1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/InstructionCost.h" 30 31 namespace llvm { 32 33 class LoopInfo; 34 class DominatorTree; 35 class LoopVectorizationLegality; 36 class LoopVectorizationCostModel; 37 class PredicatedScalarEvolution; 38 class LoopVectorizeHints; 39 class OptimizationRemarkEmitter; 40 class TargetTransformInfo; 41 class TargetLibraryInfo; 42 class VPRecipeBuilder; 43 44 /// VPlan-based builder utility analogous to IRBuilder. 45 class VPBuilder { 46 VPBasicBlock *BB = nullptr; 47 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 48 49 /// Insert \p VPI in BB at InsertPt if BB is set. 50 VPInstruction *tryInsertInstruction(VPInstruction *VPI) { 51 if (BB) 52 BB->insert(VPI, InsertPt); 53 return VPI; 54 } 55 56 VPInstruction *createInstruction(unsigned Opcode, 57 ArrayRef<VPValue *> Operands, DebugLoc DL, 58 const Twine &Name = "") { 59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name)); 60 } 61 62 VPInstruction *createInstruction(unsigned Opcode, 63 std::initializer_list<VPValue *> Operands, 64 DebugLoc DL, const Twine &Name = "") { 65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name); 66 } 67 68 public: 69 VPBuilder() = default; 70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); } 71 VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); } 72 VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 73 setInsertPoint(TheBB, IP); 74 } 75 76 /// Clear the insertion point: created instructions will not be inserted into 77 /// a block. 78 void clearInsertionPoint() { 79 BB = nullptr; 80 InsertPt = VPBasicBlock::iterator(); 81 } 82 83 VPBasicBlock *getInsertBlock() const { return BB; } 84 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 85 86 /// Create a VPBuilder to insert after \p R. 87 static VPBuilder getToInsertAfter(VPRecipeBase *R) { 88 VPBuilder B; 89 B.setInsertPoint(R->getParent(), std::next(R->getIterator())); 90 return B; 91 } 92 93 /// InsertPoint - A saved insertion point. 94 class VPInsertPoint { 95 VPBasicBlock *Block = nullptr; 96 VPBasicBlock::iterator Point; 97 98 public: 99 /// Creates a new insertion point which doesn't point to anything. 100 VPInsertPoint() = default; 101 102 /// Creates a new insertion point at the given location. 103 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 104 : Block(InsertBlock), Point(InsertPoint) {} 105 106 /// Returns true if this insert point is set. 107 bool isSet() const { return Block != nullptr; } 108 109 VPBasicBlock *getBlock() const { return Block; } 110 VPBasicBlock::iterator getPoint() const { return Point; } 111 }; 112 113 /// Sets the current insert point to a previously-saved location. 114 void restoreIP(VPInsertPoint IP) { 115 if (IP.isSet()) 116 setInsertPoint(IP.getBlock(), IP.getPoint()); 117 else 118 clearInsertionPoint(); 119 } 120 121 /// This specifies that created VPInstructions should be appended to the end 122 /// of the specified block. 123 void setInsertPoint(VPBasicBlock *TheBB) { 124 assert(TheBB && "Attempting to set a null insert point"); 125 BB = TheBB; 126 InsertPt = BB->end(); 127 } 128 129 /// This specifies that created instructions should be inserted at the 130 /// specified point. 131 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 132 BB = TheBB; 133 InsertPt = IP; 134 } 135 136 /// This specifies that created instructions should be inserted at the 137 /// specified point. 138 void setInsertPoint(VPRecipeBase *IP) { 139 BB = IP->getParent(); 140 InsertPt = IP->getIterator(); 141 } 142 143 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 144 /// its underlying Instruction. 145 VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 146 Instruction *Inst = nullptr, 147 const Twine &Name = "") { 148 DebugLoc DL; 149 if (Inst) 150 DL = Inst->getDebugLoc(); 151 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name); 152 NewVPInst->setUnderlyingValue(Inst); 153 return NewVPInst; 154 } 155 VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 156 DebugLoc DL, const Twine &Name = "") { 157 return createInstruction(Opcode, Operands, DL, Name); 158 } 159 160 VPInstruction *createOverflowingOp(unsigned Opcode, 161 std::initializer_list<VPValue *> Operands, 162 VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, 163 DebugLoc DL = {}, const Twine &Name = "") { 164 return tryInsertInstruction( 165 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name)); 166 } 167 VPValue *createNot(VPValue *Operand, DebugLoc DL = {}, 168 const Twine &Name = "") { 169 return createInstruction(VPInstruction::Not, {Operand}, DL, Name); 170 } 171 172 VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 173 const Twine &Name = "") { 174 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name); 175 } 176 177 VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 178 const Twine &Name = "") { 179 180 return tryInsertInstruction(new VPInstruction( 181 Instruction::BinaryOps::Or, {LHS, RHS}, 182 VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name)); 183 } 184 185 VPValue *createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 186 const Twine &Name = "") { 187 return tryInsertInstruction( 188 new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name)); 189 } 190 191 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, 192 DebugLoc DL = {}, const Twine &Name = "", 193 std::optional<FastMathFlags> FMFs = std::nullopt) { 194 auto *Select = 195 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 196 *FMFs, DL, Name) 197 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 198 DL, Name); 199 return tryInsertInstruction(Select); 200 } 201 202 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A 203 /// and \p B. 204 /// TODO: add createFCmp when needed. 205 VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, 206 DebugLoc DL = {}, const Twine &Name = "") { 207 assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE && 208 Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate"); 209 return tryInsertInstruction( 210 new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name)); 211 } 212 213 //===--------------------------------------------------------------------===// 214 // RAII helpers. 215 //===--------------------------------------------------------------------===// 216 217 /// RAII object that stores the current insertion point and restores it when 218 /// the object is destroyed. 219 class InsertPointGuard { 220 VPBuilder &Builder; 221 VPBasicBlock *Block; 222 VPBasicBlock::iterator Point; 223 224 public: 225 InsertPointGuard(VPBuilder &B) 226 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 227 228 InsertPointGuard(const InsertPointGuard &) = delete; 229 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 230 231 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 232 }; 233 }; 234 235 /// TODO: The following VectorizationFactor was pulled out of 236 /// LoopVectorizationCostModel class. LV also deals with 237 /// VectorizerParams::VectorizationFactor. 238 /// We need to streamline them. 239 240 /// Information about vectorization costs. 241 struct VectorizationFactor { 242 /// Vector width with best cost. 243 ElementCount Width; 244 245 /// Cost of the loop with that width. 246 InstructionCost Cost; 247 248 /// Cost of the scalar loop. 249 InstructionCost ScalarCost; 250 251 /// The minimum trip count required to make vectorization profitable, e.g. due 252 /// to runtime checks. 253 ElementCount MinProfitableTripCount; 254 255 VectorizationFactor(ElementCount Width, InstructionCost Cost, 256 InstructionCost ScalarCost) 257 : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {} 258 259 /// Width 1 means no vectorization, cost 0 means uncomputed cost. 260 static VectorizationFactor Disabled() { 261 return {ElementCount::getFixed(1), 0, 0}; 262 } 263 264 bool operator==(const VectorizationFactor &rhs) const { 265 return Width == rhs.Width && Cost == rhs.Cost; 266 } 267 268 bool operator!=(const VectorizationFactor &rhs) const { 269 return !(*this == rhs); 270 } 271 }; 272 273 /// A class that represents two vectorization factors (initialized with 0 by 274 /// default). One for fixed-width vectorization and one for scalable 275 /// vectorization. This can be used by the vectorizer to choose from a range of 276 /// fixed and/or scalable VFs in order to find the most cost-effective VF to 277 /// vectorize with. 278 struct FixedScalableVFPair { 279 ElementCount FixedVF; 280 ElementCount ScalableVF; 281 282 FixedScalableVFPair() 283 : FixedVF(ElementCount::getFixed(0)), 284 ScalableVF(ElementCount::getScalable(0)) {} 285 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { 286 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; 287 } 288 FixedScalableVFPair(const ElementCount &FixedVF, 289 const ElementCount &ScalableVF) 290 : FixedVF(FixedVF), ScalableVF(ScalableVF) { 291 assert(!FixedVF.isScalable() && ScalableVF.isScalable() && 292 "Invalid scalable properties"); 293 } 294 295 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } 296 297 /// \return true if either fixed- or scalable VF is non-zero. 298 explicit operator bool() const { return FixedVF || ScalableVF; } 299 300 /// \return true if either fixed- or scalable VF is a valid vector VF. 301 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } 302 }; 303 304 /// Planner drives the vectorization process after having passed 305 /// Legality checks. 306 class LoopVectorizationPlanner { 307 /// The loop that we evaluate. 308 Loop *OrigLoop; 309 310 /// Loop Info analysis. 311 LoopInfo *LI; 312 313 /// The dominator tree. 314 DominatorTree *DT; 315 316 /// Target Library Info. 317 const TargetLibraryInfo *TLI; 318 319 /// Target Transform Info. 320 const TargetTransformInfo &TTI; 321 322 /// The legality analysis. 323 LoopVectorizationLegality *Legal; 324 325 /// The profitability analysis. 326 LoopVectorizationCostModel &CM; 327 328 /// The interleaved access analysis. 329 InterleavedAccessInfo &IAI; 330 331 PredicatedScalarEvolution &PSE; 332 333 const LoopVectorizeHints &Hints; 334 335 OptimizationRemarkEmitter *ORE; 336 337 SmallVector<VPlanPtr, 4> VPlans; 338 339 /// Profitable vector factors. 340 SmallVector<VectorizationFactor, 8> ProfitableVFs; 341 342 /// A builder used to construct the current plan. 343 VPBuilder Builder; 344 345 /// Computes the cost of \p Plan for vectorization factor \p VF. 346 /// 347 /// The current implementation requires access to the 348 /// LoopVectorizationLegality to handle inductions and reductions, which is 349 /// why it is kept separate from the VPlan-only cost infrastructure. 350 /// 351 /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has 352 /// been retired. 353 InstructionCost cost(VPlan &Plan, ElementCount VF) const; 354 355 /// Precompute costs for certain instructions using the legacy cost model. The 356 /// function is used to bring up the VPlan-based cost model to initially avoid 357 /// taking different decisions due to inaccuracies in the legacy cost model. 358 InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF, 359 VPCostContext &CostCtx) const; 360 361 public: 362 LoopVectorizationPlanner( 363 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 364 const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, 365 LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, 366 PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, 367 OptimizationRemarkEmitter *ORE) 368 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), 369 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {} 370 371 /// Build VPlans for the specified \p UserVF and \p UserIC if they are 372 /// non-zero or all applicable candidate VFs otherwise. If vectorization and 373 /// interleaving should be avoided up-front, no plans are generated. 374 void plan(ElementCount UserVF, unsigned UserIC); 375 376 /// Use the VPlan-native path to plan how to best vectorize, return the best 377 /// VF and its cost. 378 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 379 380 /// Return the VPlan for \p VF. At the moment, there is always a single VPlan 381 /// for each VF. 382 VPlan &getPlanFor(ElementCount VF) const; 383 384 /// Compute and return the most profitable vectorization factor. Also collect 385 /// all profitable VFs in ProfitableVFs. 386 VectorizationFactor computeBestVF(); 387 388 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan 389 /// according to the best selected \p VF and \p UF. 390 /// 391 /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue 392 /// vectorization re-using plans for both the main and epilogue vector loops. 393 /// It should be removed once the re-use issue has been fixed. 394 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop 395 /// to re-use expansion results generated during main plan execution. 396 /// 397 /// Returns a mapping of SCEVs to their expanded IR values and a mapping for 398 /// the reduction resume values. Note that this is a temporary workaround 399 /// needed due to the current epilogue handling. 400 std::pair<DenseMap<const SCEV *, Value *>, 401 DenseMap<const RecurrenceDescriptor *, Value *>> 402 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, 403 InnerLoopVectorizer &LB, DominatorTree *DT, 404 bool IsEpilogueVectorization, 405 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr); 406 407 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 408 void printPlans(raw_ostream &O); 409 #endif 410 411 /// Look through the existing plans and return true if we have one with 412 /// vectorization factor \p VF. 413 bool hasPlanWithVF(ElementCount VF) const { 414 return any_of(VPlans, 415 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); 416 } 417 418 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 419 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 420 /// returned value holds for the entire \p Range. 421 static bool 422 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 423 VFRange &Range); 424 425 /// \return The most profitable vectorization factor and the cost of that VF 426 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if 427 /// epilogue vectorization is not supported for the loop. 428 VectorizationFactor 429 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC); 430 431 /// Emit remarks for recipes with invalid costs in the available VPlans. 432 void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE); 433 434 protected: 435 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 436 /// according to the information gathered by Legal when it checked if it is 437 /// legal to vectorize the loop. 438 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 439 440 private: 441 /// Build a VPlan according to the information gathered by Legal. \return a 442 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 443 /// exclusive, possibly decreasing \p Range.End. 444 VPlanPtr buildVPlan(VFRange &Range); 445 446 /// Build a VPlan using VPRecipes according to the information gather by 447 /// Legal. This method is only used for the legacy inner loop vectorizer. 448 /// \p Range's largest included VF is restricted to the maximum VF the 449 /// returned VPlan is valid for. If no VPlan can be built for the input range, 450 /// set the largest included VF to the maximum VF for which no plan could be 451 /// built. 452 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range); 453 454 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 455 /// according to the information gathered by Legal when it checked if it is 456 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 457 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 458 459 // Adjust the recipes for reductions. For in-loop reductions the chain of 460 // instructions leading from the loop exit instr to the phi need to be 461 // converted to reductions, with one operand being vector and the other being 462 // the scalar reduction chain. For other reductions, a select is introduced 463 // between the phi and live-out recipes when folding the tail. 464 void adjustRecipesForReductions(VPlanPtr &Plan, 465 VPRecipeBuilder &RecipeBuilder, 466 ElementCount MinVF); 467 468 #ifndef NDEBUG 469 /// \return The most profitable vectorization factor for the available VPlans 470 /// and the cost of that VF. 471 /// This is now only used to verify the decisions by the new VPlan-based 472 /// cost-model and will be retired once the VPlan-based cost-model is 473 /// stabilized. 474 VectorizationFactor selectVectorizationFactor(); 475 #endif 476 477 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 478 /// that of B. 479 bool isMoreProfitable(const VectorizationFactor &A, 480 const VectorizationFactor &B) const; 481 482 /// Determines if we have the infrastructure to vectorize the loop and its 483 /// epilogue, assuming the main loop is vectorized by \p VF. 484 bool isCandidateForEpilogueVectorization(const ElementCount VF) const; 485 }; 486 487 } // namespace llvm 488 489 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 490