xref: /llvm-project/llvm/test/Analysis/ScalarEvolution/ranges.ll (revision 8b5b294ec2cf876bc5eb5bd5fcb56ef487e36d60)
1; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
2 ; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>,verify<scalar-evolution>" 2>&1 | FileCheck %s
3 ; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>,verify<scalar-evolution>" -scev-range-iter-threshold=1 2>&1 | FileCheck %s
4
5target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64"
6
7; Collection of cases exercising range logic, mostly (but not exclusively)
8; involving SCEVUnknowns.
9
10declare void @llvm.assume(i1)
11
12define i32 @ashr(i32 %a) {
13; CHECK-LABEL: 'ashr'
14; CHECK-NEXT:  Classifying expressions for: @ashr
15; CHECK-NEXT:    %ashr = ashr i32 %a, 31
16; CHECK-NEXT:    --> %ashr U: [0,1) S: [0,1)
17; CHECK-NEXT:  Determining loop execution counts for: @ashr
18;
19  %ashr = ashr i32 %a, 31
20  %pos = icmp sge i32 %a, 0
21  call void @llvm.assume(i1 %pos)
22  ret i32 %ashr
23}
24
25; Highlight the fact that non-argument non-instructions are
26; also possible.
27@G = external global i8
28define i64 @ashr_global() {
29; CHECK-LABEL: 'ashr_global'
30; CHECK-NEXT:  Classifying expressions for: @ashr_global
31; CHECK-NEXT:    %ashr = ashr i64 ptrtoint (ptr @G to i64), 63
32; CHECK-NEXT:    --> %ashr U: [0,1) S: [0,1)
33; CHECK-NEXT:  Determining loop execution counts for: @ashr_global
34;
35  %ashr = ashr i64 ptrtoint (ptr @G to i64), 63
36  %pos = icmp sge ptr @G, null
37  call void @llvm.assume(i1 %pos)
38  ret i64 %ashr
39}
40
41
42define i32 @shl(i32 %a) {
43; CHECK-LABEL: 'shl'
44; CHECK-NEXT:  Classifying expressions for: @shl
45; CHECK-NEXT:    %res = shl i32 %a, 2
46; CHECK-NEXT:    --> (4 * %a) U: [0,-3) S: [-2147483648,2147483645)
47; CHECK-NEXT:  Determining loop execution counts for: @shl
48;
49  %res = shl i32 %a, 2
50  %pos = icmp ult i32 %a, 1024
51  call void @llvm.assume(i1 %pos)
52  ret i32 %res
53}
54
55define i32 @lshr(i32 %a) {
56; CHECK-LABEL: 'lshr'
57; CHECK-NEXT:  Classifying expressions for: @lshr
58; CHECK-NEXT:    %res = lshr i32 %a, 31
59; CHECK-NEXT:    --> (%a /u -2147483648) U: [0,2) S: [0,2)
60; CHECK-NEXT:  Determining loop execution counts for: @lshr
61;
62  %res = lshr i32 %a, 31
63  %pos = icmp sge i32 %a, 0
64  call void @llvm.assume(i1 %pos)
65  ret i32 %res
66}
67
68
69define i32 @udiv(i32 %a) {
70; CHECK-LABEL: 'udiv'
71; CHECK-NEXT:  Classifying expressions for: @udiv
72; CHECK-NEXT:    %res = udiv i32 %a, -2147483648
73; CHECK-NEXT:    --> (%a /u -2147483648) U: [0,2) S: [0,2)
74; CHECK-NEXT:  Determining loop execution counts for: @udiv
75;
76  %res = udiv i32 %a, 2147483648
77  %pos = icmp sge i32 %a, 0
78  call void @llvm.assume(i1 %pos)
79  ret i32 %res
80}
81
82define i64 @sext(i8 %a) {
83; CHECK-LABEL: 'sext'
84; CHECK-NEXT:  Classifying expressions for: @sext
85; CHECK-NEXT:    %res = sext i8 %a to i64
86; CHECK-NEXT:    --> (sext i8 %a to i64) U: [-128,128) S: [-128,128)
87; CHECK-NEXT:  Determining loop execution counts for: @sext
88;
89  %res = sext i8 %a to i64
90  %pos = icmp sge i8 %a, 0
91  call void @llvm.assume(i1 %pos)
92  ret i64 %res
93}
94
95define i64 @zext(i8 %a) {
96; CHECK-LABEL: 'zext'
97; CHECK-NEXT:  Classifying expressions for: @zext
98; CHECK-NEXT:    %res = zext i8 %a to i64
99; CHECK-NEXT:    --> (zext i8 %a to i64) U: [0,256) S: [0,256)
100; CHECK-NEXT:  Determining loop execution counts for: @zext
101;
102  %res = zext i8 %a to i64
103  %pos = icmp sge i8 %a, 0
104  call void @llvm.assume(i1 %pos)
105  ret i64 %res
106}
107
108define i32 @phi_div() {
109; CHECK-LABEL: 'phi_div'
110; CHECK-NEXT:  Classifying expressions for: @phi_div
111; CHECK-NEXT:    %range.1 = phi i32 [ 0, %entry ], [ %shr, %loop ]
112; CHECK-NEXT:    --> %range.1 U: [0,1) S: [0,1) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
113; CHECK-NEXT:    %shr = lshr i32 %range.1, 1
114; CHECK-NEXT:    --> (%range.1 /u 2) U: [0,1) S: [0,1) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
115; CHECK-NEXT:  Determining loop execution counts for: @phi_div
116; CHECK-NEXT:  Loop %loop: <multiple exits> Unpredictable backedge-taken count.
117; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
118; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
119;
120entry:
121  br label %loop
122
123loop:
124  %range.1 = phi i32 [ 0, %entry ], [ %shr, %loop ]
125  %shr = lshr i32 %range.1, 1
126  br label %loop
127}
128
129define void @add_6(i32 %n) {
130; CHECK-LABEL: 'add_6'
131; CHECK-NEXT:  Classifying expressions for: @add_6
132; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
133; CHECK-NEXT:    --> {0,+,6}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,2147483647) Exits: (6 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 6) + (1 umin %n))) LoopDispositions: { %loop: Computable }
134; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 6
135; CHECK-NEXT:    --> {6,+,6}<nuw><%loop> U: [6,-3) S: [-2147483648,2147483647) Exits: (6 + (6 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 6) + (1 umin %n)))) LoopDispositions: { %loop: Computable }
136; CHECK-NEXT:  Determining loop execution counts for: @add_6
137; CHECK-NEXT:  Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 6) + (1 umin %n))
138; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 715827882
139; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 6) + (1 umin %n))
140; CHECK-NEXT:  Loop %loop: Trip multiple is 1
141;
142entry:
143  br label %loop
144
145loop:
146  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
147  %iv.inc = add nsw i32 %iv, 6
148  %becond = icmp ult i32 %iv, %n
149  br i1 %becond, label %loop, label %leave
150
151leave:
152  ret void
153}
154define void @add_7(i32 %n) {
155; CHECK-LABEL: 'add_7'
156; CHECK-NEXT:  Classifying expressions for: @add_7
157; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
158; CHECK-NEXT:    --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))) LoopDispositions: { %loop: Computable }
159; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 7
160; CHECK-NEXT:    --> {7,+,7}<nuw><%loop> U: [7,-3) S: [7,0) Exits: (7 + (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n)))) LoopDispositions: { %loop: Computable }
161; CHECK-NEXT:  Determining loop execution counts for: @add_7
162; CHECK-NEXT:  Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))
163; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 613566756
164; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))
165; CHECK-NEXT:  Loop %loop: Trip multiple is 1
166;
167entry:
168  br label %loop
169
170loop:
171  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
172  %iv.inc = add nsw i32 %iv, 7
173  %becond = icmp ult i32 %iv, %n
174  br i1 %becond, label %loop, label %leave
175
176leave:
177  ret void
178}
179define void @add_8(i32 %n) {
180; CHECK-LABEL: 'add_8'
181; CHECK-NEXT:  Classifying expressions for: @add_8
182; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
183; CHECK-NEXT:    --> {0,+,8}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,2147483641) Exits: (8 * ((7 + %n) /u 8))<nuw> LoopDispositions: { %loop: Computable }
184; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 8
185; CHECK-NEXT:    --> {8,+,8}<nuw><%loop> U: [8,-7) S: [-2147483648,2147483641) Exits: (8 + (8 * ((7 + %n) /u 8))<nuw>) LoopDispositions: { %loop: Computable }
186; CHECK-NEXT:  Determining loop execution counts for: @add_8
187; CHECK-NEXT:  Loop %loop: backedge-taken count is ((7 + %n) /u 8)
188; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 536870911
189; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((7 + %n) /u 8)
190; CHECK-NEXT:  Loop %loop: Trip multiple is 1
191;
192entry:
193  br label %loop
194
195loop:
196  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
197  %iv.inc = add nsw i32 %iv, 8
198  %becond = icmp ult i32 %iv, %n
199  br i1 %becond, label %loop, label %leave
200
201leave:
202  ret void
203}
204
205define void @add_9(i32 %n) {
206; CHECK-LABEL: 'add_9'
207; CHECK-NEXT:  Classifying expressions for: @add_9
208; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
209; CHECK-NEXT:    --> {0,+,9}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (9 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n))) LoopDispositions: { %loop: Computable }
210; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 9
211; CHECK-NEXT:    --> {9,+,9}<nuw><%loop> U: [9,-3) S: [9,0) Exits: (9 + (9 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n)))) LoopDispositions: { %loop: Computable }
212; CHECK-NEXT:  Determining loop execution counts for: @add_9
213; CHECK-NEXT:  Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n))
214; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 477218588
215; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n))
216; CHECK-NEXT:  Loop %loop: Trip multiple is 1
217;
218entry:
219  br label %loop
220
221loop:
222  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
223  %iv.inc = add nsw i32 %iv, 9
224  %becond = icmp ult i32 %iv, %n
225  br i1 %becond, label %loop, label %leave
226
227leave:
228  ret void
229}
230
231define void @add_10(i32 %n) {
232; CHECK-LABEL: 'add_10'
233; CHECK-NEXT:  Classifying expressions for: @add_10
234; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
235; CHECK-NEXT:    --> {0,+,10}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,2147483647) Exits: (10 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 10) + (1 umin %n))) LoopDispositions: { %loop: Computable }
236; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 10
237; CHECK-NEXT:    --> {10,+,10}<nuw><%loop> U: [10,-5) S: [-2147483648,2147483647) Exits: (10 + (10 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 10) + (1 umin %n)))) LoopDispositions: { %loop: Computable }
238; CHECK-NEXT:  Determining loop execution counts for: @add_10
239; CHECK-NEXT:  Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 10) + (1 umin %n))
240; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 429496729
241; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 10) + (1 umin %n))
242; CHECK-NEXT:  Loop %loop: Trip multiple is 1
243;
244entry:
245  br label %loop
246
247loop:
248  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
249  %iv.inc = add nsw i32 %iv, 10
250  %becond = icmp ult i32 %iv, %n
251  br i1 %becond, label %loop, label %leave
252
253leave:
254  ret void
255}
256
257define void @add_8_wrap(i32 %n) {
258; CHECK-LABEL: 'add_8_wrap'
259; CHECK-NEXT:  Classifying expressions for: @add_8_wrap
260; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
261; CHECK-NEXT:    --> {0,+,8}<%loop> U: [0,-7) S: [-2147483648,2147483641) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
262; CHECK-NEXT:    %iv.inc = add i32 %iv, 8
263; CHECK-NEXT:    --> {8,+,8}<%loop> U: [0,-7) S: [-2147483648,2147483641) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
264; CHECK-NEXT:  Determining loop execution counts for: @add_8_wrap
265; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
266; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
267; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
268;
269entry:
270  br label %loop
271
272loop:
273  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
274  %iv.inc = add i32 %iv, 8
275  %becond = icmp ult i32 %iv, %n
276  br i1 %becond, label %loop, label %leave
277
278leave:
279  ret void
280}
281
282define void @add_10_wrap(i32 %n) {
283; CHECK-LABEL: 'add_10_wrap'
284; CHECK-NEXT:  Classifying expressions for: @add_10_wrap
285; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
286; CHECK-NEXT:    --> {0,+,10}<%loop> U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
287; CHECK-NEXT:    %iv.inc = add i32 %iv, 10
288; CHECK-NEXT:    --> {10,+,10}<%loop> U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
289; CHECK-NEXT:  Determining loop execution counts for: @add_10_wrap
290; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
291; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
292; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
293;
294entry:
295  br label %loop
296
297loop:
298  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
299  %iv.inc = add i32 %iv, 10
300  %becond = icmp ult i32 %iv, %n
301  br i1 %becond, label %loop, label %leave
302
303leave:
304  ret void
305}
306
307define void @mul_6(i32 %n) {
308; CHECK-LABEL: 'mul_6'
309; CHECK-NEXT:  Classifying expressions for: @mul_6
310; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
311; CHECK-NEXT:    --> %iv U: [0,-1) S: [-2147483648,2147483645) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
312; CHECK-NEXT:    %iv.inc = mul nuw i32 %iv, 6
313; CHECK-NEXT:    --> (6 * %iv) U: [0,-3) S: [-2147483648,2147483645) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
314; CHECK-NEXT:  Determining loop execution counts for: @mul_6
315; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
316; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
317; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
318;
319entry:
320  br label %loop
321
322loop:
323  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
324  %iv.inc = mul nuw i32 %iv, 6
325  %becond = icmp ult i32 %iv, %n
326  br i1 %becond, label %loop, label %leave
327
328leave:
329  ret void
330}
331
332define void @mul_7(i32 %n) {
333; CHECK-LABEL: 'mul_7'
334; CHECK-NEXT:  Classifying expressions for: @mul_7
335; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
336; CHECK-NEXT:    --> %iv U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
337; CHECK-NEXT:    %iv.inc = mul nuw i32 %iv, 7
338; CHECK-NEXT:    --> (7 * %iv) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
339; CHECK-NEXT:  Determining loop execution counts for: @mul_7
340; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
341; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
342; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
343;
344entry:
345  br label %loop
346
347loop:
348  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
349  %iv.inc = mul nuw i32 %iv, 7
350  %becond = icmp ult i32 %iv, %n
351  br i1 %becond, label %loop, label %leave
352
353leave:
354  ret void
355}
356
357define void @mul_8(i32 %n) {
358; CHECK-LABEL: 'mul_8'
359; CHECK-NEXT:  Classifying expressions for: @mul_8
360; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
361; CHECK-NEXT:    --> %iv U: [0,-7) S: [-2147483648,2147483585) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
362; CHECK-NEXT:    %iv.inc = mul nuw i32 %iv, 8
363; CHECK-NEXT:    --> (8 * %iv) U: [0,-63) S: [-2147483648,2147483585) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
364; CHECK-NEXT:  Determining loop execution counts for: @mul_8
365; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
366; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
367; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
368;
369entry:
370  br label %loop
371
372loop:
373  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
374  %iv.inc = mul nuw i32 %iv, 8
375  %becond = icmp ult i32 %iv, %n
376  br i1 %becond, label %loop, label %leave
377
378leave:
379  ret void
380}
381
382define void @mul_9(i32 %n) {
383; CHECK-LABEL: 'mul_9'
384; CHECK-NEXT:  Classifying expressions for: @mul_9
385; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
386; CHECK-NEXT:    --> %iv U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
387; CHECK-NEXT:    %iv.inc = mul nuw i32 %iv, 9
388; CHECK-NEXT:    --> (9 * %iv) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
389; CHECK-NEXT:  Determining loop execution counts for: @mul_9
390; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
391; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
392; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
393;
394entry:
395  br label %loop
396
397loop:
398  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
399  %iv.inc = mul nuw i32 %iv, 9
400  %becond = icmp ult i32 %iv, %n
401  br i1 %becond, label %loop, label %leave
402
403leave:
404  ret void
405}
406
407define void @mul_10(i32 %n) {
408; CHECK-LABEL: 'mul_10'
409; CHECK-NEXT:  Classifying expressions for: @mul_10
410; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
411; CHECK-NEXT:    --> %iv U: [0,-1) S: [-2147483648,2147483645) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
412; CHECK-NEXT:    %iv.inc = mul nuw i32 %iv, 10
413; CHECK-NEXT:    --> (10 * %iv) U: [0,-3) S: [-2147483648,2147483645) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
414; CHECK-NEXT:  Determining loop execution counts for: @mul_10
415; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
416; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
417; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
418;
419entry:
420  br label %loop
421
422loop:
423  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
424  %iv.inc = mul nuw i32 %iv, 10
425  %becond = icmp ult i32 %iv, %n
426  br i1 %becond, label %loop, label %leave
427
428leave:
429  ret void
430}
431
432define void @mul_8_wrap(i32 %n) {
433; CHECK-LABEL: 'mul_8_wrap'
434; CHECK-NEXT:  Classifying expressions for: @mul_8_wrap
435; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
436; CHECK-NEXT:    --> %iv U: [0,-7) S: [-2147483648,2147483585) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
437; CHECK-NEXT:    %iv.inc = mul i32 %iv, 8
438; CHECK-NEXT:    --> (8 * %iv) U: [0,-63) S: [-2147483648,2147483585) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
439; CHECK-NEXT:  Determining loop execution counts for: @mul_8_wrap
440; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
441; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
442; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
443;
444entry:
445  br label %loop
446
447loop:
448  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
449  %iv.inc = mul i32 %iv, 8
450  %becond = icmp ult i32 %iv, %n
451  br i1 %becond, label %loop, label %leave
452
453leave:
454  ret void
455}
456
457define void @mul_10_wrap(i32 %n) {
458; CHECK-LABEL: 'mul_10_wrap'
459; CHECK-NEXT:  Classifying expressions for: @mul_10_wrap
460; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
461; CHECK-NEXT:    --> %iv U: [0,-1) S: [-2147483648,2147483645) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
462; CHECK-NEXT:    %iv.inc = mul i32 %iv, 10
463; CHECK-NEXT:    --> (10 * %iv) U: [0,-3) S: [-2147483648,2147483645) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
464; CHECK-NEXT:  Determining loop execution counts for: @mul_10_wrap
465; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
466; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
467; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
468;
469entry:
470  br label %loop
471
472loop:
473  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
474  %iv.inc = mul i32 %iv, 10
475  %becond = icmp ult i32 %iv, %n
476  br i1 %becond, label %loop, label %leave
477
478leave:
479  ret void
480}
481
482define void @truncate(i16 %n) {
483; %t is not a multiple of 7 because we cannot make the assumption through truncation
484; CHECK-LABEL: 'truncate'
485; CHECK-NEXT:  Classifying expressions for: @truncate
486; CHECK-NEXT:    %iv = phi i16 [ 0, %entry ], [ %iv.inc, %loop ]
487; CHECK-NEXT:    --> {0,+,9}<nuw><%loop> U: [0,-6) S: [0,-6) Exits: (9 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n))) LoopDispositions: { %loop: Computable }
488; CHECK-NEXT:    %iv.inc = add nuw i16 %iv, 9
489; CHECK-NEXT:    --> {9,+,9}<nw><%loop> U: [9,3) S: [9,3) Exits: (9 + (9 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n)))) LoopDispositions: { %loop: Computable }
490; CHECK-NEXT:    %t = trunc i16 %iv.inc to i8
491; CHECK-NEXT:    --> {9,+,9}<%loop> U: full-set S: full-set Exits: (9 + (9 * (trunc i16 ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n)) to i8))) LoopDispositions: { %loop: Computable }
492; CHECK-NEXT:  Determining loop execution counts for: @truncate
493; CHECK-NEXT:  Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n))
494; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i16 7281
495; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 9) + (1 umin %n))
496; CHECK-NEXT:  Loop %loop: Trip multiple is 1
497;
498entry:
499  br label %loop
500
501loop:
502  %iv = phi i16 [ 0, %entry ], [ %iv.inc, %loop ]
503  %iv.inc = add nuw i16 %iv, 9
504  %t = trunc i16 %iv.inc to i8
505  %becond = icmp ult i16 %iv, %n
506  br i1 %becond, label %loop, label %leave
507
508leave:
509  ret void
510}
511
512
513