1; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py 2; RUN: opt < %s -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s 3 4; The addrecs in this loop are analyzable only by using nsw information. 5 6target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64" 7 8define void @test1(ptr %p) nounwind { 9; CHECK-LABEL: 'test1' 10; CHECK-NEXT: Classifying expressions for: @test1 11; CHECK-NEXT: %i.01 = phi i32 [ %tmp8, %bb1 ], [ 0, %bb.nph ] 12; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 13; CHECK-NEXT: %tmp2 = sext i32 %i.01 to i64 14; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 15; CHECK-NEXT: %tmp3 = getelementptr double, ptr %p, i64 %tmp2 16; CHECK-NEXT: --> {%p,+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 17; CHECK-NEXT: %tmp6 = sext i32 %i.01 to i64 18; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 19; CHECK-NEXT: %tmp7 = getelementptr double, ptr %p, i64 %tmp6 20; CHECK-NEXT: --> {%p,+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 21; CHECK-NEXT: %tmp8 = add nsw i32 %i.01, 1 22; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%bb> U: [1,-2147483648) S: [1,-2147483648) Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 23; CHECK-NEXT: %p.gep = getelementptr double, ptr %p, i32 %tmp8 24; CHECK-NEXT: --> {(8 + %p),+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 25; CHECK-NEXT: %phitmp = sext i32 %tmp8 to i64 26; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%bb> U: [1,-9223372036854775808) S: [1,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 27; CHECK-NEXT: %tmp9 = getelementptr inbounds double, ptr %p, i64 %phitmp 28; CHECK-NEXT: --> {(8 + %p),+,8}<%bb> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb: Computable } 29; CHECK-NEXT: Determining loop execution counts for: @test1 30; CHECK-NEXT: Loop %bb: Unpredictable backedge-taken count. 31; CHECK-NEXT: Loop %bb: Unpredictable constant max backedge-taken count. 32; CHECK-NEXT: Loop %bb: Unpredictable symbolic max backedge-taken count. 33; 34entry: 35 %tmp = load double, ptr %p, align 8 ; <double> [#uses=1] 36 %tmp1 = fcmp ogt double %tmp, 2.000000e+00 ; <i1> [#uses=1] 37 br i1 %tmp1, label %bb.nph, label %return 38 39bb.nph: ; preds = %entry 40 br label %bb 41 42bb: ; preds = %bb1, %bb.nph 43 %i.01 = phi i32 [ %tmp8, %bb1 ], [ 0, %bb.nph ] ; <i32> [#uses=3] 44 %tmp2 = sext i32 %i.01 to i64 ; <i64> [#uses=1] 45 %tmp3 = getelementptr double, ptr %p, i64 %tmp2 ; <ptr> [#uses=1] 46 %tmp4 = load double, ptr %tmp3, align 8 ; <double> [#uses=1] 47 %tmp5 = fmul double %tmp4, 9.200000e+00 ; <double> [#uses=1] 48 %tmp6 = sext i32 %i.01 to i64 ; <i64> [#uses=1] 49 %tmp7 = getelementptr double, ptr %p, i64 %tmp6 ; <ptr> [#uses=1] 50 store double %tmp5, ptr %tmp7, align 8 51 %tmp8 = add nsw i32 %i.01, 1 ; <i32> [#uses=2] 52 %p.gep = getelementptr double, ptr %p, i32 %tmp8 53 %p.val = load double, ptr %p.gep 54 br label %bb1 55 56bb1: ; preds = %bb 57 %phitmp = sext i32 %tmp8 to i64 ; <i64> [#uses=1] 58 %tmp9 = getelementptr inbounds double, ptr %p, i64 %phitmp ; <ptr> [#uses=1] 59 %tmp10 = load double, ptr %tmp9, align 8 ; <double> [#uses=1] 60 %tmp11 = fcmp ogt double %tmp10, 2.000000e+00 ; <i1> [#uses=1] 61 br i1 %tmp11, label %bb, label %bb1.return_crit_edge 62 63bb1.return_crit_edge: ; preds = %bb1 64 br label %return 65 66return: ; preds = %bb1.return_crit_edge, %entry 67 ret void 68} 69 70define void @test2(ptr %begin, ptr %end) ssp { 71; CHECK-LABEL: 'test2' 72; CHECK-NEXT: Classifying expressions for: @test2 73; CHECK-NEXT: %__first.addr.02.i.i = phi ptr [ %begin, %for.body.lr.ph.i.i ], [ %ptrincdec.i.i, %for.body.i.i ] 74; CHECK-NEXT: --> {%begin,+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable } 75; CHECK-NEXT: %ptrincdec.i.i = getelementptr inbounds i32, ptr %__first.addr.02.i.i, i64 1 76; CHECK-NEXT: --> {(4 + %begin),+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable } 77; CHECK-NEXT: Determining loop execution counts for: @test2 78; CHECK-NEXT: Loop %for.body.i.i: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4) 79; CHECK-NEXT: Loop %for.body.i.i: constant max backedge-taken count is i64 4611686018427387903 80; CHECK-NEXT: Loop %for.body.i.i: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4) 81; CHECK-NEXT: Loop %for.body.i.i: Trip multiple is 1 82; 83entry: 84 %cmp1.i.i = icmp eq ptr %begin, %end 85 br i1 %cmp1.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.lr.ph.i.i 86 87for.body.lr.ph.i.i: ; preds = %entry 88 br label %for.body.i.i 89 90for.body.i.i: ; preds = %for.body.i.i, %for.body.lr.ph.i.i 91 %__first.addr.02.i.i = phi ptr [ %begin, %for.body.lr.ph.i.i ], [ %ptrincdec.i.i, %for.body.i.i ] 92 store i32 0, ptr %__first.addr.02.i.i, align 4 93 %ptrincdec.i.i = getelementptr inbounds i32, ptr %__first.addr.02.i.i, i64 1 94 %cmp.i.i = icmp eq ptr %ptrincdec.i.i, %end 95 br i1 %cmp.i.i, label %for.cond.for.end_crit_edge.i.i, label %for.body.i.i 96 97for.cond.for.end_crit_edge.i.i: ; preds = %for.body.i.i 98 br label %_ZSt4fillIPiiEvT_S1_RKT0_.exit 99 100_ZSt4fillIPiiEvT_S1_RKT0_.exit: ; preds = %entry, %for.cond.for.end_crit_edge.i.i 101 ret void 102} 103 104; Various checks for inbounds geps. 105define void @test3(ptr %begin, ptr %end) nounwind ssp { 106; CHECK-LABEL: 'test3' 107; CHECK-NEXT: Classifying expressions for: @test3 108; CHECK-NEXT: %indvar.i.i = phi i64 [ %tmp, %for.body.i.i ], [ 0, %entry ] 109; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body.i.i> U: [0,4611686018427387904) S: [0,4611686018427387904) Exits: ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4) LoopDispositions: { %for.body.i.i: Computable } 110; CHECK-NEXT: %tmp = add nsw i64 %indvar.i.i, 1 111; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%for.body.i.i> U: [1,4611686018427387905) S: [1,4611686018427387905) Exits: (1 + ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw><nsw> LoopDispositions: { %for.body.i.i: Computable } 112; CHECK-NEXT: %ptrincdec.i.i = getelementptr inbounds i32, ptr %begin, i64 %tmp 113; CHECK-NEXT: --> {(4 + %begin),+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: (4 + (4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable } 114; CHECK-NEXT: %__first.addr.08.i.i = getelementptr inbounds i32, ptr %begin, i64 %indvar.i.i 115; CHECK-NEXT: --> {%begin,+,4}<nuw><%for.body.i.i> U: full-set S: full-set Exits: ((4 * ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4))<nuw> + %begin) LoopDispositions: { %for.body.i.i: Computable } 116; CHECK-NEXT: Determining loop execution counts for: @test3 117; CHECK-NEXT: Loop %for.body.i.i: backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4) 118; CHECK-NEXT: Loop %for.body.i.i: constant max backedge-taken count is i64 4611686018427387903 119; CHECK-NEXT: Loop %for.body.i.i: symbolic max backedge-taken count is ((-4 + (-1 * (ptrtoint ptr %begin to i64)) + (ptrtoint ptr %end to i64)) /u 4) 120; CHECK-NEXT: Loop %for.body.i.i: Trip multiple is 1 121; 122entry: 123 %cmp7.i.i = icmp eq ptr %begin, %end 124 br i1 %cmp7.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.i.i 125 126for.body.i.i: ; preds = %entry, %for.body.i.i 127 %indvar.i.i = phi i64 [ %tmp, %for.body.i.i ], [ 0, %entry ] 128 %tmp = add nsw i64 %indvar.i.i, 1 129 %ptrincdec.i.i = getelementptr inbounds i32, ptr %begin, i64 %tmp 130 %__first.addr.08.i.i = getelementptr inbounds i32, ptr %begin, i64 %indvar.i.i 131 store i32 0, ptr %__first.addr.08.i.i, align 4 132 %cmp.i.i = icmp eq ptr %ptrincdec.i.i, %end 133 br i1 %cmp.i.i, label %_ZSt4fillIPiiEvT_S1_RKT0_.exit, label %for.body.i.i 134_ZSt4fillIPiiEvT_S1_RKT0_.exit: ; preds = %for.body.i.i, %entry 135 ret void 136} 137 138; A single AddExpr exists for (%a + %b), which is not always <nsw>. 139define i32 @addnsw(i32 %a, i32 %b) nounwind ssp { 140; CHECK-LABEL: 'addnsw' 141; CHECK-NEXT: Classifying expressions for: @addnsw 142; CHECK-NEXT: %tmp = add i32 %a, %b 143; CHECK-NEXT: --> (%a + %b) U: full-set S: full-set 144; CHECK-NEXT: %tmp2 = add nsw i32 %a, %b 145; CHECK-NEXT: --> (%a + %b) U: full-set S: full-set 146; CHECK-NEXT: %result = phi i32 [ %a, %entry ], [ %tmp2, %greater ] 147; CHECK-NEXT: --> %result U: full-set S: full-set 148; CHECK-NEXT: Determining loop execution counts for: @addnsw 149; 150entry: 151 %tmp = add i32 %a, %b 152 %cmp = icmp sgt i32 %tmp, 0 153 br i1 %cmp, label %greater, label %exit 154 155greater: 156 %tmp2 = add nsw i32 %a, %b 157 br label %exit 158 159exit: 160 %result = phi i32 [ %a, %entry ], [ %tmp2, %greater ] 161 ret i32 %result 162} 163 164define i32 @PR12375(ptr readnone %arg) { 165; CHECK-LABEL: 'PR12375' 166; CHECK-NEXT: Classifying expressions for: @PR12375 167; CHECK-NEXT: %tmp = getelementptr inbounds i32, ptr %arg, i64 2 168; CHECK-NEXT: --> (8 + %arg)<nuw> U: [8,0) S: [8,0) 169; CHECK-NEXT: %tmp2 = phi ptr [ %arg, %bb ], [ %tmp5, %bb1 ] 170; CHECK-NEXT: --> {%arg,+,4}<nuw><%bb1> U: full-set S: full-set Exits: (4 + %arg)<nuw> LoopDispositions: { %bb1: Computable } 171; CHECK-NEXT: %tmp3 = phi i32 [ 0, %bb ], [ %tmp4, %bb1 ] 172; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %bb1: Computable } 173; CHECK-NEXT: %tmp4 = add nsw i32 %tmp3, 1 174; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%bb1> U: [1,3) S: [1,3) Exits: 2 LoopDispositions: { %bb1: Computable } 175; CHECK-NEXT: %tmp5 = getelementptr inbounds i32, ptr %tmp2, i64 1 176; CHECK-NEXT: --> {(4 + %arg)<nuw>,+,4}<nuw><%bb1> U: [4,0) S: [4,0) Exits: (8 + %arg)<nuw> LoopDispositions: { %bb1: Computable } 177; CHECK-NEXT: Determining loop execution counts for: @PR12375 178; CHECK-NEXT: Loop %bb1: backedge-taken count is i64 1 179; CHECK-NEXT: Loop %bb1: constant max backedge-taken count is i64 1 180; CHECK-NEXT: Loop %bb1: symbolic max backedge-taken count is i64 1 181; CHECK-NEXT: Loop %bb1: Trip multiple is 2 182; 183bb: 184 %tmp = getelementptr inbounds i32, ptr %arg, i64 2 185 br label %bb1 186 187bb1: ; preds = %bb1, %bb 188 %tmp2 = phi ptr [ %arg, %bb ], [ %tmp5, %bb1 ] 189 %tmp3 = phi i32 [ 0, %bb ], [ %tmp4, %bb1 ] 190 %tmp4 = add nsw i32 %tmp3, 1 191 %tmp5 = getelementptr inbounds i32, ptr %tmp2, i64 1 192 %tmp6 = icmp ult ptr %tmp5, %tmp 193 br i1 %tmp6, label %bb1, label %bb7 194 195bb7: ; preds = %bb1 196 ret i32 %tmp4 197} 198 199define void @PR12376(ptr nocapture %arg, ptr nocapture %arg1) { 200; CHECK-LABEL: 'PR12376' 201; CHECK-NEXT: Classifying expressions for: @PR12376 202; CHECK-NEXT: %tmp = phi ptr [ %arg, %bb ], [ %tmp4, %bb2 ] 203; CHECK-NEXT: --> {%arg,+,4}<nuw><%bb2> U: full-set S: full-set Exits: ((4 * ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4))<nuw> + %arg) LoopDispositions: { %bb2: Computable } 204; CHECK-NEXT: %tmp4 = getelementptr inbounds i32, ptr %tmp, i64 1 205; CHECK-NEXT: --> {(4 + %arg)<nuw>,+,4}<nuw><%bb2> U: [4,0) S: [4,0) Exits: (4 + (4 * ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4))<nuw> + %arg) LoopDispositions: { %bb2: Computable } 206; CHECK-NEXT: Determining loop execution counts for: @PR12376 207; CHECK-NEXT: Loop %bb2: backedge-taken count is ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4) 208; CHECK-NEXT: Loop %bb2: constant max backedge-taken count is i64 4611686018427387902 209; CHECK-NEXT: Loop %bb2: symbolic max backedge-taken count is ((-1 + (-1 * (ptrtoint ptr %arg to i64)) + ((4 + (ptrtoint ptr %arg to i64))<nuw> umax (ptrtoint ptr %arg1 to i64))) /u 4) 210; CHECK-NEXT: Loop %bb2: Trip multiple is 1 211; 212bb: 213 br label %bb2 214 215bb2: ; preds = %bb2, %bb 216 %tmp = phi ptr [ %arg, %bb ], [ %tmp4, %bb2 ] 217 %tmp4 = getelementptr inbounds i32, ptr %tmp, i64 1 218 %tmp3 = icmp ult ptr %tmp4, %arg1 219 br i1 %tmp3, label %bb2, label %bb5 220 221bb5: ; preds = %bb2 222 ret void 223} 224 225declare void @f(i32) 226 227define void @nswnowrap(i32 %v, ptr %buf) { 228; CHECK-LABEL: 'nswnowrap' 229; CHECK-NEXT: Classifying expressions for: @nswnowrap 230; CHECK-NEXT: %add = add nsw i32 %v, 1 231; CHECK-NEXT: --> (1 + %v) U: full-set S: full-set 232; CHECK-NEXT: %i.04 = phi i32 [ %v, %entry ], [ %inc, %for.body ] 233; CHECK-NEXT: --> {%v,+,1}<nsw><%for.body> U: full-set S: full-set Exits: ((1 + %v) smax %v) LoopDispositions: { %for.body: Computable } 234; CHECK-NEXT: %inc = add nsw i32 %i.04, 1 235; CHECK-NEXT: --> {(1 + %v)<nsw>,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (1 + ((1 + %v)<nsw> smax %v)) LoopDispositions: { %for.body: Computable } 236; CHECK-NEXT: %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %inc 237; CHECK-NEXT: --> {(4 + (4 * (sext i32 %v to i64))<nsw> + %buf),+,4}<nw><%for.body> U: full-set S: full-set Exits: (4 + (4 * (zext i32 ((-1 * %v) + ((1 + %v)<nsw> smax %v)) to i64))<nuw><nsw> + (4 * (sext i32 %v to i64))<nsw> + %buf) LoopDispositions: { %for.body: Computable } 238; CHECK-NEXT: %buf.val = load i32, ptr %buf.gep, align 4 239; CHECK-NEXT: --> %buf.val U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.body: Variant } 240; CHECK-NEXT: Determining loop execution counts for: @nswnowrap 241; CHECK-NEXT: Loop %for.body: backedge-taken count is ((-1 * %v) + ((1 + %v)<nsw> smax %v)) 242; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 1, actual taken count either this or zero. 243; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is ((-1 * %v) + ((1 + %v)<nsw> smax %v)), actual taken count either this or zero. 244; CHECK-NEXT: Loop %for.body: Trip multiple is 1 245; 246entry: 247 %add = add nsw i32 %v, 1 248 br label %for.body 249 250for.body: 251 %i.04 = phi i32 [ %v, %entry ], [ %inc, %for.body ] 252 %inc = add nsw i32 %i.04, 1 253 %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %inc 254 %buf.val = load i32, ptr %buf.gep 255 %cmp = icmp slt i32 %i.04, %add 256 tail call void @f(i32 %i.04) 257 br i1 %cmp, label %for.body, label %for.end 258 259for.end: 260 ret void 261} 262 263; This test checks if no-wrap flags are propagated when folding {S,+,X}+T ==> {S+T,+,X} 264define void @test4(i32 %arg) { 265; CHECK-LABEL: 'test4' 266; CHECK-NEXT: Classifying expressions for: @test4 267; CHECK-NEXT: %array = alloca [10 x i32], align 4 268; CHECK-NEXT: --> %array U: [4,-43) S: [-9223372036854775808,9223372036854775805) 269; CHECK-NEXT: %index = phi i32 [ %inc5, %for.body ], [ %arg, %entry ] 270; CHECK-NEXT: --> {%arg,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (-1 + (10 smax (1 + %arg)<nsw>))<nsw> LoopDispositions: { %for.body: Computable } 271; CHECK-NEXT: %sub = add nsw i32 %index, -2 272; CHECK-NEXT: --> {(-2 + %arg)<nsw>,+,1}<nsw><%for.body> U: full-set S: full-set Exits: (-3 + (10 smax (1 + %arg)<nsw>))<nsw> LoopDispositions: { %for.body: Computable } 273; CHECK-NEXT: %idxprom = sext i32 %sub to i64 274; CHECK-NEXT: --> {(-2 + (sext i32 %arg to i64))<nsw>,+,1}<nsw><%for.body> U: [-2147483650,4294967303) S: [-2147483650,4294967303) Exits: (-2 + (zext i32 (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) to i64) + (sext i32 %arg to i64)) LoopDispositions: { %for.body: Computable } 275; CHECK-NEXT: %arrayidx = getelementptr inbounds [10 x i32], ptr %array, i64 0, i64 %idxprom 276; CHECK-NEXT: --> {(-8 + (4 * (sext i32 %arg to i64))<nsw> + %array),+,4}<nw><%for.body> U: [0,-3) S: [-9223372036854775808,9223372036854775805) Exits: (-8 + (4 * (zext i32 (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) to i64))<nuw><nsw> + (4 * (sext i32 %arg to i64))<nsw> + %array) LoopDispositions: { %for.body: Computable } 277; CHECK-NEXT: %data = load i32, ptr %arrayidx, align 4 278; CHECK-NEXT: --> %data U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.body: Variant } 279; CHECK-NEXT: %inc5 = add nsw i32 %index, 1 280; CHECK-NEXT: --> {(1 + %arg)<nsw>,+,1}<nsw><%for.body> U: [-2147483647,-2147483648) S: [-2147483647,-2147483648) Exits: (10 smax (1 + %arg)<nsw>) LoopDispositions: { %for.body: Computable } 281; CHECK-NEXT: Determining loop execution counts for: @test4 282; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) 283; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 -2147483639 284; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + (-1 * %arg) + (10 smax (1 + %arg)<nsw>)) 285; CHECK-NEXT: Loop %for.body: Trip multiple is 1 286; 287entry: 288 %array = alloca [10 x i32], align 4 289 br label %for.body 290 291for.body: 292 %index = phi i32 [ %inc5, %for.body ], [ %arg, %entry ] 293 %sub = add nsw i32 %index, -2 294 %idxprom = sext i32 %sub to i64 295 %arrayidx = getelementptr inbounds [10 x i32], ptr %array, i64 0, i64 %idxprom 296 %data = load i32, ptr %arrayidx, align 4 297 %inc5 = add nsw i32 %index, 1 298 %cmp2 = icmp slt i32 %inc5, 10 299 br i1 %cmp2, label %for.body, label %for.end 300 301for.end: 302 ret void 303} 304 305 306define void @bad_postinc_nsw_a(i32 %n) { 307; CHECK-LABEL: 'bad_postinc_nsw_a' 308; CHECK-NEXT: Classifying expressions for: @bad_postinc_nsw_a 309; CHECK-NEXT: %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ] 310; CHECK-NEXT: --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n))) LoopDispositions: { %loop: Computable } 311; CHECK-NEXT: %iv.inc = add nsw i32 %iv, 7 312; CHECK-NEXT: --> {7,+,7}<nuw><%loop> U: [7,-3) S: [7,0) Exits: (7 + (7 * ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n)))) LoopDispositions: { %loop: Computable } 313; CHECK-NEXT: Determining loop execution counts for: @bad_postinc_nsw_a 314; CHECK-NEXT: Loop %loop: backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n)) 315; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 613566756 316; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((((-1 * (1 umin %n))<nuw><nsw> + %n) /u 7) + (1 umin %n)) 317; CHECK-NEXT: Loop %loop: Trip multiple is 1 318; 319entry: 320 br label %loop 321 322loop: 323 %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ] 324 %iv.inc = add nsw i32 %iv, 7 325 %becond = icmp ult i32 %iv, %n 326 br i1 %becond, label %loop, label %leave 327 328leave: 329 ret void 330} 331 332; Unlike @bad_postinc_nsw_a(), the SCEV expression of %iv.inc has <nsw> flag 333; because poison can be propagated through 'and %iv.inc, 0'. 334define void @postinc_poison_prop_through_and(i32 %n) { 335; CHECK-LABEL: 'postinc_poison_prop_through_and' 336; CHECK-NEXT: Classifying expressions for: @postinc_poison_prop_through_and 337; CHECK-NEXT: %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ] 338; CHECK-NEXT: --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable } 339; CHECK-NEXT: %iv.inc = add nsw i32 %iv, 7 340; CHECK-NEXT: --> {7,+,7}<nuw><nsw><%loop> U: [7,-2147483648) S: [7,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable } 341; CHECK-NEXT: %iv.inc.and = and i32 %iv.inc, 0 342; CHECK-NEXT: --> 0 U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Invariant } 343; CHECK-NEXT: Determining loop execution counts for: @postinc_poison_prop_through_and 344; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. 345; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. 346; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. 347; 348entry: 349 br label %loop 350 351loop: 352 %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ] 353 %iv.inc = add nsw i32 %iv, 7 354 %iv.inc.and = and i32 %iv.inc, 0 355 %becond = icmp ult i32 %iv.inc.and, %n 356 br i1 %becond, label %loop, label %leave 357 358leave: 359 ret void 360} 361 362declare void @may_exit() nounwind 363 364define void @pr28012(i32 %n) { 365; CHECK-LABEL: 'pr28012' 366; CHECK-NEXT: Classifying expressions for: @pr28012 367; CHECK-NEXT: %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ] 368; CHECK-NEXT: --> {0,+,7}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: (7 * ((-1 + (7 umax %n)) /u 7))<nuw> LoopDispositions: { %loop: Computable } 369; CHECK-NEXT: %iv.inc = add nsw i32 %iv, 7 370; CHECK-NEXT: --> {7,+,7}<nuw><%loop> U: [7,-3) S: [7,-3) Exits: (7 + (7 * ((-1 + (7 umax %n)) /u 7))<nuw>) LoopDispositions: { %loop: Computable } 371; CHECK-NEXT: Determining loop execution counts for: @pr28012 372; CHECK-NEXT: Loop %loop: backedge-taken count is ((-1 + (7 umax %n)) /u 7) 373; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 613566755 374; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-1 + (7 umax %n)) /u 7) 375; CHECK-NEXT: Loop %loop: Trip multiple is 1 376; 377entry: 378 br label %loop 379 380loop: 381 %iv = phi i32 [ 0, %entry ], [ %iv.inc, %loop ] 382 %iv.inc = add nsw i32 %iv, 7 383 %becond = icmp ult i32 %iv.inc, %n 384 call void @may_exit() 385 br i1 %becond, label %loop, label %leave 386 387leave: 388 ret void 389} 390 391define void @select_cond_poison_propagation(ptr %p, i32 %x) nounwind { 392; CHECK-LABEL: 'select_cond_poison_propagation' 393; CHECK-NEXT: Classifying expressions for: @select_cond_poison_propagation 394; CHECK-NEXT: %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] 395; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,-2147483648) S: [0,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable } 396; CHECK-NEXT: %iv.next = add nsw i32 %iv, 1 397; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop> U: [1,-2147483648) S: [1,-2147483648) Exits: <<Unknown>> LoopDispositions: { %loop: Computable } 398; CHECK-NEXT: %sel = select i1 %cmp, i32 10, i32 20 399; CHECK-NEXT: --> %sel U: [0,31) S: [0,31) Exits: <<Unknown>> LoopDispositions: { %loop: Variant } 400; CHECK-NEXT: %cond = call i1 @cond() 401; CHECK-NEXT: --> %cond U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Variant } 402; CHECK-NEXT: Determining loop execution counts for: @select_cond_poison_propagation 403; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. 404; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. 405; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. 406; 407entry: 408 br label %loop 409 410loop: 411 %iv = phi i32 [ %iv.next, %loop ], [ 0, %entry ] 412 %iv.next = add nsw i32 %iv, 1 413 %cmp = icmp ult i32 %iv.next, %x 414 %sel = select i1 %cmp, i32 10, i32 20 415 call void @foo(i32 noundef %sel) 416 %cond = call i1 @cond() 417 br i1 %cond, label %loop, label %return 418 419return: 420 ret void 421} 422 423; {-128,+,-128} should not be <nsw>. 424define void @pr66066() { 425; CHECK-LABEL: 'pr66066' 426; CHECK-NEXT: Classifying expressions for: @pr66066 427; CHECK-NEXT: %iv = phi i8 [ 1, %entry ], [ %iv.dec, %loop ] 428; CHECK-NEXT: --> {1,+,-1}<nsw><%loop> U: [0,2) S: [0,2) Exits: 0 LoopDispositions: { %loop: Computable } 429; CHECK-NEXT: %iv.dec = add i8 %iv, -1 430; CHECK-NEXT: --> {0,+,-1}<nsw><%loop> U: [-1,1) S: [-1,1) Exits: -1 LoopDispositions: { %loop: Computable } 431; CHECK-NEXT: %shl = shl i8 %iv, 7 432; CHECK-NEXT: --> {-128,+,-128}<%loop> U: [0,-127) S: [-128,1) Exits: 0 LoopDispositions: { %loop: Computable } 433; CHECK-NEXT: Determining loop execution counts for: @pr66066 434; CHECK-NEXT: Loop %loop: backedge-taken count is i8 1 435; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i8 1 436; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i8 1 437; CHECK-NEXT: Loop %loop: Trip multiple is 2 438; 439entry: 440 br label %loop 441 442loop: 443 %iv = phi i8 [ 1, %entry ], [ %iv.dec, %loop ] 444 %iv.dec = add i8 %iv, -1 445 %shl = shl i8 %iv, 7 446 %cmp1 = icmp eq i8 %shl, 0 447 br i1 %cmp1, label %exit, label %loop 448 449exit: 450 ret void 451} 452 453declare void @print(i32) 454 455declare void @foo(i32) 456 457declare i1 @cond() 458