xref: /llvm-project/llvm/test/Analysis/ScalarEvolution/predicated-trip-count.ll (revision 88f7dc17eb271e37caf381f02eb75b3493e2b4a5)
1; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
2; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
3
4target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
5
6@A = weak global [1000 x i32] zeroinitializer, align 32
7
8; The resulting predicate is i16 {0,+,1} <nssw>, meanining
9; that the resulting backedge expression will be valid for:
10;   (1 + (-1 smax %M)) <= MAX_INT16
11;
12; At the limit condition for M (MAX_INT16 - 1) we have in the
13; last iteration:
14;    i0 <- MAX_INT16
15;    i0.ext <- MAX_INT16
16;
17; and therefore no wrapping happend for i0 or i0.ext
18; throughout the execution of the loop. The resulting predicated
19; backedge taken count is correct.
20
21define void @test1(i32 %N, i32 %M) {
22; CHECK-LABEL: 'test1'
23; CHECK-NEXT:  Classifying expressions for: @test1
24; CHECK-NEXT:    %tmp = getelementptr [1000 x i32], ptr @A, i32 0, i16 %i.0
25; CHECK-NEXT:    --> ((4 * (sext i16 {0,+,1}<%bb3> to i64))<nsw> + @A) U: [0,-3) S: [-9223372036854775808,9223372036854775805) Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
26; CHECK-NEXT:    %tmp2 = add i16 %i.0, 1
27; CHECK-NEXT:    --> {1,+,1}<%bb3> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
28; CHECK-NEXT:    %i.0 = phi i16 [ 0, %entry ], [ %tmp2, %bb ]
29; CHECK-NEXT:    --> {0,+,1}<%bb3> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
30; CHECK-NEXT:    %i.0.ext = sext i16 %i.0 to i32
31; CHECK-NEXT:    --> (sext i16 {0,+,1}<%bb3> to i32) U: [-32768,32768) S: [-32768,32768) Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
32; CHECK-NEXT:  Determining loop execution counts for: @test1
33; CHECK-NEXT:  Loop %bb3: Unpredictable backedge-taken count.
34; CHECK-NEXT:  Loop %bb3: Unpredictable constant max backedge-taken count.
35; CHECK-NEXT:  Loop %bb3: Unpredictable symbolic max backedge-taken count.
36; CHECK-NEXT:  Loop %bb3: Predicated backedge-taken count is (1 + (-1 smax %M))
37; CHECK-NEXT:   Predicates:
38; CHECK-NEXT:      {0,+,1}<%bb3> Added Flags: <nssw>
39;
40entry:
41  br label %bb3
42
43bb:             ; preds = %bb3
44  %tmp = getelementptr [1000 x i32], ptr @A, i32 0, i16 %i.0          ; <ptr> [#uses=1]
45  store i32 123, ptr %tmp
46  %tmp2 = add i16 %i.0, 1         ; <i32> [#uses=1]
47  br label %bb3
48
49bb3:            ; preds = %bb, %entry
50  %i.0 = phi i16 [ 0, %entry ], [ %tmp2, %bb ]            ; <i32> [#uses=3]
51  %i.0.ext = sext i16 %i.0 to i32
52  %tmp3 = icmp sle i32 %i.0.ext, %M          ; <i1> [#uses=1]
53  br i1 %tmp3, label %bb, label %bb5
54
55bb5:            ; preds = %bb3
56  br label %return
57
58return:         ; preds = %bb5
59  ret void
60}
61
62; The predicated backedge taken count is:
63;    (2 + (zext i16 %Start to i32) + ((-2 + (-1 * (sext i16 %Start to i32)))
64;                                     smax (-1 + (-1 * %M)))
65;    )
66
67; -1 + (-1 * %M) <= (-2 + (-1 * (sext i16 %Start to i32))
68; The predicated backedge taken count is 0.
69; From the IR, this is correct since we will bail out at the
70; first iteration.
71
72
73; * -1 + (-1 * %M) > (-2 + (-1 * (sext i16 %Start to i32))
74; or: %M < 1 + (sext i16 %Start to i32)
75;
76; The predicated backedge taken count is 1 + (zext i16 %Start to i32) - %M
77;
78; If %M >= MIN_INT + 1, this predicated backedge taken count would be correct (even
79; without predicates). However, for %M < MIN_INT this would be an infinite loop.
80; In these cases, the {%Start,+,-1} <nusw> predicate would be false, as the
81; final value of the expression {%Start,+,-1} expression (%M - 1) would not be
82; representable as an i16.
83
84; There is also a limit case here where the value of %M is MIN_INT. In this case
85; we still have an infinite loop, since icmp sge %x, MIN_INT will always return
86; true.
87
88define void @test2(i32 %N, i32 %M, i16 %Start) {
89; CHECK-LABEL: 'test2'
90; CHECK-NEXT:  Classifying expressions for: @test2
91; CHECK-NEXT:    %tmp = getelementptr [1000 x i32], ptr @A, i32 0, i16 %i.0
92; CHECK-NEXT:    --> ((4 * (sext i16 {%Start,+,-1}<%bb3> to i64))<nsw> + @A) U: [0,-3) S: [-9223372036854775808,9223372036854775805) Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
93; CHECK-NEXT:    %tmp2 = sub i16 %i.0, 1
94; CHECK-NEXT:    --> {(-1 + %Start),+,-1}<%bb3> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
95; CHECK-NEXT:    %i.0 = phi i16 [ %Start, %entry ], [ %tmp2, %bb ]
96; CHECK-NEXT:    --> {%Start,+,-1}<%bb3> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
97; CHECK-NEXT:    %i.0.ext = sext i16 %i.0 to i32
98; CHECK-NEXT:    --> (sext i16 {%Start,+,-1}<%bb3> to i32) U: [-32768,32768) S: [-32768,32768) Exits: <<Unknown>> LoopDispositions: { %bb3: Computable }
99; CHECK-NEXT:  Determining loop execution counts for: @test2
100; CHECK-NEXT:  Loop %bb3: Unpredictable backedge-taken count.
101; CHECK-NEXT:  Loop %bb3: Unpredictable constant max backedge-taken count.
102; CHECK-NEXT:  Loop %bb3: Unpredictable symbolic max backedge-taken count.
103; CHECK-NEXT:  Loop %bb3: Predicated backedge-taken count is (1 + (sext i16 %Start to i32) + (-1 * ((1 + (sext i16 %Start to i32))<nsw> smin %M)))
104; CHECK-NEXT:   Predicates:
105; CHECK-NEXT:      {%Start,+,-1}<%bb3> Added Flags: <nssw>
106;
107entry:
108  br label %bb3
109
110bb:             ; preds = %bb3
111  %tmp = getelementptr [1000 x i32], ptr @A, i32 0, i16 %i.0          ; <ptr> [#uses=1]
112  store i32 123, ptr %tmp
113  %tmp2 = sub i16 %i.0, 1         ; <i32> [#uses=1]
114  br label %bb3
115
116bb3:            ; preds = %bb, %entry
117  %i.0 = phi i16 [ %Start, %entry ], [ %tmp2, %bb ]            ; <i32> [#uses=3]
118  %i.0.ext = sext i16 %i.0 to i32
119  %tmp3 = icmp sge i32 %i.0.ext, %M          ; <i1> [#uses=1]
120  br i1 %tmp3, label %bb, label %bb5
121
122bb5:            ; preds = %bb3
123  br label %return
124
125return:         ; preds = %bb5
126  ret void
127}
128
129