xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h (revision f4230b4332262dffb0bd3b7a2f8d6deb2e96488e)
1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/InstructionCost.h"
30 
31 namespace llvm {
32 
33 class LoopInfo;
34 class DominatorTree;
35 class LoopVectorizationLegality;
36 class LoopVectorizationCostModel;
37 class PredicatedScalarEvolution;
38 class LoopVectorizeHints;
39 class OptimizationRemarkEmitter;
40 class TargetTransformInfo;
41 class TargetLibraryInfo;
42 class VPRecipeBuilder;
43 
44 /// VPlan-based builder utility analogous to IRBuilder.
45 class VPBuilder {
46   VPBasicBlock *BB = nullptr;
47   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
48 
49   /// Insert \p VPI in BB at InsertPt if BB is set.
50   template <typename T> T *tryInsertInstruction(T *R) {
51     if (BB)
52       BB->insert(R, InsertPt);
53     return R;
54   }
55 
56   VPInstruction *createInstruction(unsigned Opcode,
57                                    ArrayRef<VPValue *> Operands, DebugLoc DL,
58                                    const Twine &Name = "") {
59     return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
60   }
61 
62   VPInstruction *createInstruction(unsigned Opcode,
63                                    std::initializer_list<VPValue *> Operands,
64                                    DebugLoc DL, const Twine &Name = "") {
65     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
66   }
67 
68 public:
69   VPBuilder() = default;
70   VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
71   VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); }
72   VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
73     setInsertPoint(TheBB, IP);
74   }
75 
76   /// Clear the insertion point: created instructions will not be inserted into
77   /// a block.
78   void clearInsertionPoint() {
79     BB = nullptr;
80     InsertPt = VPBasicBlock::iterator();
81   }
82 
83   VPBasicBlock *getInsertBlock() const { return BB; }
84   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
85 
86   /// Create a VPBuilder to insert after \p R.
87   static VPBuilder getToInsertAfter(VPRecipeBase *R) {
88     VPBuilder B;
89     B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
90     return B;
91   }
92 
93   /// InsertPoint - A saved insertion point.
94   class VPInsertPoint {
95     VPBasicBlock *Block = nullptr;
96     VPBasicBlock::iterator Point;
97 
98   public:
99     /// Creates a new insertion point which doesn't point to anything.
100     VPInsertPoint() = default;
101 
102     /// Creates a new insertion point at the given location.
103     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
104         : Block(InsertBlock), Point(InsertPoint) {}
105 
106     /// Returns true if this insert point is set.
107     bool isSet() const { return Block != nullptr; }
108 
109     VPBasicBlock *getBlock() const { return Block; }
110     VPBasicBlock::iterator getPoint() const { return Point; }
111   };
112 
113   /// Sets the current insert point to a previously-saved location.
114   void restoreIP(VPInsertPoint IP) {
115     if (IP.isSet())
116       setInsertPoint(IP.getBlock(), IP.getPoint());
117     else
118       clearInsertionPoint();
119   }
120 
121   /// This specifies that created VPInstructions should be appended to the end
122   /// of the specified block.
123   void setInsertPoint(VPBasicBlock *TheBB) {
124     assert(TheBB && "Attempting to set a null insert point");
125     BB = TheBB;
126     InsertPt = BB->end();
127   }
128 
129   /// This specifies that created instructions should be inserted at the
130   /// specified point.
131   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
132     BB = TheBB;
133     InsertPt = IP;
134   }
135 
136   /// This specifies that created instructions should be inserted at the
137   /// specified point.
138   void setInsertPoint(VPRecipeBase *IP) {
139     BB = IP->getParent();
140     InsertPt = IP->getIterator();
141   }
142 
143   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
144   /// its underlying Instruction.
145   VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
146                               Instruction *Inst = nullptr,
147                               const Twine &Name = "") {
148     DebugLoc DL;
149     if (Inst)
150       DL = Inst->getDebugLoc();
151     VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
152     NewVPInst->setUnderlyingValue(Inst);
153     return NewVPInst;
154   }
155   VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
156                               DebugLoc DL, const Twine &Name = "") {
157     return createInstruction(Opcode, Operands, DL, Name);
158   }
159   VPInstruction *createNaryOp(unsigned Opcode,
160                               std::initializer_list<VPValue *> Operands,
161                               std::optional<FastMathFlags> FMFs = {},
162                               DebugLoc DL = {}, const Twine &Name = "") {
163     if (FMFs)
164       return tryInsertInstruction(
165           new VPInstruction(Opcode, Operands, *FMFs, DL, Name));
166     return createInstruction(Opcode, Operands, DL, Name);
167   }
168 
169   VPInstruction *createOverflowingOp(unsigned Opcode,
170                                      std::initializer_list<VPValue *> Operands,
171                                      VPRecipeWithIRFlags::WrapFlagsTy WrapFlags,
172                                      DebugLoc DL = {}, const Twine &Name = "") {
173     return tryInsertInstruction(
174         new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
175   }
176 
177   VPValue *createNot(VPValue *Operand, DebugLoc DL = {},
178                      const Twine &Name = "") {
179     return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
180   }
181 
182   VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
183                      const Twine &Name = "") {
184     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
185   }
186 
187   VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
188                     const Twine &Name = "") {
189 
190     return tryInsertInstruction(new VPInstruction(
191         Instruction::BinaryOps::Or, {LHS, RHS},
192         VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
193   }
194 
195   VPValue *createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
196                             const Twine &Name = "") {
197     return tryInsertInstruction(
198         new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name));
199   }
200 
201   VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
202                         DebugLoc DL = {}, const Twine &Name = "",
203                         std::optional<FastMathFlags> FMFs = std::nullopt) {
204     auto *Select =
205         FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
206                                  *FMFs, DL, Name)
207              : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
208                                  DL, Name);
209     return tryInsertInstruction(Select);
210   }
211 
212   /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
213   /// and \p B.
214   /// TODO: add createFCmp when needed.
215   VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
216                       DebugLoc DL = {}, const Twine &Name = "") {
217     assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE &&
218            Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate");
219     return tryInsertInstruction(
220         new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name));
221   }
222 
223   VPInstruction *createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {},
224                               const Twine &Name = "") {
225     return tryInsertInstruction(
226         new VPInstruction(Ptr, Offset, GEPNoWrapFlags::none(), DL, Name));
227   }
228   VPValue *createInBoundsPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {},
229                                 const Twine &Name = "") {
230     return tryInsertInstruction(
231         new VPInstruction(Ptr, Offset, GEPNoWrapFlags::inBounds(), DL, Name));
232   }
233 
234   /// Convert the input value \p Current to the corresponding value of an
235   /// induction with \p Start and \p Step values, using \p Start + \p Current *
236   /// \p Step.
237   VPDerivedIVRecipe *createDerivedIV(InductionDescriptor::InductionKind Kind,
238                                      FPMathOperator *FPBinOp, VPValue *Start,
239                                      VPValue *Current, VPValue *Step,
240                                      const Twine &Name = "") {
241     return tryInsertInstruction(
242         new VPDerivedIVRecipe(Kind, FPBinOp, Start, Current, Step, Name));
243   }
244 
245   VPScalarCastRecipe *createScalarCast(Instruction::CastOps Opcode, VPValue *Op,
246                                        Type *ResultTy, DebugLoc DL) {
247     return tryInsertInstruction(
248         new VPScalarCastRecipe(Opcode, Op, ResultTy, DL));
249   }
250 
251   VPWidenCastRecipe *createWidenCast(Instruction::CastOps Opcode, VPValue *Op,
252                                      Type *ResultTy) {
253     return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy));
254   }
255 
256   VPScalarIVStepsRecipe *
257   createScalarIVSteps(Instruction::BinaryOps InductionOpcode,
258                       FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step) {
259     return tryInsertInstruction(new VPScalarIVStepsRecipe(
260         IV, Step, InductionOpcode,
261         FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags()));
262   }
263 
264   //===--------------------------------------------------------------------===//
265   // RAII helpers.
266   //===--------------------------------------------------------------------===//
267 
268   /// RAII object that stores the current insertion point and restores it when
269   /// the object is destroyed.
270   class InsertPointGuard {
271     VPBuilder &Builder;
272     VPBasicBlock *Block;
273     VPBasicBlock::iterator Point;
274 
275   public:
276     InsertPointGuard(VPBuilder &B)
277         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
278 
279     InsertPointGuard(const InsertPointGuard &) = delete;
280     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
281 
282     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
283   };
284 };
285 
286 /// TODO: The following VectorizationFactor was pulled out of
287 /// LoopVectorizationCostModel class. LV also deals with
288 /// VectorizerParams::VectorizationFactor.
289 /// We need to streamline them.
290 
291 /// Information about vectorization costs.
292 struct VectorizationFactor {
293   /// Vector width with best cost.
294   ElementCount Width;
295 
296   /// Cost of the loop with that width.
297   InstructionCost Cost;
298 
299   /// Cost of the scalar loop.
300   InstructionCost ScalarCost;
301 
302   /// The minimum trip count required to make vectorization profitable, e.g. due
303   /// to runtime checks.
304   ElementCount MinProfitableTripCount;
305 
306   VectorizationFactor(ElementCount Width, InstructionCost Cost,
307                       InstructionCost ScalarCost)
308       : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
309 
310   /// Width 1 means no vectorization, cost 0 means uncomputed cost.
311   static VectorizationFactor Disabled() {
312     return {ElementCount::getFixed(1), 0, 0};
313   }
314 
315   bool operator==(const VectorizationFactor &rhs) const {
316     return Width == rhs.Width && Cost == rhs.Cost;
317   }
318 
319   bool operator!=(const VectorizationFactor &rhs) const {
320     return !(*this == rhs);
321   }
322 };
323 
324 /// A class that represents two vectorization factors (initialized with 0 by
325 /// default). One for fixed-width vectorization and one for scalable
326 /// vectorization. This can be used by the vectorizer to choose from a range of
327 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
328 /// vectorize with.
329 struct FixedScalableVFPair {
330   ElementCount FixedVF;
331   ElementCount ScalableVF;
332 
333   FixedScalableVFPair()
334       : FixedVF(ElementCount::getFixed(0)),
335         ScalableVF(ElementCount::getScalable(0)) {}
336   FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
337     *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
338   }
339   FixedScalableVFPair(const ElementCount &FixedVF,
340                       const ElementCount &ScalableVF)
341       : FixedVF(FixedVF), ScalableVF(ScalableVF) {
342     assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
343            "Invalid scalable properties");
344   }
345 
346   static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
347 
348   /// \return true if either fixed- or scalable VF is non-zero.
349   explicit operator bool() const { return FixedVF || ScalableVF; }
350 
351   /// \return true if either fixed- or scalable VF is a valid vector VF.
352   bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
353 };
354 
355 /// Planner drives the vectorization process after having passed
356 /// Legality checks.
357 class LoopVectorizationPlanner {
358   /// The loop that we evaluate.
359   Loop *OrigLoop;
360 
361   /// Loop Info analysis.
362   LoopInfo *LI;
363 
364   /// The dominator tree.
365   DominatorTree *DT;
366 
367   /// Target Library Info.
368   const TargetLibraryInfo *TLI;
369 
370   /// Target Transform Info.
371   const TargetTransformInfo &TTI;
372 
373   /// The legality analysis.
374   LoopVectorizationLegality *Legal;
375 
376   /// The profitability analysis.
377   LoopVectorizationCostModel &CM;
378 
379   /// The interleaved access analysis.
380   InterleavedAccessInfo &IAI;
381 
382   PredicatedScalarEvolution &PSE;
383 
384   const LoopVectorizeHints &Hints;
385 
386   OptimizationRemarkEmitter *ORE;
387 
388   SmallVector<VPlanPtr, 4> VPlans;
389 
390   /// Profitable vector factors.
391   SmallVector<VectorizationFactor, 8> ProfitableVFs;
392 
393   /// A builder used to construct the current plan.
394   VPBuilder Builder;
395 
396   /// Computes the cost of \p Plan for vectorization factor \p VF.
397   ///
398   /// The current implementation requires access to the
399   /// LoopVectorizationLegality to handle inductions and reductions, which is
400   /// why it is kept separate from the VPlan-only cost infrastructure.
401   ///
402   /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has
403   /// been retired.
404   InstructionCost cost(VPlan &Plan, ElementCount VF) const;
405 
406   /// Precompute costs for certain instructions using the legacy cost model. The
407   /// function is used to bring up the VPlan-based cost model to initially avoid
408   /// taking different decisions due to inaccuracies in the legacy cost model.
409   InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF,
410                                   VPCostContext &CostCtx) const;
411 
412 public:
413   LoopVectorizationPlanner(
414       Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
415       const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal,
416       LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI,
417       PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints,
418       OptimizationRemarkEmitter *ORE)
419       : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
420         IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
421 
422   /// Build VPlans for the specified \p UserVF and \p UserIC if they are
423   /// non-zero or all applicable candidate VFs otherwise. If vectorization and
424   /// interleaving should be avoided up-front, no plans are generated.
425   void plan(ElementCount UserVF, unsigned UserIC);
426 
427   /// Use the VPlan-native path to plan how to best vectorize, return the best
428   /// VF and its cost.
429   VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
430 
431   /// Return the VPlan for \p VF. At the moment, there is always a single VPlan
432   /// for each VF.
433   VPlan &getPlanFor(ElementCount VF) const;
434 
435   /// Compute and return the most profitable vectorization factor. Also collect
436   /// all profitable VFs in ProfitableVFs.
437   VectorizationFactor computeBestVF();
438 
439   /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
440   /// according to the best selected \p VF and  \p UF.
441   ///
442   /// TODO: \p VectorizingEpilogue indicates if the executed VPlan is for the
443   /// epilogue vector loop. It should be removed once the re-use issue has been
444   /// fixed.
445   /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
446   /// to re-use expansion results generated during main plan execution.
447   ///
448   /// Returns a mapping of SCEVs to their expanded IR values.
449   /// Note that this is a temporary workaround needed due to the current
450   /// epilogue handling.
451   DenseMap<const SCEV *, Value *>
452   executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
453               InnerLoopVectorizer &LB, DominatorTree *DT,
454               bool VectorizingEpilogue,
455               const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
456 
457 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
458   void printPlans(raw_ostream &O);
459 #endif
460 
461   /// Look through the existing plans and return true if we have one with
462   /// vectorization factor \p VF.
463   bool hasPlanWithVF(ElementCount VF) const {
464     return any_of(VPlans,
465                   [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
466   }
467 
468   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
469   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
470   /// returned value holds for the entire \p Range.
471   static bool
472   getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
473                            VFRange &Range);
474 
475   /// \return The most profitable vectorization factor and the cost of that VF
476   /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
477   /// epilogue vectorization is not supported for the loop.
478   VectorizationFactor
479   selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
480 
481   /// Emit remarks for recipes with invalid costs in the available VPlans.
482   void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE);
483 
484 protected:
485   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
486   /// according to the information gathered by Legal when it checked if it is
487   /// legal to vectorize the loop.
488   void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
489 
490 private:
491   /// Build a VPlan according to the information gathered by Legal. \return a
492   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
493   /// exclusive, possibly decreasing \p Range.End.
494   VPlanPtr buildVPlan(VFRange &Range);
495 
496   /// Build a VPlan using VPRecipes according to the information gather by
497   /// Legal. This method is only used for the legacy inner loop vectorizer.
498   /// \p Range's largest included VF is restricted to the maximum VF the
499   /// returned VPlan is valid for. If no VPlan can be built for the input range,
500   /// set the largest included VF to the maximum VF for which no plan could be
501   /// built.
502   VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
503 
504   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
505   /// according to the information gathered by Legal when it checked if it is
506   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
507   void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
508 
509   // Adjust the recipes for reductions. For in-loop reductions the chain of
510   // instructions leading from the loop exit instr to the phi need to be
511   // converted to reductions, with one operand being vector and the other being
512   // the scalar reduction chain. For other reductions, a select is introduced
513   // between the phi and users outside the vector region when folding the tail.
514   void adjustRecipesForReductions(VPlanPtr &Plan,
515                                   VPRecipeBuilder &RecipeBuilder,
516                                   ElementCount MinVF);
517 
518 #ifndef NDEBUG
519   /// \return The most profitable vectorization factor for the available VPlans
520   /// and the cost of that VF.
521   /// This is now only used to verify the decisions by the new VPlan-based
522   /// cost-model and will be retired once the VPlan-based cost-model is
523   /// stabilized.
524   VectorizationFactor selectVectorizationFactor();
525 #endif
526 
527   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
528   /// that of B.
529   bool isMoreProfitable(const VectorizationFactor &A,
530                         const VectorizationFactor &B) const;
531 
532   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
533   /// that of B in the context of vectorizing a loop with known \p MaxTripCount.
534   bool isMoreProfitable(const VectorizationFactor &A,
535                         const VectorizationFactor &B,
536                         const unsigned MaxTripCount) const;
537 
538   /// Determines if we have the infrastructure to vectorize the loop and its
539   /// epilogue, assuming the main loop is vectorized by \p VF.
540   bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
541 };
542 
543 } // namespace llvm
544 
545 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
546