1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/Support/InstructionCost.h" 30 31 namespace llvm { 32 33 class LoopInfo; 34 class DominatorTree; 35 class LoopVectorizationLegality; 36 class LoopVectorizationCostModel; 37 class PredicatedScalarEvolution; 38 class LoopVectorizeHints; 39 class OptimizationRemarkEmitter; 40 class TargetTransformInfo; 41 class TargetLibraryInfo; 42 class VPRecipeBuilder; 43 44 /// VPlan-based builder utility analogous to IRBuilder. 45 class VPBuilder { 46 VPBasicBlock *BB = nullptr; 47 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 48 49 /// Insert \p VPI in BB at InsertPt if BB is set. 50 template <typename T> T *tryInsertInstruction(T *R) { 51 if (BB) 52 BB->insert(R, InsertPt); 53 return R; 54 } 55 56 VPInstruction *createInstruction(unsigned Opcode, 57 ArrayRef<VPValue *> Operands, DebugLoc DL, 58 const Twine &Name = "") { 59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name)); 60 } 61 62 VPInstruction *createInstruction(unsigned Opcode, 63 std::initializer_list<VPValue *> Operands, 64 DebugLoc DL, const Twine &Name = "") { 65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name); 66 } 67 68 public: 69 VPBuilder() = default; 70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); } 71 VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); } 72 VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 73 setInsertPoint(TheBB, IP); 74 } 75 76 /// Clear the insertion point: created instructions will not be inserted into 77 /// a block. 78 void clearInsertionPoint() { 79 BB = nullptr; 80 InsertPt = VPBasicBlock::iterator(); 81 } 82 83 VPBasicBlock *getInsertBlock() const { return BB; } 84 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 85 86 /// Create a VPBuilder to insert after \p R. 87 static VPBuilder getToInsertAfter(VPRecipeBase *R) { 88 VPBuilder B; 89 B.setInsertPoint(R->getParent(), std::next(R->getIterator())); 90 return B; 91 } 92 93 /// InsertPoint - A saved insertion point. 94 class VPInsertPoint { 95 VPBasicBlock *Block = nullptr; 96 VPBasicBlock::iterator Point; 97 98 public: 99 /// Creates a new insertion point which doesn't point to anything. 100 VPInsertPoint() = default; 101 102 /// Creates a new insertion point at the given location. 103 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 104 : Block(InsertBlock), Point(InsertPoint) {} 105 106 /// Returns true if this insert point is set. 107 bool isSet() const { return Block != nullptr; } 108 109 VPBasicBlock *getBlock() const { return Block; } 110 VPBasicBlock::iterator getPoint() const { return Point; } 111 }; 112 113 /// Sets the current insert point to a previously-saved location. 114 void restoreIP(VPInsertPoint IP) { 115 if (IP.isSet()) 116 setInsertPoint(IP.getBlock(), IP.getPoint()); 117 else 118 clearInsertionPoint(); 119 } 120 121 /// This specifies that created VPInstructions should be appended to the end 122 /// of the specified block. 123 void setInsertPoint(VPBasicBlock *TheBB) { 124 assert(TheBB && "Attempting to set a null insert point"); 125 BB = TheBB; 126 InsertPt = BB->end(); 127 } 128 129 /// This specifies that created instructions should be inserted at the 130 /// specified point. 131 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 132 BB = TheBB; 133 InsertPt = IP; 134 } 135 136 /// This specifies that created instructions should be inserted at the 137 /// specified point. 138 void setInsertPoint(VPRecipeBase *IP) { 139 BB = IP->getParent(); 140 InsertPt = IP->getIterator(); 141 } 142 143 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 144 /// its underlying Instruction. 145 VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 146 Instruction *Inst = nullptr, 147 const Twine &Name = "") { 148 DebugLoc DL; 149 if (Inst) 150 DL = Inst->getDebugLoc(); 151 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name); 152 NewVPInst->setUnderlyingValue(Inst); 153 return NewVPInst; 154 } 155 VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 156 DebugLoc DL, const Twine &Name = "") { 157 return createInstruction(Opcode, Operands, DL, Name); 158 } 159 VPInstruction *createNaryOp(unsigned Opcode, 160 std::initializer_list<VPValue *> Operands, 161 std::optional<FastMathFlags> FMFs = {}, 162 DebugLoc DL = {}, const Twine &Name = "") { 163 if (FMFs) 164 return tryInsertInstruction( 165 new VPInstruction(Opcode, Operands, *FMFs, DL, Name)); 166 return createInstruction(Opcode, Operands, DL, Name); 167 } 168 169 VPInstruction *createOverflowingOp(unsigned Opcode, 170 std::initializer_list<VPValue *> Operands, 171 VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, 172 DebugLoc DL = {}, const Twine &Name = "") { 173 return tryInsertInstruction( 174 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name)); 175 } 176 177 VPValue *createNot(VPValue *Operand, DebugLoc DL = {}, 178 const Twine &Name = "") { 179 return createInstruction(VPInstruction::Not, {Operand}, DL, Name); 180 } 181 182 VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 183 const Twine &Name = "") { 184 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name); 185 } 186 187 VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 188 const Twine &Name = "") { 189 190 return tryInsertInstruction(new VPInstruction( 191 Instruction::BinaryOps::Or, {LHS, RHS}, 192 VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name)); 193 } 194 195 VPValue *createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {}, 196 const Twine &Name = "") { 197 return tryInsertInstruction( 198 new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name)); 199 } 200 201 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, 202 DebugLoc DL = {}, const Twine &Name = "", 203 std::optional<FastMathFlags> FMFs = std::nullopt) { 204 auto *Select = 205 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 206 *FMFs, DL, Name) 207 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal}, 208 DL, Name); 209 return tryInsertInstruction(Select); 210 } 211 212 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A 213 /// and \p B. 214 /// TODO: add createFCmp when needed. 215 VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, 216 DebugLoc DL = {}, const Twine &Name = "") { 217 assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE && 218 Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate"); 219 return tryInsertInstruction( 220 new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name)); 221 } 222 223 VPInstruction *createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL, 224 const Twine &Name = "") { 225 return createInstruction(VPInstruction::PtrAdd, {Ptr, Offset}, DL, Name); 226 } 227 228 VPDerivedIVRecipe *createDerivedIV(InductionDescriptor::InductionKind Kind, 229 FPMathOperator *FPBinOp, VPValue *Start, 230 VPCanonicalIVPHIRecipe *CanonicalIV, 231 VPValue *Step) { 232 return tryInsertInstruction( 233 new VPDerivedIVRecipe(Kind, FPBinOp, Start, CanonicalIV, Step)); 234 } 235 236 VPScalarCastRecipe *createScalarCast(Instruction::CastOps Opcode, VPValue *Op, 237 Type *ResultTy) { 238 return tryInsertInstruction(new VPScalarCastRecipe(Opcode, Op, ResultTy)); 239 } 240 241 VPWidenCastRecipe *createWidenCast(Instruction::CastOps Opcode, VPValue *Op, 242 Type *ResultTy) { 243 return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy)); 244 } 245 246 VPScalarIVStepsRecipe * 247 createScalarIVSteps(Instruction::BinaryOps InductionOpcode, 248 FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step) { 249 return tryInsertInstruction(new VPScalarIVStepsRecipe( 250 IV, Step, InductionOpcode, 251 FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags())); 252 } 253 254 //===--------------------------------------------------------------------===// 255 // RAII helpers. 256 //===--------------------------------------------------------------------===// 257 258 /// RAII object that stores the current insertion point and restores it when 259 /// the object is destroyed. 260 class InsertPointGuard { 261 VPBuilder &Builder; 262 VPBasicBlock *Block; 263 VPBasicBlock::iterator Point; 264 265 public: 266 InsertPointGuard(VPBuilder &B) 267 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 268 269 InsertPointGuard(const InsertPointGuard &) = delete; 270 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 271 272 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 273 }; 274 }; 275 276 /// TODO: The following VectorizationFactor was pulled out of 277 /// LoopVectorizationCostModel class. LV also deals with 278 /// VectorizerParams::VectorizationFactor. 279 /// We need to streamline them. 280 281 /// Information about vectorization costs. 282 struct VectorizationFactor { 283 /// Vector width with best cost. 284 ElementCount Width; 285 286 /// Cost of the loop with that width. 287 InstructionCost Cost; 288 289 /// Cost of the scalar loop. 290 InstructionCost ScalarCost; 291 292 /// The minimum trip count required to make vectorization profitable, e.g. due 293 /// to runtime checks. 294 ElementCount MinProfitableTripCount; 295 296 VectorizationFactor(ElementCount Width, InstructionCost Cost, 297 InstructionCost ScalarCost) 298 : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {} 299 300 /// Width 1 means no vectorization, cost 0 means uncomputed cost. 301 static VectorizationFactor Disabled() { 302 return {ElementCount::getFixed(1), 0, 0}; 303 } 304 305 bool operator==(const VectorizationFactor &rhs) const { 306 return Width == rhs.Width && Cost == rhs.Cost; 307 } 308 309 bool operator!=(const VectorizationFactor &rhs) const { 310 return !(*this == rhs); 311 } 312 }; 313 314 /// A class that represents two vectorization factors (initialized with 0 by 315 /// default). One for fixed-width vectorization and one for scalable 316 /// vectorization. This can be used by the vectorizer to choose from a range of 317 /// fixed and/or scalable VFs in order to find the most cost-effective VF to 318 /// vectorize with. 319 struct FixedScalableVFPair { 320 ElementCount FixedVF; 321 ElementCount ScalableVF; 322 323 FixedScalableVFPair() 324 : FixedVF(ElementCount::getFixed(0)), 325 ScalableVF(ElementCount::getScalable(0)) {} 326 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { 327 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; 328 } 329 FixedScalableVFPair(const ElementCount &FixedVF, 330 const ElementCount &ScalableVF) 331 : FixedVF(FixedVF), ScalableVF(ScalableVF) { 332 assert(!FixedVF.isScalable() && ScalableVF.isScalable() && 333 "Invalid scalable properties"); 334 } 335 336 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } 337 338 /// \return true if either fixed- or scalable VF is non-zero. 339 explicit operator bool() const { return FixedVF || ScalableVF; } 340 341 /// \return true if either fixed- or scalable VF is a valid vector VF. 342 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } 343 }; 344 345 /// Planner drives the vectorization process after having passed 346 /// Legality checks. 347 class LoopVectorizationPlanner { 348 /// The loop that we evaluate. 349 Loop *OrigLoop; 350 351 /// Loop Info analysis. 352 LoopInfo *LI; 353 354 /// The dominator tree. 355 DominatorTree *DT; 356 357 /// Target Library Info. 358 const TargetLibraryInfo *TLI; 359 360 /// Target Transform Info. 361 const TargetTransformInfo &TTI; 362 363 /// The legality analysis. 364 LoopVectorizationLegality *Legal; 365 366 /// The profitability analysis. 367 LoopVectorizationCostModel &CM; 368 369 /// The interleaved access analysis. 370 InterleavedAccessInfo &IAI; 371 372 PredicatedScalarEvolution &PSE; 373 374 const LoopVectorizeHints &Hints; 375 376 OptimizationRemarkEmitter *ORE; 377 378 SmallVector<VPlanPtr, 4> VPlans; 379 380 /// Profitable vector factors. 381 SmallVector<VectorizationFactor, 8> ProfitableVFs; 382 383 /// A builder used to construct the current plan. 384 VPBuilder Builder; 385 386 /// Computes the cost of \p Plan for vectorization factor \p VF. 387 /// 388 /// The current implementation requires access to the 389 /// LoopVectorizationLegality to handle inductions and reductions, which is 390 /// why it is kept separate from the VPlan-only cost infrastructure. 391 /// 392 /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has 393 /// been retired. 394 InstructionCost cost(VPlan &Plan, ElementCount VF) const; 395 396 /// Precompute costs for certain instructions using the legacy cost model. The 397 /// function is used to bring up the VPlan-based cost model to initially avoid 398 /// taking different decisions due to inaccuracies in the legacy cost model. 399 InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF, 400 VPCostContext &CostCtx) const; 401 402 public: 403 LoopVectorizationPlanner( 404 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 405 const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, 406 LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, 407 PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, 408 OptimizationRemarkEmitter *ORE) 409 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), 410 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {} 411 412 /// Build VPlans for the specified \p UserVF and \p UserIC if they are 413 /// non-zero or all applicable candidate VFs otherwise. If vectorization and 414 /// interleaving should be avoided up-front, no plans are generated. 415 void plan(ElementCount UserVF, unsigned UserIC); 416 417 /// Use the VPlan-native path to plan how to best vectorize, return the best 418 /// VF and its cost. 419 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 420 421 /// Return the VPlan for \p VF. At the moment, there is always a single VPlan 422 /// for each VF. 423 VPlan &getPlanFor(ElementCount VF) const; 424 425 /// Compute and return the most profitable vectorization factor. Also collect 426 /// all profitable VFs in ProfitableVFs. 427 VectorizationFactor computeBestVF(); 428 429 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan 430 /// according to the best selected \p VF and \p UF. 431 /// 432 /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue 433 /// vectorization re-using plans for both the main and epilogue vector loops. 434 /// It should be removed once the re-use issue has been fixed. 435 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop 436 /// to re-use expansion results generated during main plan execution. 437 /// 438 /// Returns a mapping of SCEVs to their expanded IR values. 439 /// Note that this is a temporary workaround needed due to the current 440 /// epilogue handling. 441 DenseMap<const SCEV *, Value *> 442 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, 443 InnerLoopVectorizer &LB, DominatorTree *DT, 444 bool IsEpilogueVectorization, 445 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr); 446 447 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 448 void printPlans(raw_ostream &O); 449 #endif 450 451 /// Look through the existing plans and return true if we have one with 452 /// vectorization factor \p VF. 453 bool hasPlanWithVF(ElementCount VF) const { 454 return any_of(VPlans, 455 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); 456 } 457 458 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 459 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 460 /// returned value holds for the entire \p Range. 461 static bool 462 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 463 VFRange &Range); 464 465 /// \return The most profitable vectorization factor and the cost of that VF 466 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if 467 /// epilogue vectorization is not supported for the loop. 468 VectorizationFactor 469 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC); 470 471 /// Emit remarks for recipes with invalid costs in the available VPlans. 472 void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE); 473 474 protected: 475 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 476 /// according to the information gathered by Legal when it checked if it is 477 /// legal to vectorize the loop. 478 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 479 480 private: 481 /// Build a VPlan according to the information gathered by Legal. \return a 482 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 483 /// exclusive, possibly decreasing \p Range.End. 484 VPlanPtr buildVPlan(VFRange &Range); 485 486 /// Build a VPlan using VPRecipes according to the information gather by 487 /// Legal. This method is only used for the legacy inner loop vectorizer. 488 /// \p Range's largest included VF is restricted to the maximum VF the 489 /// returned VPlan is valid for. If no VPlan can be built for the input range, 490 /// set the largest included VF to the maximum VF for which no plan could be 491 /// built. 492 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range); 493 494 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 495 /// according to the information gathered by Legal when it checked if it is 496 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 497 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 498 499 // Adjust the recipes for reductions. For in-loop reductions the chain of 500 // instructions leading from the loop exit instr to the phi need to be 501 // converted to reductions, with one operand being vector and the other being 502 // the scalar reduction chain. For other reductions, a select is introduced 503 // between the phi and live-out recipes when folding the tail. 504 void adjustRecipesForReductions(VPlanPtr &Plan, 505 VPRecipeBuilder &RecipeBuilder, 506 ElementCount MinVF); 507 508 #ifndef NDEBUG 509 /// \return The most profitable vectorization factor for the available VPlans 510 /// and the cost of that VF. 511 /// This is now only used to verify the decisions by the new VPlan-based 512 /// cost-model and will be retired once the VPlan-based cost-model is 513 /// stabilized. 514 VectorizationFactor selectVectorizationFactor(); 515 #endif 516 517 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 518 /// that of B. 519 bool isMoreProfitable(const VectorizationFactor &A, 520 const VectorizationFactor &B) const; 521 522 /// Determines if we have the infrastructure to vectorize the loop and its 523 /// epilogue, assuming the main loop is vectorized by \p VF. 524 bool isCandidateForEpilogueVectorization(const ElementCount VF) const; 525 }; 526 527 } // namespace llvm 528 529 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 530