xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h (revision 590f451b60d434b26c634a07125fb05baf461fa0)
1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/InstructionCost.h"
30 
31 namespace llvm {
32 
33 class LoopInfo;
34 class DominatorTree;
35 class LoopVectorizationLegality;
36 class LoopVectorizationCostModel;
37 class PredicatedScalarEvolution;
38 class LoopVectorizeHints;
39 class OptimizationRemarkEmitter;
40 class TargetTransformInfo;
41 class TargetLibraryInfo;
42 class VPRecipeBuilder;
43 
44 /// VPlan-based builder utility analogous to IRBuilder.
45 class VPBuilder {
46   VPBasicBlock *BB = nullptr;
47   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
48 
49   /// Insert \p VPI in BB at InsertPt if BB is set.
50   template <typename T> T *tryInsertInstruction(T *R) {
51     if (BB)
52       BB->insert(R, InsertPt);
53     return R;
54   }
55 
56   VPInstruction *createInstruction(unsigned Opcode,
57                                    ArrayRef<VPValue *> Operands, DebugLoc DL,
58                                    const Twine &Name = "") {
59     return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
60   }
61 
62   VPInstruction *createInstruction(unsigned Opcode,
63                                    std::initializer_list<VPValue *> Operands,
64                                    DebugLoc DL, const Twine &Name = "") {
65     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
66   }
67 
68 public:
69   VPBuilder() = default;
70   VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
71   VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); }
72   VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
73     setInsertPoint(TheBB, IP);
74   }
75 
76   /// Clear the insertion point: created instructions will not be inserted into
77   /// a block.
78   void clearInsertionPoint() {
79     BB = nullptr;
80     InsertPt = VPBasicBlock::iterator();
81   }
82 
83   VPBasicBlock *getInsertBlock() const { return BB; }
84   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
85 
86   /// Create a VPBuilder to insert after \p R.
87   static VPBuilder getToInsertAfter(VPRecipeBase *R) {
88     VPBuilder B;
89     B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
90     return B;
91   }
92 
93   /// InsertPoint - A saved insertion point.
94   class VPInsertPoint {
95     VPBasicBlock *Block = nullptr;
96     VPBasicBlock::iterator Point;
97 
98   public:
99     /// Creates a new insertion point which doesn't point to anything.
100     VPInsertPoint() = default;
101 
102     /// Creates a new insertion point at the given location.
103     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
104         : Block(InsertBlock), Point(InsertPoint) {}
105 
106     /// Returns true if this insert point is set.
107     bool isSet() const { return Block != nullptr; }
108 
109     VPBasicBlock *getBlock() const { return Block; }
110     VPBasicBlock::iterator getPoint() const { return Point; }
111   };
112 
113   /// Sets the current insert point to a previously-saved location.
114   void restoreIP(VPInsertPoint IP) {
115     if (IP.isSet())
116       setInsertPoint(IP.getBlock(), IP.getPoint());
117     else
118       clearInsertionPoint();
119   }
120 
121   /// This specifies that created VPInstructions should be appended to the end
122   /// of the specified block.
123   void setInsertPoint(VPBasicBlock *TheBB) {
124     assert(TheBB && "Attempting to set a null insert point");
125     BB = TheBB;
126     InsertPt = BB->end();
127   }
128 
129   /// This specifies that created instructions should be inserted at the
130   /// specified point.
131   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
132     BB = TheBB;
133     InsertPt = IP;
134   }
135 
136   /// This specifies that created instructions should be inserted at the
137   /// specified point.
138   void setInsertPoint(VPRecipeBase *IP) {
139     BB = IP->getParent();
140     InsertPt = IP->getIterator();
141   }
142 
143   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
144   /// its underlying Instruction.
145   VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
146                               Instruction *Inst = nullptr,
147                               const Twine &Name = "") {
148     DebugLoc DL;
149     if (Inst)
150       DL = Inst->getDebugLoc();
151     VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
152     NewVPInst->setUnderlyingValue(Inst);
153     return NewVPInst;
154   }
155   VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
156                               DebugLoc DL, const Twine &Name = "") {
157     return createInstruction(Opcode, Operands, DL, Name);
158   }
159   VPInstruction *createNaryOp(unsigned Opcode,
160                               std::initializer_list<VPValue *> Operands,
161                               std::optional<FastMathFlags> FMFs = {},
162                               DebugLoc DL = {}, const Twine &Name = "") {
163     if (FMFs)
164       return tryInsertInstruction(
165           new VPInstruction(Opcode, Operands, *FMFs, DL, Name));
166     return createInstruction(Opcode, Operands, DL, Name);
167   }
168 
169   VPInstruction *createOverflowingOp(unsigned Opcode,
170                                      std::initializer_list<VPValue *> Operands,
171                                      VPRecipeWithIRFlags::WrapFlagsTy WrapFlags,
172                                      DebugLoc DL = {}, const Twine &Name = "") {
173     return tryInsertInstruction(
174         new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
175   }
176 
177   VPValue *createNot(VPValue *Operand, DebugLoc DL = {},
178                      const Twine &Name = "") {
179     return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
180   }
181 
182   VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
183                      const Twine &Name = "") {
184     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
185   }
186 
187   VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
188                     const Twine &Name = "") {
189 
190     return tryInsertInstruction(new VPInstruction(
191         Instruction::BinaryOps::Or, {LHS, RHS},
192         VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
193   }
194 
195   VPValue *createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
196                             const Twine &Name = "") {
197     return tryInsertInstruction(
198         new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name));
199   }
200 
201   VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
202                         DebugLoc DL = {}, const Twine &Name = "",
203                         std::optional<FastMathFlags> FMFs = std::nullopt) {
204     auto *Select =
205         FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
206                                  *FMFs, DL, Name)
207              : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
208                                  DL, Name);
209     return tryInsertInstruction(Select);
210   }
211 
212   /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
213   /// and \p B.
214   /// TODO: add createFCmp when needed.
215   VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
216                       DebugLoc DL = {}, const Twine &Name = "") {
217     assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE &&
218            Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate");
219     return tryInsertInstruction(
220         new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name));
221   }
222 
223   VPInstruction *createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {},
224                               const Twine &Name = "") {
225     return tryInsertInstruction(new VPInstruction(
226         Ptr, Offset, VPRecipeWithIRFlags::GEPFlagsTy(false), DL, Name));
227   }
228   VPValue *createInBoundsPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {},
229                                 const Twine &Name = "") {
230     return tryInsertInstruction(new VPInstruction(
231         Ptr, Offset, VPRecipeWithIRFlags::GEPFlagsTy(true), DL, Name));
232   }
233 
234   VPDerivedIVRecipe *createDerivedIV(InductionDescriptor::InductionKind Kind,
235                                      FPMathOperator *FPBinOp, VPValue *Start,
236                                      VPCanonicalIVPHIRecipe *CanonicalIV,
237                                      VPValue *Step, const Twine &Name = "") {
238     return tryInsertInstruction(
239         new VPDerivedIVRecipe(Kind, FPBinOp, Start, CanonicalIV, Step, Name));
240   }
241 
242   VPScalarCastRecipe *createScalarCast(Instruction::CastOps Opcode, VPValue *Op,
243                                        Type *ResultTy) {
244     return tryInsertInstruction(new VPScalarCastRecipe(Opcode, Op, ResultTy));
245   }
246 
247   VPWidenCastRecipe *createWidenCast(Instruction::CastOps Opcode, VPValue *Op,
248                                      Type *ResultTy) {
249     return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy));
250   }
251 
252   VPScalarIVStepsRecipe *
253   createScalarIVSteps(Instruction::BinaryOps InductionOpcode,
254                       FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step) {
255     return tryInsertInstruction(new VPScalarIVStepsRecipe(
256         IV, Step, InductionOpcode,
257         FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags()));
258   }
259 
260   //===--------------------------------------------------------------------===//
261   // RAII helpers.
262   //===--------------------------------------------------------------------===//
263 
264   /// RAII object that stores the current insertion point and restores it when
265   /// the object is destroyed.
266   class InsertPointGuard {
267     VPBuilder &Builder;
268     VPBasicBlock *Block;
269     VPBasicBlock::iterator Point;
270 
271   public:
272     InsertPointGuard(VPBuilder &B)
273         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
274 
275     InsertPointGuard(const InsertPointGuard &) = delete;
276     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
277 
278     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
279   };
280 };
281 
282 /// TODO: The following VectorizationFactor was pulled out of
283 /// LoopVectorizationCostModel class. LV also deals with
284 /// VectorizerParams::VectorizationFactor.
285 /// We need to streamline them.
286 
287 /// Information about vectorization costs.
288 struct VectorizationFactor {
289   /// Vector width with best cost.
290   ElementCount Width;
291 
292   /// Cost of the loop with that width.
293   InstructionCost Cost;
294 
295   /// Cost of the scalar loop.
296   InstructionCost ScalarCost;
297 
298   /// The minimum trip count required to make vectorization profitable, e.g. due
299   /// to runtime checks.
300   ElementCount MinProfitableTripCount;
301 
302   VectorizationFactor(ElementCount Width, InstructionCost Cost,
303                       InstructionCost ScalarCost)
304       : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
305 
306   /// Width 1 means no vectorization, cost 0 means uncomputed cost.
307   static VectorizationFactor Disabled() {
308     return {ElementCount::getFixed(1), 0, 0};
309   }
310 
311   bool operator==(const VectorizationFactor &rhs) const {
312     return Width == rhs.Width && Cost == rhs.Cost;
313   }
314 
315   bool operator!=(const VectorizationFactor &rhs) const {
316     return !(*this == rhs);
317   }
318 };
319 
320 /// A class that represents two vectorization factors (initialized with 0 by
321 /// default). One for fixed-width vectorization and one for scalable
322 /// vectorization. This can be used by the vectorizer to choose from a range of
323 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
324 /// vectorize with.
325 struct FixedScalableVFPair {
326   ElementCount FixedVF;
327   ElementCount ScalableVF;
328 
329   FixedScalableVFPair()
330       : FixedVF(ElementCount::getFixed(0)),
331         ScalableVF(ElementCount::getScalable(0)) {}
332   FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
333     *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
334   }
335   FixedScalableVFPair(const ElementCount &FixedVF,
336                       const ElementCount &ScalableVF)
337       : FixedVF(FixedVF), ScalableVF(ScalableVF) {
338     assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
339            "Invalid scalable properties");
340   }
341 
342   static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
343 
344   /// \return true if either fixed- or scalable VF is non-zero.
345   explicit operator bool() const { return FixedVF || ScalableVF; }
346 
347   /// \return true if either fixed- or scalable VF is a valid vector VF.
348   bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
349 };
350 
351 /// Planner drives the vectorization process after having passed
352 /// Legality checks.
353 class LoopVectorizationPlanner {
354   /// The loop that we evaluate.
355   Loop *OrigLoop;
356 
357   /// Loop Info analysis.
358   LoopInfo *LI;
359 
360   /// The dominator tree.
361   DominatorTree *DT;
362 
363   /// Target Library Info.
364   const TargetLibraryInfo *TLI;
365 
366   /// Target Transform Info.
367   const TargetTransformInfo &TTI;
368 
369   /// The legality analysis.
370   LoopVectorizationLegality *Legal;
371 
372   /// The profitability analysis.
373   LoopVectorizationCostModel &CM;
374 
375   /// The interleaved access analysis.
376   InterleavedAccessInfo &IAI;
377 
378   PredicatedScalarEvolution &PSE;
379 
380   const LoopVectorizeHints &Hints;
381 
382   OptimizationRemarkEmitter *ORE;
383 
384   SmallVector<VPlanPtr, 4> VPlans;
385 
386   /// Profitable vector factors.
387   SmallVector<VectorizationFactor, 8> ProfitableVFs;
388 
389   /// A builder used to construct the current plan.
390   VPBuilder Builder;
391 
392   /// Computes the cost of \p Plan for vectorization factor \p VF.
393   ///
394   /// The current implementation requires access to the
395   /// LoopVectorizationLegality to handle inductions and reductions, which is
396   /// why it is kept separate from the VPlan-only cost infrastructure.
397   ///
398   /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has
399   /// been retired.
400   InstructionCost cost(VPlan &Plan, ElementCount VF) const;
401 
402   /// Precompute costs for certain instructions using the legacy cost model. The
403   /// function is used to bring up the VPlan-based cost model to initially avoid
404   /// taking different decisions due to inaccuracies in the legacy cost model.
405   InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF,
406                                   VPCostContext &CostCtx) const;
407 
408 public:
409   LoopVectorizationPlanner(
410       Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
411       const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal,
412       LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI,
413       PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints,
414       OptimizationRemarkEmitter *ORE)
415       : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
416         IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
417 
418   /// Build VPlans for the specified \p UserVF and \p UserIC if they are
419   /// non-zero or all applicable candidate VFs otherwise. If vectorization and
420   /// interleaving should be avoided up-front, no plans are generated.
421   void plan(ElementCount UserVF, unsigned UserIC);
422 
423   /// Use the VPlan-native path to plan how to best vectorize, return the best
424   /// VF and its cost.
425   VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
426 
427   /// Return the VPlan for \p VF. At the moment, there is always a single VPlan
428   /// for each VF.
429   VPlan &getPlanFor(ElementCount VF) const;
430 
431   /// Compute and return the most profitable vectorization factor. Also collect
432   /// all profitable VFs in ProfitableVFs.
433   VectorizationFactor computeBestVF();
434 
435   /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
436   /// according to the best selected \p VF and  \p UF.
437   ///
438   /// TODO: \p VectorizingEpilogue indicates if the executed VPlan is for the
439   /// epilogue vector loop. It should be removed once the re-use issue has been
440   /// fixed.
441   /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
442   /// to re-use expansion results generated during main plan execution.
443   ///
444   /// Returns a mapping of SCEVs to their expanded IR values.
445   /// Note that this is a temporary workaround needed due to the current
446   /// epilogue handling.
447   DenseMap<const SCEV *, Value *>
448   executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
449               InnerLoopVectorizer &LB, DominatorTree *DT,
450               bool VectorizingEpilogue,
451               const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
452 
453 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
454   void printPlans(raw_ostream &O);
455 #endif
456 
457   /// Look through the existing plans and return true if we have one with
458   /// vectorization factor \p VF.
459   bool hasPlanWithVF(ElementCount VF) const {
460     return any_of(VPlans,
461                   [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
462   }
463 
464   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
465   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
466   /// returned value holds for the entire \p Range.
467   static bool
468   getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
469                            VFRange &Range);
470 
471   /// \return The most profitable vectorization factor and the cost of that VF
472   /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
473   /// epilogue vectorization is not supported for the loop.
474   VectorizationFactor
475   selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
476 
477   /// Emit remarks for recipes with invalid costs in the available VPlans.
478   void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE);
479 
480 protected:
481   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
482   /// according to the information gathered by Legal when it checked if it is
483   /// legal to vectorize the loop.
484   void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
485 
486 private:
487   /// Build a VPlan according to the information gathered by Legal. \return a
488   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
489   /// exclusive, possibly decreasing \p Range.End.
490   VPlanPtr buildVPlan(VFRange &Range);
491 
492   /// Build a VPlan using VPRecipes according to the information gather by
493   /// Legal. This method is only used for the legacy inner loop vectorizer.
494   /// \p Range's largest included VF is restricted to the maximum VF the
495   /// returned VPlan is valid for. If no VPlan can be built for the input range,
496   /// set the largest included VF to the maximum VF for which no plan could be
497   /// built.
498   VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
499 
500   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
501   /// according to the information gathered by Legal when it checked if it is
502   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
503   void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
504 
505   // Adjust the recipes for reductions. For in-loop reductions the chain of
506   // instructions leading from the loop exit instr to the phi need to be
507   // converted to reductions, with one operand being vector and the other being
508   // the scalar reduction chain. For other reductions, a select is introduced
509   // between the phi and users outside the vector region when folding the tail.
510   void adjustRecipesForReductions(VPlanPtr &Plan,
511                                   VPRecipeBuilder &RecipeBuilder,
512                                   ElementCount MinVF);
513 
514 #ifndef NDEBUG
515   /// \return The most profitable vectorization factor for the available VPlans
516   /// and the cost of that VF.
517   /// This is now only used to verify the decisions by the new VPlan-based
518   /// cost-model and will be retired once the VPlan-based cost-model is
519   /// stabilized.
520   VectorizationFactor selectVectorizationFactor();
521 #endif
522 
523   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
524   /// that of B.
525   bool isMoreProfitable(const VectorizationFactor &A,
526                         const VectorizationFactor &B) const;
527 
528   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
529   /// that of B in the context of vectorizing a loop with known \p MaxTripCount.
530   bool isMoreProfitable(const VectorizationFactor &A,
531                         const VectorizationFactor &B,
532                         const unsigned MaxTripCount) const;
533 
534   /// Determines if we have the infrastructure to vectorize the loop and its
535   /// epilogue, assuming the main loop is vectorized by \p VF.
536   bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
537 };
538 
539 } // namespace llvm
540 
541 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
542