1; RUN: opt < %s -passes='print<scalar-evolution>,loop(loop-rotate),invalidate<scalar-evolution>,print<scalar-evolution>' -disable-output 2>&1 | FileCheck -check-prefixes CHECK-SCEV %s 2; RUN: opt < %s -passes='print<scalar-evolution>,loop(loop-rotate),print<scalar-evolution>' -disable-output 2>&1 | FileCheck -check-prefixes CHECK-SCEV %s 3; RUN: opt < %s -passes='loop(canon-freeze),loop(loop-rotate),print<scalar-evolution>' -disable-output 4 5; In the first two RUN lines print<scalar-evolution> is used to populate the 6; analysis cache before loop-rotate. That was enough to see the problem by 7; examining print<scalar-evolution> printouts after loop-rotate. However, the 8; crashes where only observed when using canon-freeze as a trigger to populate 9; the analysis cache, so that is why canon-freeze is used in the third RUN 10; line. 11 12; Verify that we get the same SCEV expressions after loop-rotate, regardless 13; if we invalidate scalar-evolution before the final printing or not. 14; 15; This used to fail as described by PR51981 (some expressions still referred 16; to (trunc i32 %div210 to i16) but after the rotation it should be (trunc i32 17; %div2102 to i16). 18; 19; CHECK-SCEV: Classifying expressions for: @test_function 20; CHECK-SCEV: %wide = load i32, ptr @offset, align 1 21; CHECK-SCEV: --> %wide U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop.outer.header: Variant, %loop.inner: Invariant } 22; CHECK-SCEV: %narrow = trunc i32 %wide to i16 23; CHECK-SCEV: --> (trunc i32 %wide to i16) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop.outer.header: Variant, %loop.inner: Invariant } 24; CHECK-SCEV: %iv = phi i16 [ %narrow, %loop.inner.ph ], [ %iv.plus, %loop.inner ] 25; CHECK-SCEV: --> {(trunc i32 %wide to i16),+,1}<nw><%loop.inner> U: full-set S: full-set Exits: (-1 + (700 umax (1 + (trunc i32 %wide to i16)))) LoopDispositions: { %loop.inner: Computable, %loop.outer.header: Variant } 26; 27; CHECK-SCEV: Classifying expressions for: @test_function 28; CHECK-SCEV: %wide1 = load i32, ptr @offset, align 1 29; CHECK-SCEV: --> %wide1 U: full-set S: full-set 30; CHECK-SCEV: %wide2 = phi i32 [ %wide1, %loop.inner.ph.lr.ph ], [ %wide, %loop.outer.latch ] 31; CHECK-SCEV: --> %wide2 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop.inner.ph: Variant, %loop.inner: Invariant } 32; CHECK-SCEV: %narrow = trunc i32 %wide2 to i16 33; CHECK-SCEV: --> (trunc i32 %wide2 to i16) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop.inner.ph: Variant, %loop.inner: Invariant } 34; CHECK-SCEV: %iv = phi i16 [ %narrow, %loop.inner.ph ], [ %iv.plus, %loop.inner ] 35; CHECK-SCEV: --> {(trunc i32 %wide2 to i16),+,1}<nw><%loop.inner> U: full-set S: full-set Exits: (-1 + (700 umax (1 + (trunc i32 %wide2 to i16)))) LoopDispositions: { %loop.inner: Computable, %loop.inner.ph: Variant } 36 37 38@offset = external dso_local global i32, align 1 39@array = internal global [11263 x i32] zeroinitializer, align 1 40 41define void @test_function(i1 %cond) { 42entry: 43 br label %loop.outer.header 44 45loop.outer.header: ; preds = %loop.outer.latch, %entry 46 %wide = load i32, ptr @offset, align 1 47 br i1 %cond, label %exit, label %loop.inner.ph 48 49loop.inner.ph: ; preds = %loop.outer.header 50 %narrow = trunc i32 %wide to i16 51 br label %loop.inner 52 53loop.inner: ; preds = %loop.inner, %loop.inner.ph 54 %iv = phi i16 [ %narrow, %loop.inner.ph ], [ %iv.plus, %loop.inner ] 55 %iv.promoted = zext i16 %iv to i32 56 %gep = getelementptr inbounds [11263 x i32], ptr @array, i32 0, i32 %iv.promoted 57 store i32 7, ptr %gep, align 1 58 %iv.plus = add i16 %iv, 1 59 %cmp = icmp ult i16 %iv.plus, 700 60 br i1 %cmp, label %loop.inner, label %loop.outer.latch 61 62loop.outer.latch: ; preds = %loop.inner 63 br label %loop.outer.header 64 65exit: ; preds = %loop.outer.header 66 ret void 67} 68 69