xref: /llvm-project/llvm/test/Analysis/ScalarEvolution/nsw.ll (revision 0d38f21e4ab7fe7cebe76a9d7c218ec54dba1e98)
1; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
2; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
3
4; The addrecs in this loop are analyzable only by using nsw information.
5
6target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64"
7
8define void @test1(ptr %p) nounwind {
9; CHECK-LABEL: 'test1'
10; CHECK-NEXT:  Classifying expressions for: @test1
11; CHECK-NEXT:    %i.01 = phi i32 [ %tmp8, %bb1 ], [ 0, %bb.nph ]
12; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%bb> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
13; CHECK-NEXT:    %tmp2 = sext i32 %i.01 to i64
14; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%bb> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
15; CHECK-NEXT:    %tmp3 = getelementptr double, ptr %p, i64 %tmp2
16; CHECK-NEXT:    --> {%p,+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
17; CHECK-NEXT:    %tmp6 = sext i32 %i.01 to i64
18; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%bb> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
19; CHECK-NEXT:    %tmp7 = getelementptr double, ptr %p, i64 %tmp6
20; CHECK-NEXT:    --> {%p,+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
21; CHECK-NEXT:    %tmp8 = add nsw i32 %i.01, 1
22; CHECK-NEXT:    --> {1,+,1}<nuw><nsw><%bb> U: [1,-2147483648) S: [1,-2147483648) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
23; CHECK-NEXT:    %p.gep = getelementptr double, ptr %p, i32 %tmp8
24; CHECK-NEXT:    --> {(8 + %p),+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
25; CHECK-NEXT:    %phitmp = sext i32 %tmp8 to i64
26; CHECK-NEXT:    --> {1,+,1}<nuw><nsw><%bb> U: [1,-9223372036854775808) S: [1,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
27; CHECK-NEXT:    %tmp9 = getelementptr inbounds double, ptr %p, i64 %phitmp
28; CHECK-NEXT:    --> {(8 + %p),+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable }
29; CHECK-NEXT:  Determining loop execution counts for: @test1
30; CHECK-NEXT:  Loop %bb: Unpredictable backedge-taken count.
31; CHECK-NEXT:  Loop %bb: Unpredictable constant max backedge-taken count.
32; CHECK-NEXT:  Loop %bb: Unpredictable symbolic max backedge-taken count.
33;
34entry:
35  %tmp = load double, ptr %p, align 8		; <double> [#uses=1]
36  %tmp1 = fcmp ogt double %tmp, 2.000000e+00		; <i1> [#uses=1]
37  br i1 %tmp1, label %bb.nph, label %return
38
39bb.nph:		; preds = %entry
40  br label %bb
41
42bb:		; preds = %bb1, %bb.nph
43  %i.01 = phi i32 [ %tmp8, %bb1 ], [ 0, %bb.nph ]		; <i32> [#uses=3]
44  %tmp2 = sext i32 %i.01 to i64		; <i64> [#uses=1]
45  %tmp3 = getelementptr double, ptr %p, i64 %tmp2		; <ptr> [#uses=1]
46  %tmp4 = load double, ptr %tmp3, align 8		; <double> [#uses=1]
47  %tmp5 = fmul double %tmp4, 9.200000e+00		; <double> [#uses=1]
48  %tmp6 = sext i32 %i.01 to i64		; <i64> [#uses=1]
49  %tmp7 = getelementptr double, ptr %p, i64 %tmp6		; <ptr> [#uses=1]
50  store double %tmp5, ptr %tmp7, align 8
51  %tmp8 = add nsw i32 %i.01, 1		; <i32> [#uses=2]
52  %p.gep = getelementptr double, ptr %p, i32 %tmp8
53  %p.val = load double, ptr %p.gep
54  br label %bb1
55
56bb1:		; preds = %bb
57  %phitmp = sext i32 %tmp8 to i64		; <i64> [#uses=1]
58  %tmp9 = getelementptr inbounds double, ptr %p, i64 %phitmp		; <ptr> [#uses=1]
59  %tmp10 = load double, ptr %tmp9, align 8		; <double> [#uses=1]
60  %tmp11 = fcmp ogt double %tmp10, 2.000000e+00		; <i1> [#uses=1]
61  br i1 %tmp11, label %bb, label %bb1.return_crit_edge
62
63bb1.return_crit_edge:		; preds = %bb1
64  br label %return
65
66return:		; preds = %bb1.return_crit_edge, %entry
67  ret void
68}
69
70define void @test2(ptr %begin, ptr %end) ssp {
71; CHECK-LABEL: 'test2'
72; CHECK-NEXT:  Classifying expressions for: @test2
73; CHECK-NEXT:    %__first.addr.02.i.i = phi ptr [ %begin, %for.body.lr.ph.i.i ], [ %ptrincdec.i.i, %for.body.i.i ]
74; CHECK-NEXT:    --> {%begin,+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
75; CHECK-NEXT:    %ptrincdec.i.i = getelementptr inbounds i32, ptr %__first.addr.02.i.i, i64 1
76; CHECK-NEXT:    --> {(4 + %begin),+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
77; CHECK-NEXT:  Determining loop execution counts for: @test2
78; CHECK-NEXT:  Loop %for.body.i.i: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
79; CHECK-NEXT:  Loop %for.body.i.i: constant max backedge-taken count is i64 4611686018427387903
80; CHECK-NEXT:  Loop %for.body.i.i: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
81; CHECK-NEXT:  Loop %for.body.i.i: Trip multiple is 1
82;
83entry:
84  %cmp1.i.i = icmp eq ptr %begin, %end
85  br i1 %cmp1.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.lr.ph.i.i
86
87for.body.lr.ph.i.i:                               ; preds = %entry
88  br label %for.body.i.i
89
90for.body.i.i:                                     ; preds = %for.body.i.i, %for.body.lr.ph.i.i
91  %__first.addr.02.i.i = phi ptr [ %begin, %for.body.lr.ph.i.i ], [ %ptrincdec.i.i, %for.body.i.i ]
92  store i32 0, ptr %__first.addr.02.i.i, align 4
93  %ptrincdec.i.i = getelementptr inbounds i32, ptr %__first.addr.02.i.i, i64 1
94  %cmp.i.i = icmp eq ptr %ptrincdec.i.i, %end
95  br i1 %cmp.i.i, label %for.cond.for.end_crit_edge.i.i, label %for.body.i.i
96
97for.cond.for.end_crit_edge.i.i:                   ; preds = %for.body.i.i
98  br label %_ZSt4fillIPiiEvT_S1_RKT0_.exit
99
100_ZSt4fillIPiiEvT_S1_RKT0_.exit:                   ; preds = %entry, %for.cond.for.end_crit_edge.i.i
101  ret void
102}
103
104; Various checks for inbounds geps.
105define void @test3(ptr %begin, ptr %end) nounwind ssp {
106; CHECK-LABEL: 'test3'
107; CHECK-NEXT:  Classifying expressions for: @test3
108; CHECK-NEXT:    %indvar.i.i = phi i64 [ %tmp, %for.body.i.i ], [ 0, %entry ]
109; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%for.body.i.i> U: [0,4611686018427387904) S: [0,4611686018427387904) Exits: ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4) LoopDispositions: { %for.body.i.i: Computable }
110; CHECK-NEXT:    %tmp = add nsw i64 %indvar.i.i, 1
111; CHECK-NEXT:    --> {1,+,1}<nuw><nsw><%for.body.i.i> U: [1,4611686018427387905) S: [1,4611686018427387905) Exits: (1 + ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw><nsw> LoopDispositions: { %for.body.i.i: Computable }
112; CHECK-NEXT:    %ptrincdec.i.i = getelementptr inbounds i32, ptr %begin, i64 %tmp
113; CHECK-NEXT:    --> {(4 + %begin),+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
114; CHECK-NEXT:    %__first.addr.08.i.i = getelementptr inbounds i32, ptr %begin, i64 %indvar.i.i
115; CHECK-NEXT:    --> {%begin,+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable }
116; CHECK-NEXT:  Determining loop execution counts for: @test3
117; CHECK-NEXT:  Loop %for.body.i.i: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
118; CHECK-NEXT:  Loop %for.body.i.i: constant max backedge-taken count is i64 4611686018427387903
119; CHECK-NEXT:  Loop %for.body.i.i: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4)
120; CHECK-NEXT:  Loop %for.body.i.i: Trip multiple is 1
121;
122entry:
123  %cmp7.i.i = icmp eq ptr %begin, %end
124  br i1 %cmp7.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.i.i
125
126for.body.i.i:                                     ; preds = %entry, %for.body.i.i
127  %indvar.i.i = phi i64 [ %tmp, %for.body.i.i ], [ 0, %entry ]
128  %tmp = add nsw i64 %indvar.i.i, 1
129  %ptrincdec.i.i = getelementptr inbounds i32, ptr %begin, i64 %tmp
130  %__first.addr.08.i.i = getelementptr inbounds i32, ptr %begin, i64 %indvar.i.i
131  store i32 0, ptr %__first.addr.08.i.i, align 4
132  %cmp.i.i = icmp eq ptr %ptrincdec.i.i, %end
133  br i1 %cmp.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.i.i
134_ZSt4fillIPiiEvT_S1_RKT0_.exit:                   ; preds = %for.body.i.i, %entry
135  ret void
136}
137
138; A single AddExpr exists for (%a + %b), which is not always <nsw>.
139define i32 @addnsw(i32 %a, i32 %b) nounwind ssp {
140; CHECK-LABEL: 'addnsw'
141; CHECK-NEXT:  Classifying expressions for: @addnsw
142; CHECK-NEXT:    %tmp = add i32 %a, %b
143; CHECK-NEXT:    --> (%a + %b) U: full-set S: full-set
144; CHECK-NEXT:    %tmp2 = add nsw i32 %a, %b
145; CHECK-NEXT:    --> (%a + %b) U: full-set S: full-set
146; CHECK-NEXT:    %result = phi i32 [ %a, %entry ], [ %tmp2, %greater ]
147; CHECK-NEXT:    --> %result U: full-set S: full-set
148; CHECK-NEXT:  Determining loop execution counts for: @addnsw
149;
150entry:
151  %tmp = add i32 %a, %b
152  %cmp = icmp sgt i32 %tmp, 0
153  br i1 %cmp, label %greater, label %exit
154
155greater:
156  %tmp2 = add nsw i32 %a, %b
157  br label %exit
158
159exit:
160  %result = phi i32 [ %a, %entry ], [ %tmp2, %greater ]
161  ret i32 %result
162}
163
164define i32 @PR12375(ptr readnone %arg) {
165; CHECK-LABEL: 'PR12375'
166; CHECK-NEXT:  Classifying expressions for: @PR12375
167; CHECK-NEXT:    %tmp = getelementptr inbounds i32, ptr %arg, i64 2
168; CHECK-NEXT:    --> (8 + %arg)<nuw> U: [8,0) S: [8,0)
169; CHECK-NEXT:    %tmp2 = phi ptr [ %arg, %bb ], [ %tmp5, %bb1 ]
170; CHECK-NEXT:    --> {%arg,+,4}<nuw><%bb1> U: full-set S: full-set Exits: (4 + %arg)<nuw> LoopDispositions: { %bb1: Computable }
171; CHECK-NEXT:    %tmp3 = phi i32 [ 0, %bb ], [ %tmp4, %bb1 ]
172; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%bb1> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %bb1: Computable }
173; CHECK-NEXT:    %tmp4 = add nsw i32 %tmp3, 1
174; CHECK-NEXT:    --> {1,+,1}<nuw><nsw><%bb1> U: [1,3) S: [1,3) Exits: 2 LoopDispositions: { %bb1: Computable }
175; CHECK-NEXT:    %tmp5 = getelementptr inbounds i32, ptr %tmp2, i64 1
176; CHECK-NEXT:    --> {(4 + %arg)<nuw>,+,4}<nuw><%bb1> U: [4,0) S: [4,0) Exits: (8 + %arg)<nuw> LoopDispositions: { %bb1: Computable }
177; CHECK-NEXT:  Determining loop execution counts for: @PR12375
178; CHECK-NEXT:  Loop %bb1: backedge-taken count is i64 1
179; CHECK-NEXT:  Loop %bb1: constant max backedge-taken count is i64 1
180; CHECK-NEXT:  Loop %bb1: symbolic max backedge-taken count is i64 1
181; CHECK-NEXT:  Loop %bb1: Trip multiple is 2
182;
183bb:
184  %tmp = getelementptr inbounds i32, ptr %arg, i64 2
185  br label %bb1
186
187bb1:                                              ; preds = %bb1, %bb
188  %tmp2 = phi ptr [ %arg, %bb ], [ %tmp5, %bb1 ]
189  %tmp3 = phi i32 [ 0, %bb ], [ %tmp4, %bb1 ]
190  %tmp4 = add nsw i32 %tmp3, 1
191  %tmp5 = getelementptr inbounds i32, ptr %tmp2, i64 1
192  %tmp6 = icmp ult ptr %tmp5, %tmp
193  br i1 %tmp6, label %bb1, label %bb7
194
195bb7:                                              ; preds = %bb1
196  ret i32 %tmp4
197}
198
199define void @PR12376(ptr nocapture %arg, ptr nocapture %arg1)  {
200; CHECK-LABEL: 'PR12376'
201; CHECK-NEXT:  Classifying expressions for: @PR12376
202; CHECK-NEXT:    %tmp = phi ptr [ %arg, %bb ], [ %tmp4, %bb2 ]
203; CHECK-NEXT:    --> {%arg,+,4}<nuw><%bb2> U: full-set S: full-set Exits: ((4 * ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4))<nuw> + %arg) LoopDispositions: { %bb2: Computable }
204; CHECK-NEXT:    %tmp4 = getelementptr inbounds i32, ptr %tmp, i64 1
205; CHECK-NEXT:    --> {(4 + %arg)<nuw>,+,4}<nuw><%bb2> U: [4,0) S: [4,0) Exits: (4 + (4 * ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4))<nuw> + %arg) LoopDispositions: { %bb2: Computable }
206; CHECK-NEXT:  Determining loop execution counts for: @PR12376
207; CHECK-NEXT:  Loop %bb2: backedge-taken count is ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4)
208; CHECK-NEXT:  Loop %bb2: constant max backedge-taken count is i64 4611686018427387902
209; CHECK-NEXT:  Loop %bb2: symbolic max backedge-taken count is ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4)
210; CHECK-NEXT:  Loop %bb2: Trip multiple is 1
211;
212bb:
213  br label %bb2
214
215bb2:                                              ; preds = %bb2, %bb
216  %tmp = phi ptr [ %arg, %bb ], [ %tmp4, %bb2 ]
217  %tmp4 = getelementptr inbounds i32, ptr %tmp, i64 1
218  %tmp3 = icmp ult ptr %tmp4, %arg1
219  br i1 %tmp3, label %bb2, label %bb5
220
221bb5:                                              ; preds = %bb2
222  ret void
223}
224
225declare void @f(i32)
226
227define void @nswnowrap(i32 %v, ptr %buf) {
228; CHECK-LABEL: 'nswnowrap'
229; CHECK-NEXT:  Classifying expressions for: @nswnowrap
230; CHECK-NEXT:    %add = add nsw i32 %v, 1
231; CHECK-NEXT:    --> (1 + %v) U: full-set S: full-set
232; CHECK-NEXT:    %i.04 = phi i32 [ %v, %entry ], [ %inc, %for.body ]
233; CHECK-NEXT:    --> {%v,+,1}<nsw><%for.body> U: full-set S: full-set Exits: ((1 + %v) smax %v) LoopDispositions: { %for.body: Computable }
234; CHECK-NEXT:    %inc = add nsw i32 %i.04, 1
235; CHECK-NEXT:    --> {(1 + %v)<nsw>,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (1 + ((1 + %v)<nsw> smax %v)) LoopDispositions: { %for.body: Computable }
236; CHECK-NEXT:    %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %inc
237; CHECK-NEXT:    --> {(4 + (4 * (sext i32 %v to i64))<nsw> + %buf),+,4}<nw><%for.body> U: full-set S: full-set Exits: (4 + (4 * (zext i32 ((-1 * %v) + ((1 + %v)<nsw> smax %v)) to i64))<nuw><nsw> + (4 * (sext i32 %v to i64))<nsw> + %buf) LoopDispositions: { %for.body: Computable }
238; CHECK-NEXT:    %buf.val = load i32, ptr %buf.gep, align 4
239; CHECK-NEXT:    --> %buf.val U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.body: Variant }
240; CHECK-NEXT:  Determining loop execution counts for: @nswnowrap
241; CHECK-NEXT:  Loop %for.body: backedge-taken count is ((-1 * %v) + ((1 + %v)<nsw> smax %v))
242; CHECK-NEXT:  Loop %for.body: constant max backedge-taken count is i32 1, actual taken count either this or zero.
243; CHECK-NEXT:  Loop %for.body: symbolic max backedge-taken count is ((-1 * %v) + ((1 + %v)<nsw> smax %v)), actual taken count either this or zero.
244; CHECK-NEXT:  Loop %for.body: Trip multiple is 1
245;
246entry:
247  %add = add nsw i32 %v, 1
248  br label %for.body
249
250for.body:
251  %i.04 = phi i32 [ %v, %entry ], [ %inc, %for.body ]
252  %inc = add nsw i32 %i.04, 1
253  %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %inc
254  %buf.val = load i32, ptr %buf.gep
255  %cmp = icmp slt i32 %i.04, %add
256  tail call void @f(i32 %i.04)
257  br i1 %cmp, label %for.body, label %for.end
258
259for.end:
260  ret void
261}
262
263; This test checks if no-wrap flags are propagated when folding {S,+,X}+T ==> {S+T,+,X}
264define void @test4(i32 %arg) {
265; CHECK-LABEL: 'test4'
266; CHECK-NEXT:  Classifying expressions for: @test4
267; CHECK-NEXT:    %array = alloca [10 x i32], align 4
268; CHECK-NEXT:    --> %array U: [4,-43) S: [-9223372036854775808,9223372036854775805)
269; CHECK-NEXT:    %index = phi i32 [ %inc5, %for.body ], [ %arg, %entry ]
270; CHECK-NEXT:    --> {%arg,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (-1 + (10 smax (1 + %arg)<nsw>))<nsw> LoopDispositions: { %for.body: Computable }
271; CHECK-NEXT:    %sub = add nsw i32 %index, -2
272; CHECK-NEXT:    --> {(-2 + %arg)<nsw>,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (-3 + (10 smax (1 + %arg)<nsw>))<nsw> LoopDispositions: { %for.body: Computable }
273; CHECK-NEXT:    %idxprom = sext i32 %sub to i64
274; CHECK-NEXT:    --> {(-2 + (sext i32 %arg to i64))<nsw>,+,1}<nsw><%for.body> U: [-2147483650,4294967303) S: [-2147483650,4294967303) Exits: (-2 + (zext i32 (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) to i64) + (sext i32 %arg to i64)) LoopDispositions: { %for.body: Computable }
275; CHECK-NEXT:    %arrayidx = getelementptr inbounds [10 x i32], ptr %array, i64 0, i64 %idxprom
276; CHECK-NEXT:    --> {(-8 + (4 * (sext i32 %arg to i64))<nsw> + %array),+,4}<nw><%for.body> U: [0,-3) S: [-9223372036854775808,9223372036854775805) Exits: (-8 + (4 * (zext i32 (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) to i64))<nuw><nsw> + (4 * (sext i32 %arg to i64))<nsw> + %array) LoopDispositions: { %for.body: Computable }
277; CHECK-NEXT:    %data = load i32, ptr %arrayidx, align 4
278; CHECK-NEXT:    --> %data U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.body: Variant }
279; CHECK-NEXT:    %inc5 = add nsw i32 %index, 1
280; CHECK-NEXT:    --> {(1 + %arg)<nsw>,+,1}<nsw><%for.body> U: [-2147483647,-2147483648) S: [-2147483647,-2147483648) Exits: (10 smax (1 + %arg)<nsw>) LoopDispositions: { %for.body: Computable }
281; CHECK-NEXT:  Determining loop execution counts for: @test4
282; CHECK-NEXT:  Loop %for.body: backedge-taken count is (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>))
283; CHECK-NEXT:  Loop %for.body: constant max backedge-taken count is i32 -2147483639
284; CHECK-NEXT:  Loop %for.body: symbolic max backedge-taken count is (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>))
285; CHECK-NEXT:  Loop %for.body: Trip multiple is 1
286;
287entry:
288  %array = alloca [10 x i32], align 4
289  br label %for.body
290
291for.body:
292  %index = phi i32 [ %inc5, %for.body ], [ %arg, %entry ]
293  %sub = add nsw i32 %index, -2
294  %idxprom = sext i32 %sub to i64
295  %arrayidx = getelementptr inbounds [10 x i32], ptr %array, i64 0, i64 %idxprom
296  %data = load i32, ptr %arrayidx, align 4
297  %inc5 = add nsw i32 %index, 1
298  %cmp2 = icmp slt i32 %inc5, 10
299  br i1 %cmp2, label %for.body, label %for.end
300
301for.end:
302  ret void
303}
304
305
306define void @bad_postinc_nsw_a(i32 %n) {
307; CHECK-LABEL: 'bad_postinc_nsw_a'
308; CHECK-NEXT:  Classifying expressions for: @bad_postinc_nsw_a
309; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
310; CHECK-NEXT:    --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))) LoopDispositions: { %loop: Computable }
311; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 7
312; CHECK-NEXT:    --> {7,+,7}<nuw><%loop> U: [7,-3) S: [7,0) Exits: (7 + (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n)))) LoopDispositions: { %loop: Computable }
313; CHECK-NEXT:  Determining loop execution counts for: @bad_postinc_nsw_a
314; CHECK-NEXT:  Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))
315; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 613566756
316; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))
317; CHECK-NEXT:  Loop %loop: Trip multiple is 1
318;
319entry:
320  br label %loop
321
322loop:
323  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
324  %iv.inc = add nsw i32 %iv, 7
325  %becond = icmp ult i32 %iv, %n
326  br i1 %becond, label %loop, label %leave
327
328leave:
329  ret void
330}
331
332; Unlike @bad_postinc_nsw_a(), the SCEV expression of %iv.inc has <nsw> flag
333; because poison can be propagated through 'and %iv.inc, 0'.
334define void @postinc_poison_prop_through_and(i32 %n) {
335; CHECK-LABEL: 'postinc_poison_prop_through_and'
336; CHECK-NEXT:  Classifying expressions for: @postinc_poison_prop_through_and
337; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
338; CHECK-NEXT:    --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
339; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 7
340; CHECK-NEXT:    --> {7,+,7}<nuw><nsw><%loop> U: [7,-2147483648) S: [7,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
341; CHECK-NEXT:    %iv.inc.and = and i32 %iv.inc, 0
342; CHECK-NEXT:    --> 0 U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Invariant }
343; CHECK-NEXT:  Determining loop execution counts for: @postinc_poison_prop_through_and
344; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
345; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
346; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
347;
348entry:
349  br label %loop
350
351loop:
352  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
353  %iv.inc = add nsw i32 %iv, 7
354  %iv.inc.and = and i32 %iv.inc, 0
355  %becond = icmp ult i32 %iv.inc.and, %n
356  br i1 %becond, label %loop, label %leave
357
358leave:
359  ret void
360}
361
362declare void @may_exit() nounwind
363
364define void @pr28012(i32 %n) {
365; CHECK-LABEL: 'pr28012'
366; CHECK-NEXT:  Classifying expressions for: @pr28012
367; CHECK-NEXT:    %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
368; CHECK-NEXT:    --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (7 * ((-1 + (7 umax %n)) /u 7))<nuw> LoopDispositions: { %loop: Computable }
369; CHECK-NEXT:    %iv.inc = add nsw i32 %iv, 7
370; CHECK-NEXT:    --> {7,+,7}<nuw><%loop> U: [7,-3) S: [7,-3) Exits: (7 + (7 * ((-1 + (7 umax %n)) /u 7))<nuw>) LoopDispositions: { %loop: Computable }
371; CHECK-NEXT:  Determining loop execution counts for: @pr28012
372; CHECK-NEXT:  Loop %loop: backedge-taken count is ((-1 + (7 umax %n)) /u 7)
373; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i32 613566755
374; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is ((-1 + (7 umax %n)) /u 7)
375; CHECK-NEXT:  Loop %loop: Trip multiple is 1
376;
377entry:
378  br label %loop
379
380loop:
381  %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ]
382  %iv.inc = add nsw i32 %iv, 7
383  %becond = icmp ult i32 %iv.inc, %n
384  call void @may_exit()
385  br i1 %becond, label %loop, label %leave
386
387leave:
388  ret void
389}
390
391define void @select_cond_poison_propagation(ptr %p, i32 %x) nounwind {
392; CHECK-LABEL: 'select_cond_poison_propagation'
393; CHECK-NEXT:  Classifying expressions for: @select_cond_poison_propagation
394; CHECK-NEXT:    %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
395; CHECK-NEXT:    --> {0,+,1}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
396; CHECK-NEXT:    %iv.next = add nsw i32 %iv, 1
397; CHECK-NEXT:    --> {1,+,1}<nuw><nsw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
398; CHECK-NEXT:    %sel = select i1 %cmp, i32 10, i32 20
399; CHECK-NEXT:    --> %sel U: [0,31) S: [0,31) Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
400; CHECK-NEXT:    %cond = call i1 @cond()
401; CHECK-NEXT:    --> %cond U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant }
402; CHECK-NEXT:  Determining loop execution counts for: @select_cond_poison_propagation
403; CHECK-NEXT:  Loop %loop: Unpredictable backedge-taken count.
404; CHECK-NEXT:  Loop %loop: Unpredictable constant max backedge-taken count.
405; CHECK-NEXT:  Loop %loop: Unpredictable symbolic max backedge-taken count.
406;
407entry:
408  br label %loop
409
410loop:
411  %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ]
412  %iv.next = add nsw i32 %iv, 1
413  %cmp = icmp ult i32 %iv.next, %x
414  %sel = select i1 %cmp, i32 10, i32 20
415  call void @foo(i32 noundef %sel)
416  %cond = call i1 @cond()
417  br i1 %cond, label %loop, label %return
418
419return:
420  ret void
421}
422
423; {-128,+,-128} should not be <nsw>.
424define void @pr66066() {
425; CHECK-LABEL: 'pr66066'
426; CHECK-NEXT:  Classifying expressions for: @pr66066
427; CHECK-NEXT:    %iv = phi i8 [ 1, %entry ], [ %iv.dec, %loop ]
428; CHECK-NEXT:    --> {1,+,-1}<nsw><%loop> U: [0,2) S: [0,2) Exits: 0 LoopDispositions: { %loop: Computable }
429; CHECK-NEXT:    %iv.dec = add i8 %iv, -1
430; CHECK-NEXT:    --> {0,+,-1}<nsw><%loop> U: [-1,1) S: [-1,1) Exits: -1 LoopDispositions: { %loop: Computable }
431; CHECK-NEXT:    %shl = shl i8 %iv, 7
432; CHECK-NEXT:    --> {-128,+,-128}<%loop> U: [0,-127) S: [-128,1) Exits: 0 LoopDispositions: { %loop: Computable }
433; CHECK-NEXT:  Determining loop execution counts for: @pr66066
434; CHECK-NEXT:  Loop %loop: backedge-taken count is i8 1
435; CHECK-NEXT:  Loop %loop: constant max backedge-taken count is i8 1
436; CHECK-NEXT:  Loop %loop: symbolic max backedge-taken count is i8 1
437; CHECK-NEXT:  Loop %loop: Trip multiple is 2
438;
439entry:
440  br label %loop
441
442loop:
443  %iv = phi i8 [ 1, %entry ], [ %iv.dec, %loop ]
444  %iv.dec = add i8 %iv, -1
445  %shl = shl i8 %iv, 7
446  %cmp1 = icmp eq i8 %shl, 0
447  br i1 %cmp1, label %exit, label %loop
448
449exit:
450  ret void
451}
452
453declare void @print(i32)
454
455declare void @foo(i32)
456
457declare i1 @cond()
458