1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/InstructionCost.h" 30 31 namespace llvm { 32 33 class LoopInfo; 34 class DominatorTree; 35 class LoopVectorizationLegality; 36 class LoopVectorizationCostModel; 37 class PredicatedScalarEvolution; 38 class LoopVectorizeHints; 39 class OptimizationRemarkEmitter; 40 class TargetTransformInfo; 41 class TargetLibraryInfo; 42 class VPRecipeBuilder; 43 44 /// VPlan-based builder utility analogous to IRBuilder. 45 class VPBuilder { 46 VPBasicBlock *BB = nullptr; 47 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 48 49 /// Insert \p VPI in BB at InsertPt if BB is set. 50 template <typename T> T *tryInsertInstruction(T *R) { 51 if (BB) 52 BB->insert(R, InsertPt); 53 return R; 54 } 55 56 VPInstruction *createInstruction(unsigned Opcode, 57 ArrayRef<VPValue *> Operands, DebugLoc DL, 58 const Twine &Name = "") { 59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name)); 60 } 61 62 VPInstruction *createInstruction(unsigned Opcode, 63 std::initializer_list<VPValue *> Operands, 64 DebugLoc DL, const Twine &Name = "") { 65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name); 66 } 67 68 public: 69 VPBuilder() = default; 70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); } 71 VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); } 72 VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 73 setInsertPoint(TheBB, IP); 74 } 75 76 /// Clear the insertion point: created instructions will not be inserted into 77 /// a block. 78 void clearInsertionPoint() { 79 BB = nullptr; 80 InsertPt = VPBasicBlock::iterator(); 81 } 82 83 VPBasicBlock *getInsertBlock() const { return BB; } 84 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 85 86 /// Create a VPBuilder to insert after \p R. 87 static VPBuilder getToInsertAfter(VPRecipeBase *R) { 88 VPBuilder B; 89 B.setInsertPoint(R->getParent(), std::next(R->getIterator())); 90 return B; 91 } 92 93 /// InsertPoint - A saved insertion point. 94 class VPInsertPoint { 95 VPBasicBlock *Block = nullptr; 96 VPBasicBlock::iterator Point; 97 98 public: 99 /// Creates a new insertion point which doesn't point to anything. 100 VPInsertPoint() = default; 101 102 /// Creates a new insertion point at the given location. 103 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 104 : Block(InsertBlock), Point(InsertPoint) {} 105 106 /// Returns true if this insert point is set. 107 bool isSet() const { return Block != nullptr; } 108 109 VPBasicBlock *getBlock() const { return Block; } 110 VPBasicBlock::iterator getPoint() const { return Point; } 111 }; 112 113 /// Sets the current insert point to a previously-saved location. 114 void restoreIP(VPInsertPoint IP) { 115 if (IP.isSet()) 116 setInsertPoint(IP.getBlock(), IP.getPoint()); 117 else 118 clearInsertionPoint(); 119 } 120 121 /// This specifies that created VPInstructions should be appended to the end 122 /// of the specified block. 123 void setInsertPoint(VPBasicBlock *TheBB) { 124 assert(TheBB && "Attempting to set a null insert point"); 125 BB = TheBB; 126 InsertPt = BB->end(); 127 } 128 129 /// This specifies that created instructions should be inserted at the 130 /// specified point. 131 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 132 BB = TheBB; 133 InsertPt = IP; 134 } 135 136 /// This specifies that created instructions should be inserted at the 137 /// specified point. 138 void setInsertPoint(VPRecipeBase *IP) { 139 BB = IP->getParent(); 140 InsertPt = IP->getIterator(); 141 } 142 143 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 144 /// its underlying Instruction. 145 VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 146 Instruction *Inst = nullptr, 147 const Twine &Name = "") { 148 DebugLoc DL; 149 if (Inst) 150 DL = Inst->getDebugLoc(); 151 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name); 152 NewVPInst->setUnderlyingValue(Inst); 153 return NewVPInst; 154 } 155 VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 156 DebugLoc DL, const Twine &Name = "") { 157 return createInstruction(Opcode, Operands, DL, Name); 158 } 159 VPInstruction *createNaryOp(unsigned Opcode, 160 std::initializer_list<VPValue *> Operands, 161 std::optional<FastMathFlags> FMFs = {}, 162 DebugLoc DL = {}, const Twine &Name = "") { 163 if (FMFs) 164 return tryInsertInstruction( 165 new VPInstruction(Opcode, Operands, *FMFs, DL, Name)); 166 return createInstruction(Opcode, Operands, DL, Name); 167 } 168 169 VPInstruction *createOverflowingOp(unsigned Opcode, 170 std::initializer_list<VPValue *> Operands, 171 VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, 172 DebugLoc DL = {}, const Twine &Name = "") { 173 return tryInsertInstruction( 174 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name)); 175 } 176 177 VPValue *createNot(VPValue *Operand, DebugLoc DL = {}, 178 const Twine &Name = "") { 179 return createInstruction(VPInstruction::Not, {Operand}, DL, Name); 180 } 181 182 VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 183 const Twine &Name = "") { 184 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name); 185 } 186 187 VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 188 const Twine &Name = "") { 189 190 return tryInsertInstruction(new VPInstruction( 191 Instruction::BinaryOps::Or, {LHS, RHS}, 192 VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name)); 193 } 194 195 VPValue *createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 196 const Twine &Name = "") { 197 return tryInsertInstruction( 198 new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name)); 199 } 200 201 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, 202 DebugLoc DL = {}, const Twine &Name = "", 203 std::optional<FastMathFlags> FMFs = std::nullopt) { 204 auto *Select = 205 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 206 *FMFs, DL, Name) 207 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 208 DL, Name); 209 return tryInsertInstruction(Select); 210 } 211 212 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A 213 /// and \p B. 214 /// TODO: add createFCmp when needed. 215 VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, 216 DebugLoc DL = {}, const Twine &Name = "") { 217 assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE && 218 Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate"); 219 return tryInsertInstruction( 220 new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name)); 221 } 222 223 VPInstruction *createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {}, 224 const Twine &Name = "") { 225 return tryInsertInstruction( 226 new VPInstruction(Ptr, Offset, GEPNoWrapFlags::none(), DL, Name)); 227 } 228 VPValue *createInBoundsPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {}, 229 const Twine &Name = "") { 230 return tryInsertInstruction( 231 new VPInstruction(Ptr, Offset, GEPNoWrapFlags::inBounds(), DL, Name)); 232 } 233 234 /// Convert the input value \p Current to the corresponding value of an 235 /// induction with \p Start and \p Step values, using \p Start + \p Current * 236 /// \p Step. 237 VPDerivedIVRecipe *createDerivedIV(InductionDescriptor::InductionKind Kind, 238 FPMathOperator *FPBinOp, VPValue *Start, 239 VPValue *Current, VPValue *Step, 240 const Twine &Name = "") { 241 return tryInsertInstruction( 242 new VPDerivedIVRecipe(Kind, FPBinOp, Start, Current, Step, Name)); 243 } 244 245 VPScalarCastRecipe *createScalarCast(Instruction::CastOps Opcode, VPValue *Op, 246 Type *ResultTy, DebugLoc DL) { 247 return tryInsertInstruction( 248 new VPScalarCastRecipe(Opcode, Op, ResultTy, DL)); 249 } 250 251 VPWidenCastRecipe *createWidenCast(Instruction::CastOps Opcode, VPValue *Op, 252 Type *ResultTy) { 253 return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy)); 254 } 255 256 VPScalarIVStepsRecipe * 257 createScalarIVSteps(Instruction::BinaryOps InductionOpcode, 258 FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step) { 259 return tryInsertInstruction(new VPScalarIVStepsRecipe( 260 IV, Step, InductionOpcode, 261 FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags())); 262 } 263 264 //===--------------------------------------------------------------------===// 265 // RAII helpers. 266 //===--------------------------------------------------------------------===// 267 268 /// RAII object that stores the current insertion point and restores it when 269 /// the object is destroyed. 270 class InsertPointGuard { 271 VPBuilder &Builder; 272 VPBasicBlock *Block; 273 VPBasicBlock::iterator Point; 274 275 public: 276 InsertPointGuard(VPBuilder &B) 277 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 278 279 InsertPointGuard(const InsertPointGuard &) = delete; 280 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 281 282 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 283 }; 284 }; 285 286 /// TODO: The following VectorizationFactor was pulled out of 287 /// LoopVectorizationCostModel class. LV also deals with 288 /// VectorizerParams::VectorizationFactor. 289 /// We need to streamline them. 290 291 /// Information about vectorization costs. 292 struct VectorizationFactor { 293 /// Vector width with best cost. 294 ElementCount Width; 295 296 /// Cost of the loop with that width. 297 InstructionCost Cost; 298 299 /// Cost of the scalar loop. 300 InstructionCost ScalarCost; 301 302 /// The minimum trip count required to make vectorization profitable, e.g. due 303 /// to runtime checks. 304 ElementCount MinProfitableTripCount; 305 306 VectorizationFactor(ElementCount Width, InstructionCost Cost, 307 InstructionCost ScalarCost) 308 : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {} 309 310 /// Width 1 means no vectorization, cost 0 means uncomputed cost. 311 static VectorizationFactor Disabled() { 312 return {ElementCount::getFixed(1), 0, 0}; 313 } 314 315 bool operator==(const VectorizationFactor &rhs) const { 316 return Width == rhs.Width && Cost == rhs.Cost; 317 } 318 319 bool operator!=(const VectorizationFactor &rhs) const { 320 return !(*this == rhs); 321 } 322 }; 323 324 /// A class that represents two vectorization factors (initialized with 0 by 325 /// default). One for fixed-width vectorization and one for scalable 326 /// vectorization. This can be used by the vectorizer to choose from a range of 327 /// fixed and/or scalable VFs in order to find the most cost-effective VF to 328 /// vectorize with. 329 struct FixedScalableVFPair { 330 ElementCount FixedVF; 331 ElementCount ScalableVF; 332 333 FixedScalableVFPair() 334 : FixedVF(ElementCount::getFixed(0)), 335 ScalableVF(ElementCount::getScalable(0)) {} 336 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { 337 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; 338 } 339 FixedScalableVFPair(const ElementCount &FixedVF, 340 const ElementCount &ScalableVF) 341 : FixedVF(FixedVF), ScalableVF(ScalableVF) { 342 assert(!FixedVF.isScalable() && ScalableVF.isScalable() && 343 "Invalid scalable properties"); 344 } 345 346 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } 347 348 /// \return true if either fixed- or scalable VF is non-zero. 349 explicit operator bool() const { return FixedVF || ScalableVF; } 350 351 /// \return true if either fixed- or scalable VF is a valid vector VF. 352 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } 353 }; 354 355 /// Planner drives the vectorization process after having passed 356 /// Legality checks. 357 class LoopVectorizationPlanner { 358 /// The loop that we evaluate. 359 Loop *OrigLoop; 360 361 /// Loop Info analysis. 362 LoopInfo *LI; 363 364 /// The dominator tree. 365 DominatorTree *DT; 366 367 /// Target Library Info. 368 const TargetLibraryInfo *TLI; 369 370 /// Target Transform Info. 371 const TargetTransformInfo &TTI; 372 373 /// The legality analysis. 374 LoopVectorizationLegality *Legal; 375 376 /// The profitability analysis. 377 LoopVectorizationCostModel &CM; 378 379 /// The interleaved access analysis. 380 InterleavedAccessInfo &IAI; 381 382 PredicatedScalarEvolution &PSE; 383 384 const LoopVectorizeHints &Hints; 385 386 OptimizationRemarkEmitter *ORE; 387 388 SmallVector<VPlanPtr, 4> VPlans; 389 390 /// Profitable vector factors. 391 SmallVector<VectorizationFactor, 8> ProfitableVFs; 392 393 /// A builder used to construct the current plan. 394 VPBuilder Builder; 395 396 /// Computes the cost of \p Plan for vectorization factor \p VF. 397 /// 398 /// The current implementation requires access to the 399 /// LoopVectorizationLegality to handle inductions and reductions, which is 400 /// why it is kept separate from the VPlan-only cost infrastructure. 401 /// 402 /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has 403 /// been retired. 404 InstructionCost cost(VPlan &Plan, ElementCount VF) const; 405 406 /// Precompute costs for certain instructions using the legacy cost model. The 407 /// function is used to bring up the VPlan-based cost model to initially avoid 408 /// taking different decisions due to inaccuracies in the legacy cost model. 409 InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF, 410 VPCostContext &CostCtx) const; 411 412 public: 413 LoopVectorizationPlanner( 414 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 415 const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, 416 LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, 417 PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, 418 OptimizationRemarkEmitter *ORE) 419 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), 420 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {} 421 422 /// Build VPlans for the specified \p UserVF and \p UserIC if they are 423 /// non-zero or all applicable candidate VFs otherwise. If vectorization and 424 /// interleaving should be avoided up-front, no plans are generated. 425 void plan(ElementCount UserVF, unsigned UserIC); 426 427 /// Use the VPlan-native path to plan how to best vectorize, return the best 428 /// VF and its cost. 429 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 430 431 /// Return the VPlan for \p VF. At the moment, there is always a single VPlan 432 /// for each VF. 433 VPlan &getPlanFor(ElementCount VF) const; 434 435 /// Compute and return the most profitable vectorization factor. Also collect 436 /// all profitable VFs in ProfitableVFs. 437 VectorizationFactor computeBestVF(); 438 439 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan 440 /// according to the best selected \p VF and \p UF. 441 /// 442 /// TODO: \p VectorizingEpilogue indicates if the executed VPlan is for the 443 /// epilogue vector loop. It should be removed once the re-use issue has been 444 /// fixed. 445 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop 446 /// to re-use expansion results generated during main plan execution. 447 /// 448 /// Returns a mapping of SCEVs to their expanded IR values. 449 /// Note that this is a temporary workaround needed due to the current 450 /// epilogue handling. 451 DenseMap<const SCEV *, Value *> 452 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, 453 InnerLoopVectorizer &LB, DominatorTree *DT, 454 bool VectorizingEpilogue, 455 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr); 456 457 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 458 void printPlans(raw_ostream &O); 459 #endif 460 461 /// Look through the existing plans and return true if we have one with 462 /// vectorization factor \p VF. 463 bool hasPlanWithVF(ElementCount VF) const { 464 return any_of(VPlans, 465 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); 466 } 467 468 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 469 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 470 /// returned value holds for the entire \p Range. 471 static bool 472 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 473 VFRange &Range); 474 475 /// \return The most profitable vectorization factor and the cost of that VF 476 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if 477 /// epilogue vectorization is not supported for the loop. 478 VectorizationFactor 479 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC); 480 481 /// Emit remarks for recipes with invalid costs in the available VPlans. 482 void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE); 483 484 protected: 485 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 486 /// according to the information gathered by Legal when it checked if it is 487 /// legal to vectorize the loop. 488 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 489 490 private: 491 /// Build a VPlan according to the information gathered by Legal. \return a 492 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 493 /// exclusive, possibly decreasing \p Range.End. 494 VPlanPtr buildVPlan(VFRange &Range); 495 496 /// Build a VPlan using VPRecipes according to the information gather by 497 /// Legal. This method is only used for the legacy inner loop vectorizer. 498 /// \p Range's largest included VF is restricted to the maximum VF the 499 /// returned VPlan is valid for. If no VPlan can be built for the input range, 500 /// set the largest included VF to the maximum VF for which no plan could be 501 /// built. 502 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range); 503 504 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 505 /// according to the information gathered by Legal when it checked if it is 506 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 507 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 508 509 // Adjust the recipes for reductions. For in-loop reductions the chain of 510 // instructions leading from the loop exit instr to the phi need to be 511 // converted to reductions, with one operand being vector and the other being 512 // the scalar reduction chain. For other reductions, a select is introduced 513 // between the phi and users outside the vector region when folding the tail. 514 void adjustRecipesForReductions(VPlanPtr &Plan, 515 VPRecipeBuilder &RecipeBuilder, 516 ElementCount MinVF); 517 518 #ifndef NDEBUG 519 /// \return The most profitable vectorization factor for the available VPlans 520 /// and the cost of that VF. 521 /// This is now only used to verify the decisions by the new VPlan-based 522 /// cost-model and will be retired once the VPlan-based cost-model is 523 /// stabilized. 524 VectorizationFactor selectVectorizationFactor(); 525 #endif 526 527 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 528 /// that of B. 529 bool isMoreProfitable(const VectorizationFactor &A, 530 const VectorizationFactor &B) const; 531 532 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 533 /// that of B in the context of vectorizing a loop with known \p MaxTripCount. 534 bool isMoreProfitable(const VectorizationFactor &A, 535 const VectorizationFactor &B, 536 const unsigned MaxTripCount) const; 537 538 /// Determines if we have the infrastructure to vectorize the loop and its 539 /// epilogue, assuming the main loop is vectorized by \p VF. 540 bool isCandidateForEpilogueVectorization(const ElementCount VF) const; 541 }; 542 543 } // namespace llvm 544 545 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 546