1; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py 2; RUN: opt "-passes=print<scalar-evolution>" -disable-output < %s 2>&1 | FileCheck %s 3; 4; This checks if the min and max expressions are properly recognized by 5; ScalarEvolution even though they the ICmpInst and SelectInst have different 6; types. 7; 8; #define max(a, b) (a > b ? a : b) 9; #define min(a, b) (a < b ? a : b) 10; 11; void f(int *A, int N) { 12; for (int i = 0; i < N; i++) { 13; A[max(0, i - 3)] = Aptr 2; 14; } 15; } 16; 17target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" 18 19define void @f(ptr %A, i32 %N) { 20; CHECK-LABEL: 'f' 21; CHECK-NEXT: Classifying expressions for: @f 22; CHECK-NEXT: %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ] 23; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,-2147483648) S: [0,-2147483648) Exits: (0 smax %N) LoopDispositions: { %bb1: Computable } 24; CHECK-NEXT: %i.0.1 = sext i32 %i.0 to i64 25; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,2147483648) S: [0,2147483648) Exits: (zext i32 (0 smax %N) to i64) LoopDispositions: { %bb1: Computable } 26; CHECK-NEXT: %tmp3 = add nuw nsw i32 %i.0, 3 27; CHECK-NEXT: --> {3,+,1}<nuw><%bb1> U: [3,-2147483645) S: [3,-2147483645) Exits: (3 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable } 28; CHECK-NEXT: %tmp5 = sext i32 %tmp3 to i64 29; CHECK-NEXT: --> (sext i32 {3,+,1}<nuw><%bb1> to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 (3 + (0 smax %N))<nuw> to i64) LoopDispositions: { %bb1: Computable } 30; CHECK-NEXT: %tmp6 = sext i32 %N to i64 31; CHECK-NEXT: --> (sext i32 %N to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %N to i64) LoopDispositions: { %bb1: Invariant } 32; CHECK-NEXT: %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6 33; CHECK-NEXT: --> ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)) LoopDispositions: { %bb1: Computable } 34; CHECK-NEXT: %tmp11 = getelementptr inbounds i32, ptr %A, i64 %tmp9 35; CHECK-NEXT: --> ((4 * ((sext i32 {3,+,1}<nuw><%bb1> to i64) smin (sext i32 %N to i64)))<nsw> + %A) U: full-set S: full-set Exits: ((4 * ((sext i32 (3 + (0 smax %N))<nuw> to i64) smin (sext i32 %N to i64)))<nsw> + %A) LoopDispositions: { %bb1: Computable } 36; CHECK-NEXT: %tmp12 = load i32, ptr %tmp11, align 4 37; CHECK-NEXT: --> %tmp12 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb1: Variant } 38; CHECK-NEXT: %tmp13 = shl nsw i32 %tmp12, 1 39; CHECK-NEXT: --> (2 * %tmp12) U: [0,-1) S: [-2147483648,2147483647) Exits: <<Unknown>> LoopDispositions: { %bb1: Variant } 40; CHECK-NEXT: %tmp17 = add nsw i64 %i.0.1, -3 41; CHECK-NEXT: --> {-3,+,1}<nsw><%bb1> U: [-3,2147483645) S: [-3,2147483645) Exits: (-3 + (zext i32 (0 smax %N) to i64))<nsw> LoopDispositions: { %bb1: Computable } 42; CHECK-NEXT: %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17 43; CHECK-NEXT: --> (-3 + (3 smax {0,+,1}<nuw><nsw><%bb1>))<nsw> U: [0,2147483645) S: [0,2147483645) Exits: (-3 + (3 smax (zext i32 (0 smax %N) to i64)))<nsw> LoopDispositions: { %bb1: Computable } 44; CHECK-NEXT: %tmp21 = getelementptr inbounds i32, ptr %A, i64 %tmp19 45; CHECK-NEXT: --> (-12 + (4 * (3 smax {0,+,1}<nuw><nsw><%bb1>))<nuw><nsw> + %A) U: full-set S: full-set Exits: (-12 + (4 * (3 smax (zext i32 (0 smax %N) to i64)))<nuw><nsw> + %A) LoopDispositions: { %bb1: Computable } 46; CHECK-NEXT: %tmp23 = add nuw nsw i32 %i.0, 1 47; CHECK-NEXT: --> {1,+,1}<nuw><%bb1> U: [1,-2147483647) S: [1,-2147483647) Exits: (1 + (0 smax %N))<nuw> LoopDispositions: { %bb1: Computable } 48; CHECK-NEXT: Determining loop execution counts for: @f 49; CHECK-NEXT: Loop %bb1: backedge-taken count is (0 smax %N) 50; CHECK-NEXT: Loop %bb1: constant max backedge-taken count is i32 2147483647 51; CHECK-NEXT: Loop %bb1: symbolic max backedge-taken count is (0 smax %N) 52; CHECK-NEXT: Loop %bb1: Trip multiple is 1 53; 54bb: 55 br label %bb1 56 57bb1: ; preds = %bb2, %bb 58 %i.0 = phi i32 [ 0, %bb ], [ %tmp23, %bb2 ] 59 %i.0.1 = sext i32 %i.0 to i64 60 %tmp = icmp slt i32 %i.0, %N 61 br i1 %tmp, label %bb2, label %bb24 62 63bb2: ; preds = %bb1 64 %tmp3 = add nuw nsw i32 %i.0, 3 65 %tmp4 = icmp slt i32 %tmp3, %N 66 %tmp5 = sext i32 %tmp3 to i64 67 %tmp6 = sext i32 %N to i64 68 %tmp9 = select i1 %tmp4, i64 %tmp5, i64 %tmp6 69; min(N, i+3) 70 %tmp11 = getelementptr inbounds i32, ptr %A, i64 %tmp9 71 %tmp12 = load i32, ptr %tmp11, align 4 72 %tmp13 = shl nsw i32 %tmp12, 1 73 %tmp14 = icmp sge i32 3, %i.0 74 %tmp17 = add nsw i64 %i.0.1, -3 75 %tmp19 = select i1 %tmp14, i64 0, i64 %tmp17 76; max(0, i - 3) 77 %tmp21 = getelementptr inbounds i32, ptr %A, i64 %tmp19 78 store i32 %tmp13, ptr %tmp21, align 4 79 %tmp23 = add nuw nsw i32 %i.0, 1 80 br label %bb1 81 82bb24: ; preds = %bb1 83 ret void 84} 85 86define i8 @umax_basic_eq_off1(i8 %x, i8 %y) { 87; CHECK-LABEL: 'umax_basic_eq_off1' 88; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off1 89; CHECK-NEXT: %lhs = add i8 %y, 1 90; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set 91; CHECK-NEXT: %rhs = add i8 %x, %y 92; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set 93; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 94; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set 95; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off1 96; 97 %x.is.zero = icmp eq i8 %x, 0 98 %lhs = add i8 %y, 1 99 %rhs = add i8 %x, %y 100 %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 101 ret i8 %r 102} 103define i8 @umax_basic_ne_off1(i8 %x, i8 %y) { 104; CHECK-LABEL: 'umax_basic_ne_off1' 105; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_off1 106; CHECK-NEXT: %lhs = add i8 %y, 1 107; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set 108; CHECK-NEXT: %rhs = add i8 %x, %y 109; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set 110; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs 111; CHECK-NEXT: --> ((1 umax %x) + %y) U: full-set S: full-set 112; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_off1 113; 114 %x.is.zero = icmp ne i8 %x, 0 115 %lhs = add i8 %y, 1 116 %rhs = add i8 %x, %y 117 %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs 118 ret i8 %r 119} 120 121define i8 @umax_basic_eq_off0(i8 %x, i8 %y) { 122; CHECK-LABEL: 'umax_basic_eq_off0' 123; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off0 124; CHECK-NEXT: %lhs = add i8 %y, 0 125; CHECK-NEXT: --> %y U: full-set S: full-set 126; CHECK-NEXT: %rhs = add i8 %x, %y 127; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set 128; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 129; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set 130; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off0 131; 132 %x.is.zero = icmp eq i8 %x, 0 133 %lhs = add i8 %y, 0 134 %rhs = add i8 %x, %y 135 %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 136 ret i8 %r 137} 138 139define i8 @umax_basic_eq_off2(i8 %x, i8 %y) { 140; CHECK-LABEL: 'umax_basic_eq_off2' 141; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_off2 142; CHECK-NEXT: %lhs = add i8 %y, 2 143; CHECK-NEXT: --> (2 + %y) U: full-set S: full-set 144; CHECK-NEXT: %rhs = add i8 %x, %y 145; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set 146; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 147; CHECK-NEXT: --> %r U: full-set S: full-set 148; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_off2 149; 150 %x.is.zero = icmp eq i8 %x, 0 151 %lhs = add i8 %y, 2 152 %rhs = add i8 %x, %y 153 %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 154 ret i8 %r 155} 156 157define i8 @umax_basic_eq_var_off(i8 %x, i8 %y, i8 %c) { 158; CHECK-LABEL: 'umax_basic_eq_var_off' 159; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_var_off 160; CHECK-NEXT: %lhs = add i8 %y, %c 161; CHECK-NEXT: --> (%y + %c) U: full-set S: full-set 162; CHECK-NEXT: %rhs = add i8 %x, %y 163; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set 164; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 165; CHECK-NEXT: --> %r U: full-set S: full-set 166; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_var_off 167; 168 %x.is.zero = icmp eq i8 %x, 0 169 %lhs = add i8 %y, %c 170 %rhs = add i8 %x, %y 171 %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 172 ret i8 %r 173} 174 175define i8 @umax_basic_eq_narrow(i4 %x.narrow, i8 %y) { 176; CHECK-LABEL: 'umax_basic_eq_narrow' 177; CHECK-NEXT: Classifying expressions for: @umax_basic_eq_narrow 178; CHECK-NEXT: %x = zext i4 %x.narrow to i8 179; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16) 180; CHECK-NEXT: %lhs = add i8 %y, 1 181; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set 182; CHECK-NEXT: %rhs = add i8 %x, %y 183; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set 184; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 185; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set 186; CHECK-NEXT: Determining loop execution counts for: @umax_basic_eq_narrow 187; 188 %x = zext i4 %x.narrow to i8 189 %x.is.zero = icmp eq i4 %x.narrow, 0 190 %lhs = add i8 %y, 1 191 %rhs = add i8 %x, %y 192 %r = select i1 %x.is.zero, i8 %lhs, i8 %rhs 193 ret i8 %r 194} 195define i8 @umax_basic_ne_narrow(i4 %x.narrow, i8 %y) { 196; CHECK-LABEL: 'umax_basic_ne_narrow' 197; CHECK-NEXT: Classifying expressions for: @umax_basic_ne_narrow 198; CHECK-NEXT: %x = zext i4 %x.narrow to i8 199; CHECK-NEXT: --> (zext i4 %x.narrow to i8) U: [0,16) S: [0,16) 200; CHECK-NEXT: %lhs = add i8 %y, 1 201; CHECK-NEXT: --> (1 + %y) U: full-set S: full-set 202; CHECK-NEXT: %rhs = add i8 %x, %y 203; CHECK-NEXT: --> ((zext i4 %x.narrow to i8) + %y) U: full-set S: full-set 204; CHECK-NEXT: %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs 205; CHECK-NEXT: --> ((1 umax (zext i4 %x.narrow to i8)) + %y) U: full-set S: full-set 206; CHECK-NEXT: Determining loop execution counts for: @umax_basic_ne_narrow 207; 208 %x = zext i4 %x.narrow to i8 209 %x.is.zero = icmp ne i4 %x.narrow, 0 210 %lhs = add i8 %y, 1 211 %rhs = add i8 %x, %y 212 %r = select i1 %x.is.zero, i8 %rhs, i8 %lhs 213 ret i8 %r 214} 215