1; REQUIRES: asserts
2; RUN: opt < %s -passes=loop-vectorize -force-vector-width=2 -force-vector-interleave=1 -force-widen-divrem-via-safe-divisor=0 -disable-output -debug-only=loop-vectorize 2>&1 | FileCheck %s
3
4target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
5
6; Test cases for PR50009, which require sinking a replicate-region due to a
7; first-order recurrence.
8
9define void @sink_replicate_region_1(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
10; CHECK-LABEL: sink_replicate_region_1
11; CHECK:      VPlan 'Initial VPlan for VF={2},UF>=1' {
12; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
13; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
14; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
15; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
16; CHECK-NEXT: Live-in ir<20001> = original trip-count
17; CHECK-EMPTY:
18; CHECK-NEXT: ir-bb<entry>:
19; CHECK-NEXT: Successor(s): vector.ph
20; CHECK-EMPTY:
21; CHECK-NEXT: vector.ph:
22; CHECK-NEXT: Successor(s): vector loop
23; CHECK-EMPTY:
24; CHECK-NEXT: <x1> vector loop: {
25; CHECK-NEXT: vector.body:
26; CHECK-NEXT:   EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
27; CHECK-NEXT:   FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
28; CHECK-NEXT:   ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
29; CHECK-NEXT:   vp<[[STEPS:%.]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
30; CHECK-NEXT:   EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
31; CHECK-NEXT: Successor(s): pred.load
32; CHECK-EMPTY:
33; CHECK-NEXT: <xVFxUF> pred.load: {
34; CHECK-NEXT:   pred.load.entry:
35; CHECK-NEXT:     BRANCH-ON-MASK vp<[[MASK]]>
36; CHECK-NEXT:   Successor(s): pred.load.if, pred.load.continue
37; CHECK-EMPTY:
38; CHECK-NEXT:   pred.load.if:
39; CHECK-NEXT:     REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
40; CHECK-NEXT:     REPLICATE ir<%lv> = load ir<%gep> (S->V)
41; CHECK-NEXT:   Successor(s): pred.load.continue
42; CHECK-EMPTY:
43; CHECK-NEXT:   pred.load.continue:
44; CHECK-NEXT:     PHI-PREDICATED-INSTRUCTION vp<[[PRED1:%.+]]> = ir<%lv>
45; CHECK-NEXT:   No successors
46; CHECK-NEXT: }
47; CHECK-NEXT: Successor(s): loop.0
48; CHECK-EMPTY:
49; CHECK-NEXT: loop.0:
50; CHECK-NEXT:   WIDEN-CAST ir<%conv> = sext vp<[[PRED1]]> to i32
51; CHECK-NEXT:   EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
52; CHECK-NEXT: Successor(s): pred.store
53; CHECK-EMPTY:
54; CHECK-NEXT: <xVFxUF> pred.store: {
55; CHECK-NEXT:   pred.store.entry:
56; CHECK-NEXT:     BRANCH-ON-MASK vp<[[MASK]]>
57; CHECK-NEXT:   Successor(s): pred.store.if, pred.store.continue
58; CHECK-EMPTY:
59; CHECK-NEXT:   pred.store.if:
60; CHECK-NEXT:     REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
61; CHECK-NEXT:     REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
62; CHECK-NEXT:     REPLICATE ir<%add> = add ir<%conv>, ir<%rem>
63; CHECK-NEXT:     REPLICATE store ir<%add>, ir<%gep.dst>
64; CHECK-NEXT:   Successor(s): pred.store.continue
65; CHECK-EMPTY:
66; CHECK-NEXT:   pred.store.continue:
67; CHECK-NEXT:   No successors
68; CHECK-NEXT: }
69; CHECK-NEXT: Successor(s): loop.1
70; CHECK-EMPTY:
71; CHECK-NEXT: loop.1:
72; CHECK-NEXT:   EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
73; CHECK-NEXT:   EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
74; CHECK-NEXT: No successors
75; CHECK-NEXT: }
76; CHECK-NEXT: Successor(s): middle.block
77; CHECK-EMPTY:
78; CHECK-NEXT: middle.block:
79; CHECK-NEXT:   EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%conv>, ir<1>
80; CHECK-NEXT:   EMIT branch-on-cond ir<true>
81; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
82; CHECK-EMPTY:
83; CHECK-NEXT: scalar.ph
84; CHECK-NEXT:   EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
85; CHECK-NEXT:   EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
86; CHECK-NEXT: Successor(s): ir-bb<loop>
87; CHECK-EMPTY:
88; CHECK-NEXT: ir-bb<loop>:
89; CHECK-NEXT:   IR   %0 = phi i32 [ 0, %entry ], [ %conv, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
90; CHECK-NEXT:   IR   %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
91; CHECK:        IR   %ec = icmp eq i32 %iv.next, 20001
92; CHECK-NEXT: No successors
93; CHECK-EMPTY:
94; CHECK-NEXT: ir-bb<exit>
95; CHECK-NEXT: No successors
96; CHECK-NEXT: }
97;
98entry:
99  br label %loop
100
101loop:
102  %0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
103  %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
104  %rem = srem i32 %0, %x
105  %gep = getelementptr i8, ptr %ptr, i32 %iv
106  %lv = load i8, ptr %gep
107  %conv = sext i8 %lv to i32
108  %add = add i32 %conv, %rem
109  %gep.dst = getelementptr i32, ptr %dst, i32 %iv
110  store i32 %add, ptr %gep.dst
111  %iv.next = add nsw i32 %iv, 1
112  %ec = icmp eq i32 %iv.next, 20001
113  br i1 %ec, label %exit, label %loop
114
115exit:
116  ret void
117}
118
119define void @sink_replicate_region_2(i32 %x, i8 %y, ptr %ptr) optsize {
120; CHECK-LABEL: sink_replicate_region_2
121; CHECK:      VPlan 'Initial VPlan for VF={2},UF>=1' {
122; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
123; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
124; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
125; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
126; CHECK-NEXT: Live-in ir<20001> = original trip-count
127; CHECK-EMPTY:
128; CHECK-NEXT: ir-bb<entry>:
129; CHECK-NEXT: Successor(s): vector.ph
130; CHECK-EMPTY:
131; CHECK-NEXT: vector.ph:
132; CHECK-NEXT:   WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
133; CHECK-NEXT: Successor(s): vector loop
134; CHECK-EMPTY:
135; CHECK-NEXT: <x1> vector loop: {
136; CHECK-NEXT: vector.body:
137; CHECK-NEXT:   EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
138; CHECK-NEXT:   FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
139; CHECK-NEXT:   ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
140; CHECK-NEXT:   EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
141; CHECK-NEXT:   EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
142; CHECK-NEXT:   Successor(s): pred.store
143; CHECK-EMPTY:
144; CHECK-NEXT: <xVFxUF> pred.store: {
145; CHECK-NEXT:  pred.store.entry:
146; CHECK-NEXT:    BRANCH-ON-MASK vp<[[MASK]]>
147; CHECK-NEXT:  Successor(s): pred.store.if, pred.store.continue
148; CHECK-EMPTY:
149; CHECK-NEXT:  pred.store.if:
150; CHECK-NEXT:     vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
151; CHECK-NEXT:     REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
152; CHECK-NEXT:     REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
153; CHECK-NEXT:     REPLICATE ir<%add> = add ir<%rem>, ir<%recur.next>
154; CHECK-NEXT:     REPLICATE store ir<%add>, ir<%gep>
155; CHECK-NEXT:   Successor(s): pred.store.continue
156; CHECK-EMPTY:
157; CHECK-NEXT:   pred.store.continue:
158; CHECK-NEXT:   No successors
159; CHECK-NEXT: }
160; CHECK-NEXT: Successor(s): loop.0
161; CHECK-EMPTY:
162; CHECK-NEXT: loop.0:
163; CHECK-NEXT:   EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
164; CHECK-NEXT:   EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
165; CHECK-NEXT: No successors
166; CHECK-NEXT: }
167; CHECK-NEXT: Successor(s): middle.block
168; CHECK-EMPTY:
169; CHECK-NEXT: middle.block:
170; CHECK-NEXT:   EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
171; CHECK-NEXT:   EMIT branch-on-cond ir<true>
172; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
173; CHECK-EMPTY:
174; CHECK-NEXT: scalar.ph
175; CHECK-NEXT:   EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
176; CHECK-NEXT:   EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
177; CHECK-NEXT: Successor(s): ir-bb<loop>
178; CHECK-EMPTY:
179; CHECK-NEXT: ir-bb<loop>:
180; CHECK-NEXT:   IR   %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
181; CHECK-NEXT:   IR   %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
182; CHECK:        IR   %ec = icmp eq i32 %iv.next, 20001
183; CHECK-NEXT: No successors
184; CHECK-EMPTY:
185; CHECK-NEXT: ir-bb<exit>
186; CHECK-NEXT: No successors
187; CHECK-NEXT: }
188;
189entry:
190  br label %loop
191
192loop:
193  %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
194  %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
195  %rem = srem i32 %recur, %x
196  %recur.next = sext i8 %y to i32
197  %add = add i32 %rem, %recur.next
198  %gep = getelementptr i32, ptr %ptr, i32 %iv
199  store i32 %add, ptr %gep
200  %iv.next = add nsw i32 %iv, 1
201  %ec = icmp eq i32 %iv.next, 20001
202  br i1 %ec, label %exit, label %loop
203
204exit:
205  ret void
206}
207
208define i32 @sink_replicate_region_3_reduction(i32 %x, i8 %y, ptr %ptr) optsize {
209; CHECK-LABEL: sink_replicate_region_3_reduction
210; CHECK:      VPlan 'Initial VPlan for VF={2},UF>=1' {
211; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
212; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
213; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
214; CHECK-NEXT: Live-in ir<20001> = original trip-count
215; CHECK-EMPTY:
216; CHECK-NEXT: ir-bb<entry>:
217; CHECK-NEXT: Successor(s): vector.ph
218; CHECK-EMPTY:
219; CHECK-NEXT: vector.ph:
220; CHECK-NEXT:   WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
221; CHECK-NEXT: Successor(s): vector loop
222; CHECK-EMPTY:
223; CHECK-NEXT: <x1> vector loop: {
224; CHECK-NEXT: vector.body:
225; CHECK-NEXT:   EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
226; CHECK-NEXT:   FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
227; CHECK-NEXT:   WIDEN-REDUCTION-PHI ir<%and.red> = phi ir<1234>, ir<%and.red.next>
228; CHECK-NEXT:   EMIT vp<[[WIDEN_CAN:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
229; CHECK-NEXT:   EMIT vp<[[MASK:%.+]]> = icmp ule vp<[[WIDEN_CAN]]>, vp<[[BTC]]>
230; CHECK-NEXT:   EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
231; CHECK-NEXT:   WIDEN ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
232; CHECK-NEXT:   WIDEN ir<%add> = add ir<%rem>, ir<%recur.next>
233; CHECK-NEXT:   WIDEN ir<%and.red.next> = and ir<%and.red>, ir<%add>
234; CHECK-NEXT:   EMIT vp<[[SEL:%.+]]> = select vp<[[MASK]]>, ir<%and.red.next>, ir<%and.red>
235; CHECK-NEXT:   EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
236; CHECK-NEXT:   EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
237; CHECK-NEXT: No successors
238; CHECK-NEXT: }
239; CHECK-NEXT: Successor(s): middle.block
240; CHECK-EMPTY:
241; CHECK-NEXT: middle.block:
242; CHECK-NEXT:  EMIT vp<[[RED_RES:%.+]]> = compute-reduction-result ir<%and.red>, vp<[[SEL]]>
243; CHECK-NEXT:   EMIT vp<[[RED_EX:%.+]]> = extract-from-end vp<[[RED_RES]]>, ir<1>
244; CHECK-NEXT:   EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
245; CHECK-NEXT:   EMIT branch-on-cond ir<true>
246; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
247; CHECK-EMPTY:
248; CHECK-NEXT: scalar.ph
249; CHECK-NEXT:   EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
250; CHECK-NEXT:   EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
251; CHECK-NEXT:   EMIT vp<[[RESUME_RED:%.+]]> = resume-phi vp<[[RED_RES]]>, ir<1234>
252; CHECK-NEXT: Successor(s): ir-bb<loop>
253; CHECK-EMPTY:
254; CHECK-NEXT: ir-bb<loop>:
255; CHECK-NEXT:   IR   %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
256; CHECK-NEXT:   IR   %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
257; CHECK-NEXT:   IR   %and.red = phi i32 [ 1234, %entry ], [ %and.red.next, %loop ]
258; CHECK:        IR   %ec = icmp eq i32 %iv.next, 20001
259; CHECK-NEXT: No successors
260; CHECK-EMPTY:
261; CHECK-NEXT: ir-bb<exit>
262; CHECK-NEXT:   IR %res = phi i32 [ %and.red.next, %loop ] (extra operand: vp<[[RED_EX]]> from middle.block)
263; CHECK-NEXT: No successors
264; CHECK-NEXT: }
265;
266entry:
267  br label %loop
268
269loop:
270  %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
271  %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
272  %and.red = phi i32 [ 1234, %entry ], [ %and.red.next, %loop ]
273  %rem = srem i32 %recur, %x
274  %recur.next = sext i8 %y to i32
275  %add = add i32 %rem, %recur.next
276  %and.red.next = and i32 %and.red, %add
277  %iv.next = add nsw i32 %iv, 1
278  %ec = icmp eq i32 %iv.next, 20001
279  br i1 %ec, label %exit, label %loop
280
281exit:
282  %res = phi i32 [ %and.red.next, %loop ]
283  ret i32 %res
284}
285
286; To sink the replicate region containing %rem, we need to split the block
287; containing %conv at the end, because %conv is the last recipe in the block.
288define void @sink_replicate_region_4_requires_split_at_end_of_block(i32 %x, ptr %ptr, ptr noalias %dst) optsize {
289; CHECK-LABEL: sink_replicate_region_4_requires_split_at_end_of_block
290; CHECK:      VPlan 'Initial VPlan for VF={2},UF>=1' {
291; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
292; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
293; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
294; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
295; CHECK-NEXT: Live-in ir<20001> = original trip-count
296; CHECK-EMPTY:
297; CHECK-NEXT: ir-bb<entry>:
298; CHECK-NEXT: Successor(s): vector.ph
299; CHECK-EMPTY:
300; CHECK-NEXT: vector.ph:
301; CHECK-NEXT: Successor(s): vector loop
302; CHECK-EMPTY:
303; CHECK-NEXT: <x1> vector loop: {
304; CHECK-NEXT: vector.body:
305; CHECK-NEXT:   EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
306; CHECK-NEXT:   FIRST-ORDER-RECURRENCE-PHI ir<%0> = phi ir<0>, ir<%conv>
307; CHECK-NEXT:   ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
308; CHECK-NEXT:   vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
309; CHECK-NEXT:   EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
310; CHECK-NEXT:   REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
311; CHECK-NEXT: Successor(s): pred.load
312; CHECK-EMPTY:
313; CHECK-NEXT: <xVFxUF> pred.load: {
314; CHECK-NEXT:   pred.load.entry:
315; CHECK-NEXT:     BRANCH-ON-MASK vp<[[MASK]]>
316; CHECK-NEXT:   Successor(s): pred.load.if, pred.load.continue
317; CHECK-EMPTY:
318; CHECK-NEXT:   pred.load.if:
319; CHECK-NEXT:     REPLICATE ir<%lv> = load ir<%gep> (S->V)
320; CHECK-NEXT:   Successor(s): pred.load.continue
321; CHECK-EMPTY:
322; CHECK-NEXT:   pred.load.continue:
323; CHECK-NEXT:     PHI-PREDICATED-INSTRUCTION vp<[[PRED:%.+]]> = ir<%lv>
324; CHECK-NEXT:   No successors
325; CHECK-NEXT: }
326; CHECK-NEXT: Successor(s): loop.0
327; CHECK-EMPTY:
328; CHECK-NEXT: loop.0:
329; CHECK-NEXT:   WIDEN-CAST ir<%conv> = sext vp<[[PRED]]> to i32
330; CHECK-NEXT:   EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%0>, ir<%conv>
331; CHECK-NEXT: Successor(s): pred.store
332; CHECK-EMPTY:
333; CHECK:      <xVFxUF> pred.store: {
334; CHECK-NEXT:   pred.store.entry:
335; CHECK-NEXT:     BRANCH-ON-MASK vp<[[MASK]]>
336; CHECK-NEXT:   Successor(s): pred.store.if, pred.store.continue
337; CHECK-EMPTY:
338; CHECK:        pred.store.if:
339; CHECK-NEXT:     REPLICATE ir<%lv.2> = load ir<%gep>
340; CHECK-NEXT:     REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
341; CHECK-NEXT:     REPLICATE ir<%conv.lv.2> = sext ir<%lv.2>
342; CHECK-NEXT:     REPLICATE ir<%add.1> = add ir<%conv>, ir<%rem>
343; CHECK-NEXT:     REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[STEPS]]>
344; CHECK-NEXT:     REPLICATE ir<%add> = add ir<%add.1>, ir<%conv.lv.2>
345; CHECK-NEXT:     REPLICATE store ir<%add>, ir<%gep.dst>
346; CHECK-NEXT:   Successor(s): pred.store.continue
347; CHECK-EMPTY:
348; CHECK:        pred.store.continue:
349; CHECK-NEXT:   No successors
350; CHECK-NEXT: }
351; CHECK-NEXT:   Successor(s): loop.2
352; CHECK-EMPTY:
353; CHECK:      loop.2:
354; CHECK-NEXT:   EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
355; CHECK-NEXT:   EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
356; CHECK-NEXT: No successors
357; CHECK-NEXT: }
358; CHECK-NEXT: Successor(s): middle.block
359; CHECK-EMPTY:
360; CHECK-NEXT: middle.block:
361; CHECK-NEXT:   EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%conv>, ir<1>
362; CHECK-NEXT:   EMIT branch-on-cond ir<true>
363; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
364; CHECK-EMPTY:
365; CHECK-NEXT: scalar.ph
366; CHECK-NEXT:   EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
367; CHECK-NEXT:   EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
368; CHECK-NEXT: Successor(s): ir-bb<loop>
369; CHECK-EMPTY:
370; CHECK-NEXT: ir-bb<loop>:
371; CHECK-NEXT:   IR   %0 = phi i32 [ 0, %entry ], [ %conv, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
372; CHECK-NEXT:   IR   %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
373; CHECK:        IR   %ec = icmp eq i32 %iv.next, 20001
374; CHECK-NEXT: No successors
375; CHECK-EMPTY:
376; CHECK-NEXT: ir-bb<exit>
377; CHECK-NEXT: No successors
378; CHECK-NEXT: }
379;
380entry:
381  br label %loop
382
383loop:
384  %0 = phi i32 [ 0, %entry ], [ %conv, %loop ]
385  %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
386  %gep = getelementptr i8, ptr %ptr, i32 %iv
387  %rem = srem i32 %0, %x
388  %lv = load i8, ptr %gep
389  %conv = sext i8 %lv to i32
390  %lv.2 = load i8, ptr %gep
391  %add.1 = add i32 %conv, %rem
392  %conv.lv.2 = sext i8 %lv.2 to i32
393  %add = add i32 %add.1, %conv.lv.2
394  %gep.dst = getelementptr i32, ptr %dst, i32 %iv
395  store i32 %add, ptr %gep.dst
396  %iv.next = add nsw i32 %iv, 1
397  %ec = icmp eq i32 %iv.next, 20001
398  br i1 %ec, label %exit, label %loop
399
400exit:
401  ret void
402}
403
404; Test case that requires sinking a recipe in a replicate region after another replicate region.
405define void @sink_replicate_region_after_replicate_region(ptr %ptr, ptr noalias %dst.2, i32 %x, i8 %y) optsize {
406; CHECK-LABEL: sink_replicate_region_after_replicate_region
407; CHECK:      VPlan 'Initial VPlan for VF={2},UF>=1' {
408; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
409; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
410; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
411; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
412; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
413; CHECK-EMPTY:
414; CHECK-NEXT: ir-bb<entry>:
415; CHECK-NEXT:  EMIT vp<[[TC]]> = EXPAND SCEV (1 smax (1 + (sext i8 %y to i32))<nsw>)
416; CHECK-NEXT: Successor(s): vector.ph
417; CHECK-EMPTY:
418; CHECK-NEXT: vector.ph:
419; CHECK-NEXT:   WIDEN-CAST ir<%recur.next> = sext ir<%y> to i32
420; CHECK-NEXT: Successor(s): vector loop
421; CHECK-EMPTY:
422; CHECK-NEXT: <x1> vector loop: {
423; CHECK-NEXT: vector.body:
424; CHECK-NEXT:   EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
425; CHECK-NEXT:   FIRST-ORDER-RECURRENCE-PHI ir<%recur> = phi ir<0>, ir<%recur.next>
426; CHECK-NEXT:   ir<%iv> = WIDEN-INDUCTION ir<0>, ir<1>, vp<[[VF]]>
427; CHECK-NEXT:   EMIT vp<[[MASK:%.+]]> = icmp ule ir<%iv>, vp<[[BTC]]>
428; CHECK-NEXT:   EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%recur>, ir<%recur.next>
429; CHECK-NEXT: Successor(s): pred.store
430; CHECK-EMPTY:
431; CHECK-NEXT: <xVFxUF> pred.store: {
432; CHECK-NEXT:   pred.store.entry:
433; CHECK-NEXT:     BRANCH-ON-MASK vp<[[MASK]]>
434; CHECK-NEXT:   Successor(s): pred.store.if, pred.store.continue
435; CHECK-EMPTY:
436; CHECK-NEXT:   pred.store.if:
437; CHECK-NEXT:     vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
438; CHECK-NEXT:     REPLICATE ir<%rem> = srem vp<[[SPLICE]]>, ir<%x>
439; CHECK-NEXT:     REPLICATE ir<%rem.div> = sdiv ir<20>, ir<%rem>
440; CHECK-NEXT:     REPLICATE ir<%gep> = getelementptr ir<%ptr>, vp<[[STEPS]]>
441; CHECK-NEXT:     REPLICATE store ir<%rem.div>, ir<%gep>
442; CHECK-NEXT:     REPLICATE ir<%gep.2> = getelementptr ir<%dst.2>, vp<[[STEPS]]>
443; CHECK-NEXT:     REPLICATE store ir<%rem.div>, ir<%gep.2>
444; CHECK-NEXT:   Successor(s): pred.store.continue
445; CHECK-EMPTY:
446; CHECK-NEXT:   pred.store.continue:
447; CHECK-NEXT:   No successors
448; CHECK-NEXT: }
449; CHECK-NEXT: Successor(s): loop.2
450; CHECK-EMPTY:
451; CHECK-NEXT: loop.2:
452; CHECK-NEXT:   EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
453; CHECK-NEXT:   EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
454; CHECK-NEXT: No successors
455; CHECK-NEXT: }
456; CHECK-NEXT: Successor(s): middle.block
457; CHECK-EMPTY:
458; CHECK-NEXT: middle.block:
459; CHECK-NEXT:   EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%recur.next>, ir<1>
460; CHECK-NEXT:   EMIT branch-on-cond ir<true>
461; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
462; CHECK-EMPTY:
463; CHECK-NEXT: scalar.ph
464; CHECK-NEXT:   EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
465; CHECK-NEXT:   EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VEC_TC]]>, ir<0>
466; CHECK-NEXT: Successor(s): ir-bb<loop>
467; CHECK-EMPTY:
468; CHECK-NEXT: ir-bb<loop>:
469; CHECK-NEXT:   IR   %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
470; CHECK-NEXT:   IR   %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
471; CHECK:        IR   %C = icmp sgt i32 %iv.next, %recur.next
472; CHECK-NEXT: No successors
473; CHECK-EMPTY:
474; CHECK-NEXT: ir-bb<exit>
475; CHECK-NEXT: No successors
476; CHECK-NEXT: }
477;
478entry:
479  br label %loop
480
481loop:                                             ; preds = %loop, %entry
482  %recur = phi i32 [ 0, %entry ], [ %recur.next, %loop ]
483  %iv = phi i32 [ 0, %entry ], [ %iv.next, %loop ]
484  %rem = srem i32 %recur, %x
485  %rem.div = sdiv i32 20, %rem
486  %recur.next = sext i8 %y to i32
487  %gep = getelementptr i32, ptr %ptr, i32 %iv
488  store i32 %rem.div, ptr %gep
489  %gep.2 = getelementptr i32, ptr %dst.2, i32 %iv
490  store i32 %rem.div, ptr %gep.2
491  %iv.next = add nsw i32 %iv, 1
492  %C = icmp sgt i32 %iv.next, %recur.next
493  br i1 %C, label %exit, label %loop
494
495exit:                                             ; preds = %loop
496  ret void
497}
498
499define void @need_new_block_after_sinking_pr56146(i32 %x, ptr %src, ptr noalias %dst) {
500; CHECK-LABEL: need_new_block_after_sinking_pr56146
501; CHECK:      VPlan 'Initial VPlan for VF={2},UF>=1' {
502; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
503; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
504; CHECK-NEXT: Live-in vp<[[BTC:%.+]]> = backedge-taken count
505; CHECK-NEXT: Live-in ir<3> = original trip-count
506; CHECK-EMPTY:
507; CHECK-NEXT: ir-bb<entry>:
508; CHECK-NEXT: Successor(s): vector.ph
509; CHECK-EMPTY:
510; CHECK-NEXT: vector.ph:
511; CHECK-NEXT:   vp<[[END:%.+]]> = DERIVED-IV ir<2> + vp<[[VEC_TC]]> * ir<1>
512; CHECK-NEXT: Successor(s): vector loop
513; CHECK-EMPTY:
514; CHECK-NEXT: <x1> vector loop: {
515; CHECK-NEXT:   vector.body:
516; CHECK-NEXT:     EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
517; CHECK-NEXT:     FIRST-ORDER-RECURRENCE-PHI ir<%.pn> = phi ir<0>, ir<[[L:%.+]]>
518; CHECK-NEXT:     vp<[[DERIVED_IV:%.+]]> = DERIVED-IV ir<2> + vp<[[CAN_IV]]> * ir<1>
519; CHECK-NEXT:     EMIT vp<[[WIDE_IV:%.+]]> = WIDEN-CANONICAL-INDUCTION vp<[[CAN_IV]]>
520; CHECK-NEXT:     EMIT vp<[[CMP:%.+]]> = icmp ule vp<[[WIDE_IV]]>, vp<[[BTC]]>
521; CHECK-NEXT:     CLONE ir<[[L]]> = load ir<%src>
522; CHECK-NEXT:     EMIT vp<[[SPLICE:%.+]]> = first-order splice ir<%.pn>, ir<[[L]]>
523; CHECK-NEXT:  Successor(s): pred.store
524; CHECK-EMPTY:
525; CHECK-NEXT:   <xVFxUF> pred.store: {
526; CHECK-NEXT:     pred.store.entry:
527; CHECK-NEXT:       BRANCH-ON-MASK vp<[[CMP]]>
528; CHECK-NEXT:     Successor(s): pred.store.if, pred.store.continue
529; CHECK-EMPTY:
530; CHECK-NEXT:     pred.store.if:
531; CHECK-NEXT:       vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[DERIVED_IV]]>, ir<1>
532; CHECK-NEXT:       REPLICATE ir<%gep.dst> = getelementptr ir<%dst>, vp<[[SCALAR_STEPS]]>
533; CHECK-NEXT:       REPLICATE ir<%val> = sdiv vp<[[SPLICE]]>, ir<%x>
534; CHECK-NEXT:       REPLICATE store ir<%val>, ir<%gep.dst>
535; CHECK-NEXT:     Successor(s): pred.store.continue
536; CHECK-EMPTY:
537; CHECK-NEXT:     pred.store.continue:
538; CHECK-NEXT:     No successors
539; CHECK-NEXT:   }
540; CHECK-NEXT:   Successor(s): loop.0
541; CHECK-EMPTY:
542; CHECK-NEXT:   loop.0:
543; CHECK-NEXT:     EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
544; CHECK-NEXT:     EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
545; CHECK-NEXT:   No successors
546; CHECK-NEXT: }
547; CHECK-NEXT: Successor(s): middle.block
548; CHECK-EMPTY:
549; CHECK-NEXT: middle.block:
550; CHECK-NEXT:   EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%l>, ir<1>
551; CHECK-NEXT:   EMIT branch-on-cond ir<true>
552; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
553; CHECK-EMPTY:
554; CHECK-NEXT: scalar.ph
555; CHECK-NEXT:   EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[END]]>, ir<2>
556; CHECK-NEXT:   EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<0>
557; CHECK-NEXT: Successor(s): ir-bb<loop>
558; CHECK-EMPTY:
559; CHECK-NEXT: ir-bb<loop>:
560; CHECK-NEXT:   IR   %iv = phi i64 [ 2, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
561; CHECK-NEXT:   IR   %.pn = phi i32 [ 0, %entry ], [ %l, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
562; CHECK:        IR   %ec = icmp ugt i64 %iv, 3
563; CHECK-NEXT: No successors
564; CHECK-EMPTY:
565; CHECK-NEXT: ir-bb<exit>
566; CHECK-NEXT: No successors
567; CHECK-NEXT: }
568;
569entry:
570  br label %loop
571
572loop:
573  %iv = phi i64 [ 2, %entry ], [ %iv.next, %loop ]
574  %.pn = phi i32 [ 0, %entry ], [ %l, %loop ]
575  %val = sdiv i32 %.pn, %x
576  %l = load i32, ptr %src, align 4
577  %gep.dst = getelementptr i32, ptr %dst, i64 %iv
578  store i32 %val, ptr %gep.dst
579  %iv.next = add nuw nsw i64 %iv, 1
580  %ec = icmp ugt i64 %iv, 3
581  br i1 %ec, label %exit, label %loop
582
583exit:
584  ret void
585}
586