]);
1252   close(PipeFD[1][1]);
1253 
1254   // Return a SimpleRemoteEPC instance connected to our end of the pipes.
1255   return orc::SimpleRemoteEPC::Create<orc::FDSimpleRemoteEPCTransport>(
1256       std::make_unique<llvm::orc::InPlaceTaskDispatcher>(),
1257       llvm::orc::SimpleRemoteEPC::Setup(), PipeFD[1][0], PipeFD[0][1]);
1258 #endif
1259 }
1260 
1261 // For MinGW environments, manually export the __chkstk function from the lli
1262 // executable.
1263 //
1264 // Normally, this function is provided by compiler-rt builtins or libgcc.
1265 // It is named "_alloca" on i386, "___chkstk_ms" on x86_64, and "__chkstk" on
1266 // arm/aarch64. In MSVC configurations, it's named "__chkstk" in all
1267 // configurations.
1268 //
1269 // When Orc tries to resolve symbols at runtime, this succeeds in MSVC
1270 // configurations, somewhat by accident/luck; kernelbase.dll does export a
1271 // symbol named "__chkstk" which gets found by Orc, even if regular applications
1272 // never link against that function from that DLL (it's linked in statically
1273 // from a compiler support library).
1274 //
1275 // The MinGW specific symbol names aren't available in that DLL though.
1276 // Therefore, manually export the relevant symbol from lli, to let it be
1277 // found at runtime during tests.
1278 //
1279 // For real JIT uses, the real compiler support libraries should be linked
1280 // in, somehow; this is a workaround to let tests pass.
1281 //
1282 // We need to make sure that this symbol actually is linked in when we
1283 // try to export it; if no functions allocate a large enough stack area,
1284 // nothing would reference it. Therefore, manually declare it and add a
1285 // reference to it. (Note, the declarations of _alloca/___chkstk_ms/__chkstk
1286 // are somewhat bogus, these functions use a different custom calling
1287 // convention.)
1288 //
1289 // TODO: Move this into libORC at some point, see
1290 // https://github.com/llvm/llvm-project/issues/56603.
1291 #ifdef __MINGW32__
1292 // This is a MinGW version of #pragma comment(linker, "...") that doesn't
1293 // require compiling with -fms-extensions.
1294 #if defined(__i386__)
1295 #undef _alloca
1296 extern "C" void _alloca(void);
1297 static __attribute__((used)) void (*const ref_func)(void) = _alloca;
1298 static __attribute__((section(".drectve"), used)) const char export_chkstk[] =
1299     "-export:_alloca";
1300 #elif defined(__x86_64__)
1301 extern "C" void ___chkstk_ms(void);
1302 static __attribute__((used)) void (*const ref_func)(void) = ___chkstk_ms;
1303 static __attribute__((section(".drectve"), used)) const char export_chkstk[] =
1304     "-export:___chkstk_ms";
1305 #else
1306 extern "C" void __chkstk(void);
1307 static __attribute__((used)) void (*const ref_func)(void) = __chkstk;
1308 static __attribute__((section(".drectve"), used)) const char export_chkstk[] =
1309     "-export:__chkstk";
1310 #endif
1311 #endif
1312