1; NOTE: Assertions have been autogenerated by utils/update_test_checks.py 2; RUN: opt < %s -mattr=sse2 -passes=slp-vectorizer -S | FileCheck %s --check-prefix=SSE 3; RUN: opt < %s -mattr=avx2 -passes=slp-vectorizer -S | FileCheck %s --check-prefix=AVX 4 5; TODO: 6; With AVX, we are able to vectorize the 1st 4 elements as 256-bit vector ops, 7; but the final 2 elements remain scalar. They should get vectorized using 8; 128-bit ops identically to what happens with SSE. 9 10target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128" 11target triple = "x86_64-unknown-linux-gnu" 12 13define void @PR28457(ptr noalias nocapture align 32 %q, ptr noalias nocapture readonly align 32 %p) { 14; SSE-LABEL: @PR28457( 15; SSE-NEXT: [[P2:%.*]] = getelementptr inbounds double, ptr [[P:%.*]], i64 2 16; SSE-NEXT: [[P4:%.*]] = getelementptr inbounds double, ptr [[P]], i64 4 17; SSE-NEXT: [[Q2:%.*]] = getelementptr inbounds double, ptr [[Q:%.*]], i64 2 18; SSE-NEXT: [[Q4:%.*]] = getelementptr inbounds double, ptr [[Q]], i64 4 19; SSE-NEXT: [[TMP2:%.*]] = load <2 x double>, ptr [[P]], align 8 20; SSE-NEXT: [[TMP3:%.*]] = fadd <2 x double> [[TMP2]], splat (double 1.000000e+00) 21; SSE-NEXT: store <2 x double> [[TMP3]], ptr [[Q]], align 8 22; SSE-NEXT: [[TMP6:%.*]] = load <2 x double>, ptr [[P2]], align 8 23; SSE-NEXT: [[TMP7:%.*]] = fadd <2 x double> [[TMP6]], splat (double 1.000000e+00) 24; SSE-NEXT: store <2 x double> [[TMP7]], ptr [[Q2]], align 8 25; SSE-NEXT: [[TMP10:%.*]] = load <2 x double>, ptr [[P4]], align 8 26; SSE-NEXT: [[TMP11:%.*]] = fadd <2 x double> [[TMP10]], splat (double 1.000000e+00) 27; SSE-NEXT: store <2 x double> [[TMP11]], ptr [[Q4]], align 8 28; SSE-NEXT: ret void 29; 30; AVX-LABEL: @PR28457( 31; AVX-NEXT: [[P4:%.*]] = getelementptr inbounds double, ptr [[P:%.*]], i64 4 32; AVX-NEXT: [[Q4:%.*]] = getelementptr inbounds double, ptr [[Q:%.*]], i64 4 33; AVX-NEXT: [[TMP2:%.*]] = load <4 x double>, ptr [[P]], align 8 34; AVX-NEXT: [[TMP3:%.*]] = fadd <4 x double> [[TMP2]], splat (double 1.000000e+00) 35; AVX-NEXT: store <4 x double> [[TMP3]], ptr [[Q]], align 8 36; AVX-NEXT: [[TMP6:%.*]] = load <2 x double>, ptr [[P4]], align 8 37; AVX-NEXT: [[TMP7:%.*]] = fadd <2 x double> [[TMP6]], splat (double 1.000000e+00) 38; AVX-NEXT: store <2 x double> [[TMP7]], ptr [[Q4]], align 8 39; AVX-NEXT: ret void 40; 41 %p1 = getelementptr inbounds double, ptr %p, i64 1 42 %p2 = getelementptr inbounds double, ptr %p, i64 2 43 %p3 = getelementptr inbounds double, ptr %p, i64 3 44 %p4 = getelementptr inbounds double, ptr %p, i64 4 45 %p5 = getelementptr inbounds double, ptr %p, i64 5 46 47 %q1 = getelementptr inbounds double, ptr %q, i64 1 48 %q2 = getelementptr inbounds double, ptr %q, i64 2 49 %q3 = getelementptr inbounds double, ptr %q, i64 3 50 %q4 = getelementptr inbounds double, ptr %q, i64 4 51 %q5 = getelementptr inbounds double, ptr %q, i64 5 52 53 %d0 = load double, ptr %p 54 %d1 = load double, ptr %p1 55 %d2 = load double, ptr %p2 56 %d3 = load double, ptr %p3 57 %d4 = load double, ptr %p4 58 %d5 = load double, ptr %p5 59 60 %a0 = fadd double %d0, 1.0 61 %a1 = fadd double %d1, 1.0 62 %a2 = fadd double %d2, 1.0 63 %a3 = fadd double %d3, 1.0 64 %a4 = fadd double %d4, 1.0 65 %a5 = fadd double %d5, 1.0 66 67 store double %a0, ptr %q 68 store double %a1, ptr %q1 69 store double %a2, ptr %q2 70 store double %a3, ptr %q3 71 store double %a4, ptr %q4 72 store double %a5, ptr %q5 73 ret void 74} 75