xref: /llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h (revision 4e04286d61edfb56338ca3a6d0735c5384508b00)
1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/InstructionCost.h"
30 
31 namespace llvm {
32 
33 class LoopInfo;
34 class DominatorTree;
35 class LoopVectorizationLegality;
36 class LoopVectorizationCostModel;
37 class PredicatedScalarEvolution;
38 class LoopVectorizeHints;
39 class OptimizationRemarkEmitter;
40 class TargetTransformInfo;
41 class TargetLibraryInfo;
42 class VPRecipeBuilder;
43 
44 /// VPlan-based builder utility analogous to IRBuilder.
45 class VPBuilder {
46   VPBasicBlock *BB = nullptr;
47   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
48 
49   /// Insert \p VPI in BB at InsertPt if BB is set.
50   VPInstruction *tryInsertInstruction(VPInstruction *VPI) {
51     if (BB)
52       BB->insert(VPI, InsertPt);
53     return VPI;
54   }
55 
56   VPInstruction *createInstruction(unsigned Opcode,
57                                    ArrayRef<VPValue *> Operands, DebugLoc DL,
58                                    const Twine &Name = "") {
59     return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
60   }
61 
62   VPInstruction *createInstruction(unsigned Opcode,
63                                    std::initializer_list<VPValue *> Operands,
64                                    DebugLoc DL, const Twine &Name = "") {
65     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
66   }
67 
68 public:
69   VPBuilder() = default;
70   VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
71   VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); }
72 
73   /// Clear the insertion point: created instructions will not be inserted into
74   /// a block.
75   void clearInsertionPoint() {
76     BB = nullptr;
77     InsertPt = VPBasicBlock::iterator();
78   }
79 
80   VPBasicBlock *getInsertBlock() const { return BB; }
81   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
82 
83   /// Create a VPBuilder to insert after \p R.
84   static VPBuilder getToInsertAfter(VPRecipeBase *R) {
85     VPBuilder B;
86     B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
87     return B;
88   }
89 
90   /// InsertPoint - A saved insertion point.
91   class VPInsertPoint {
92     VPBasicBlock *Block = nullptr;
93     VPBasicBlock::iterator Point;
94 
95   public:
96     /// Creates a new insertion point which doesn't point to anything.
97     VPInsertPoint() = default;
98 
99     /// Creates a new insertion point at the given location.
100     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
101         : Block(InsertBlock), Point(InsertPoint) {}
102 
103     /// Returns true if this insert point is set.
104     bool isSet() const { return Block != nullptr; }
105 
106     VPBasicBlock *getBlock() const { return Block; }
107     VPBasicBlock::iterator getPoint() const { return Point; }
108   };
109 
110   /// Sets the current insert point to a previously-saved location.
111   void restoreIP(VPInsertPoint IP) {
112     if (IP.isSet())
113       setInsertPoint(IP.getBlock(), IP.getPoint());
114     else
115       clearInsertionPoint();
116   }
117 
118   /// This specifies that created VPInstructions should be appended to the end
119   /// of the specified block.
120   void setInsertPoint(VPBasicBlock *TheBB) {
121     assert(TheBB && "Attempting to set a null insert point");
122     BB = TheBB;
123     InsertPt = BB->end();
124   }
125 
126   /// This specifies that created instructions should be inserted at the
127   /// specified point.
128   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
129     BB = TheBB;
130     InsertPt = IP;
131   }
132 
133   /// This specifies that created instructions should be inserted at the
134   /// specified point.
135   void setInsertPoint(VPRecipeBase *IP) {
136     BB = IP->getParent();
137     InsertPt = IP->getIterator();
138   }
139 
140   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
141   /// its underlying Instruction.
142   VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
143                               Instruction *Inst = nullptr,
144                               const Twine &Name = "") {
145     DebugLoc DL;
146     if (Inst)
147       DL = Inst->getDebugLoc();
148     VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
149     NewVPInst->setUnderlyingValue(Inst);
150     return NewVPInst;
151   }
152   VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
153                               DebugLoc DL, const Twine &Name = "") {
154     return createInstruction(Opcode, Operands, DL, Name);
155   }
156 
157   VPInstruction *createOverflowingOp(unsigned Opcode,
158                                      std::initializer_list<VPValue *> Operands,
159                                      VPRecipeWithIRFlags::WrapFlagsTy WrapFlags,
160                                      DebugLoc DL = {}, const Twine &Name = "") {
161     return tryInsertInstruction(
162         new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
163   }
164   VPValue *createNot(VPValue *Operand, DebugLoc DL = {},
165                      const Twine &Name = "") {
166     return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
167   }
168 
169   VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
170                      const Twine &Name = "") {
171     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
172   }
173 
174   VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
175                     const Twine &Name = "") {
176 
177     return tryInsertInstruction(new VPInstruction(
178         Instruction::BinaryOps::Or, {LHS, RHS},
179         VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
180   }
181 
182   VPValue *createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
183                             const Twine &Name = "") {
184     return tryInsertInstruction(
185         new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name));
186   }
187 
188   VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
189                         DebugLoc DL = {}, const Twine &Name = "",
190                         std::optional<FastMathFlags> FMFs = std::nullopt) {
191     auto *Select =
192         FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
193                                  *FMFs, DL, Name)
194              : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
195                                  DL, Name);
196     return tryInsertInstruction(Select);
197   }
198 
199   /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
200   /// and \p B.
201   /// TODO: add createFCmp when needed.
202   VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
203                       DebugLoc DL = {}, const Twine &Name = "");
204 
205   //===--------------------------------------------------------------------===//
206   // RAII helpers.
207   //===--------------------------------------------------------------------===//
208 
209   /// RAII object that stores the current insertion point and restores it when
210   /// the object is destroyed.
211   class InsertPointGuard {
212     VPBuilder &Builder;
213     VPBasicBlock *Block;
214     VPBasicBlock::iterator Point;
215 
216   public:
217     InsertPointGuard(VPBuilder &B)
218         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
219 
220     InsertPointGuard(const InsertPointGuard &) = delete;
221     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
222 
223     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
224   };
225 };
226 
227 /// TODO: The following VectorizationFactor was pulled out of
228 /// LoopVectorizationCostModel class. LV also deals with
229 /// VectorizerParams::VectorizationFactor.
230 /// We need to streamline them.
231 
232 /// Information about vectorization costs.
233 struct VectorizationFactor {
234   /// Vector width with best cost.
235   ElementCount Width;
236 
237   /// Cost of the loop with that width.
238   InstructionCost Cost;
239 
240   /// Cost of the scalar loop.
241   InstructionCost ScalarCost;
242 
243   /// The minimum trip count required to make vectorization profitable, e.g. due
244   /// to runtime checks.
245   ElementCount MinProfitableTripCount;
246 
247   VectorizationFactor(ElementCount Width, InstructionCost Cost,
248                       InstructionCost ScalarCost)
249       : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
250 
251   /// Width 1 means no vectorization, cost 0 means uncomputed cost.
252   static VectorizationFactor Disabled() {
253     return {ElementCount::getFixed(1), 0, 0};
254   }
255 
256   bool operator==(const VectorizationFactor &rhs) const {
257     return Width == rhs.Width && Cost == rhs.Cost;
258   }
259 
260   bool operator!=(const VectorizationFactor &rhs) const {
261     return !(*this == rhs);
262   }
263 };
264 
265 /// A class that represents two vectorization factors (initialized with 0 by
266 /// default). One for fixed-width vectorization and one for scalable
267 /// vectorization. This can be used by the vectorizer to choose from a range of
268 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
269 /// vectorize with.
270 struct FixedScalableVFPair {
271   ElementCount FixedVF;
272   ElementCount ScalableVF;
273 
274   FixedScalableVFPair()
275       : FixedVF(ElementCount::getFixed(0)),
276         ScalableVF(ElementCount::getScalable(0)) {}
277   FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
278     *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
279   }
280   FixedScalableVFPair(const ElementCount &FixedVF,
281                       const ElementCount &ScalableVF)
282       : FixedVF(FixedVF), ScalableVF(ScalableVF) {
283     assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
284            "Invalid scalable properties");
285   }
286 
287   static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
288 
289   /// \return true if either fixed- or scalable VF is non-zero.
290   explicit operator bool() const { return FixedVF || ScalableVF; }
291 
292   /// \return true if either fixed- or scalable VF is a valid vector VF.
293   bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
294 };
295 
296 /// Planner drives the vectorization process after having passed
297 /// Legality checks.
298 class LoopVectorizationPlanner {
299   /// The loop that we evaluate.
300   Loop *OrigLoop;
301 
302   /// Loop Info analysis.
303   LoopInfo *LI;
304 
305   /// The dominator tree.
306   DominatorTree *DT;
307 
308   /// Target Library Info.
309   const TargetLibraryInfo *TLI;
310 
311   /// Target Transform Info.
312   const TargetTransformInfo &TTI;
313 
314   /// The legality analysis.
315   LoopVectorizationLegality *Legal;
316 
317   /// The profitability analysis.
318   LoopVectorizationCostModel &CM;
319 
320   /// The interleaved access analysis.
321   InterleavedAccessInfo &IAI;
322 
323   PredicatedScalarEvolution &PSE;
324 
325   const LoopVectorizeHints &Hints;
326 
327   OptimizationRemarkEmitter *ORE;
328 
329   SmallVector<VPlanPtr, 4> VPlans;
330 
331   /// Profitable vector factors.
332   SmallVector<VectorizationFactor, 8> ProfitableVFs;
333 
334   /// A builder used to construct the current plan.
335   VPBuilder Builder;
336 
337   /// Computes the cost of \p Plan for vectorization factor \p VF.
338   ///
339   /// The current implementation requires access to the
340   /// LoopVectorizationLegality to handle inductions and reductions, which is
341   /// why it is kept separate from the VPlan-only cost infrastructure.
342   ///
343   /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has
344   /// been retired.
345   InstructionCost cost(VPlan &Plan, ElementCount VF) const;
346 
347 public:
348   LoopVectorizationPlanner(
349       Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
350       const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal,
351       LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI,
352       PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints,
353       OptimizationRemarkEmitter *ORE)
354       : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
355         IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
356 
357   /// Build VPlans for the specified \p UserVF and \p UserIC if they are
358   /// non-zero or all applicable candidate VFs otherwise. If vectorization and
359   /// interleaving should be avoided up-front, no plans are generated.
360   void plan(ElementCount UserVF, unsigned UserIC);
361 
362   /// Use the VPlan-native path to plan how to best vectorize, return the best
363   /// VF and its cost.
364   VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
365 
366   /// Return the VPlan for \p VF. At the moment, there is always a single VPlan
367   /// for each VF.
368   VPlan &getPlanFor(ElementCount VF) const;
369 
370   /// Compute and return the most profitable vectorization factor. Also collect
371   /// all profitable VFs in ProfitableVFs.
372   VectorizationFactor computeBestVF();
373 
374   /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
375   /// according to the best selected \p VF and  \p UF.
376   ///
377   /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
378   /// vectorization re-using plans for both the main and epilogue vector loops.
379   /// It should be removed once the re-use issue has been fixed.
380   /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
381   /// to re-use expansion results generated during main plan execution.
382   ///
383   /// Returns a mapping of SCEVs to their expanded IR values and a mapping for
384   /// the reduction resume values. Note that this is a temporary workaround
385   /// needed due to the current epilogue handling.
386   std::pair<DenseMap<const SCEV *, Value *>,
387             DenseMap<const RecurrenceDescriptor *, Value *>>
388   executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
389               InnerLoopVectorizer &LB, DominatorTree *DT,
390               bool IsEpilogueVectorization,
391               const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
392 
393 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
394   void printPlans(raw_ostream &O);
395 #endif
396 
397   /// Look through the existing plans and return true if we have one with
398   /// vectorization factor \p VF.
399   bool hasPlanWithVF(ElementCount VF) const {
400     return any_of(VPlans,
401                   [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
402   }
403 
404   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
405   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
406   /// returned value holds for the entire \p Range.
407   static bool
408   getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
409                            VFRange &Range);
410 
411   /// \return The most profitable vectorization factor and the cost of that VF
412   /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
413   /// epilogue vectorization is not supported for the loop.
414   VectorizationFactor
415   selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
416 
417   /// Emit remarks for recipes with invalid costs in the available VPlans.
418   void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE);
419 
420 protected:
421   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
422   /// according to the information gathered by Legal when it checked if it is
423   /// legal to vectorize the loop.
424   void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
425 
426 private:
427   /// Build a VPlan according to the information gathered by Legal. \return a
428   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
429   /// exclusive, possibly decreasing \p Range.End.
430   VPlanPtr buildVPlan(VFRange &Range);
431 
432   /// Build a VPlan using VPRecipes according to the information gather by
433   /// Legal. This method is only used for the legacy inner loop vectorizer.
434   /// \p Range's largest included VF is restricted to the maximum VF the
435   /// returned VPlan is valid for. If no VPlan can be built for the input range,
436   /// set the largest included VF to the maximum VF for which no plan could be
437   /// built.
438   VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
439 
440   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
441   /// according to the information gathered by Legal when it checked if it is
442   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
443   void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
444 
445   // Adjust the recipes for reductions. For in-loop reductions the chain of
446   // instructions leading from the loop exit instr to the phi need to be
447   // converted to reductions, with one operand being vector and the other being
448   // the scalar reduction chain. For other reductions, a select is introduced
449   // between the phi and live-out recipes when folding the tail.
450   void adjustRecipesForReductions(VPlanPtr &Plan,
451                                   VPRecipeBuilder &RecipeBuilder,
452                                   ElementCount MinVF);
453 
454 #ifndef NDEBUG
455   /// \return The most profitable vectorization factor for the available VPlans
456   /// and the cost of that VF.
457   /// This is now only used to verify the decisions by the new VPlan-based
458   /// cost-model and will be retired once the VPlan-based cost-model is
459   /// stabilized.
460   VectorizationFactor selectVectorizationFactor();
461 #endif
462 
463   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
464   /// that of B.
465   bool isMoreProfitable(const VectorizationFactor &A,
466                         const VectorizationFactor &B) const;
467 
468   /// Determines if we have the infrastructure to vectorize the loop and its
469   /// epilogue, assuming the main loop is vectorized by \p VF.
470   bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
471 };
472 
473 } // namespace llvm
474 
475 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
476