xref: /llvm-project/llvm/lib/Transforms/Utils/UnifyLoopExits.cpp (revision 5f6172f0684b6a224d207ff8d093fc9aad92e331)
1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
12 //
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 //             (the "br" instruction). The presence of any other control flow
15 //             such as indirectbr, switch or callbr will cause an assert.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/DomTreeUpdater.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/Utils.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/ControlFlowUtils.h"
30 
31 #define DEBUG_TYPE "unify-loop-exits"
32 
33 using namespace llvm;
34 
35 static cl::opt<unsigned> MaxBooleansInControlFlowHub(
36     "max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden,
37     cl::desc("Set the maximum number of outgoing blocks for using a boolean "
38              "value to record the exiting block in the ControlFlowHub."));
39 
40 namespace {
41 struct UnifyLoopExitsLegacyPass : public FunctionPass {
42   static char ID;
43   UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
44     initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
45   }
46 
47   void getAnalysisUsage(AnalysisUsage &AU) const override {
48     AU.addRequired<LoopInfoWrapperPass>();
49     AU.addRequired<DominatorTreeWrapperPass>();
50     AU.addPreserved<LoopInfoWrapperPass>();
51     AU.addPreserved<DominatorTreeWrapperPass>();
52   }
53 
54   bool runOnFunction(Function &F) override;
55 };
56 } // namespace
57 
58 char UnifyLoopExitsLegacyPass::ID = 0;
59 
60 FunctionPass *llvm::createUnifyLoopExitsPass() {
61   return new UnifyLoopExitsLegacyPass();
62 }
63 
64 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
65                       "Fixup each natural loop to have a single exit block",
66                       false /* Only looks at CFG */, false /* Analysis Pass */)
67 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
68 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
69 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
70                     "Fixup each natural loop to have a single exit block",
71                     false /* Only looks at CFG */, false /* Analysis Pass */)
72 
73 // The current transform introduces new control flow paths which may break the
74 // SSA requirement that every def must dominate all its uses. For example,
75 // consider a value D defined inside the loop that is used by some instruction
76 // U outside the loop. It follows that D dominates U, since the original
77 // program has valid SSA form. After merging the exits, all paths from D to U
78 // now flow through the unified exit block. In addition, there may be other
79 // paths that do not pass through D, but now reach the unified exit
80 // block. Thus, D no longer dominates U.
81 //
82 // Restore the dominance by creating a phi for each such D at the new unified
83 // loop exit. But when doing this, ignore any uses U that are in the new unified
84 // loop exit, since those were introduced specially when the block was created.
85 //
86 // The use of SSAUpdater seems like overkill for this operation. The location
87 // for creating the new PHI is well-known, and also the set of incoming blocks
88 // to the new PHI.
89 static void restoreSSA(const DominatorTree &DT, const Loop *L,
90                        SmallVectorImpl<BasicBlock *> &Incoming,
91                        BasicBlock *LoopExitBlock) {
92   using InstVector = SmallVector<Instruction *, 8>;
93   using IIMap = MapVector<Instruction *, InstVector>;
94   IIMap ExternalUsers;
95   for (auto *BB : L->blocks()) {
96     for (auto &I : *BB) {
97       for (auto &U : I.uses()) {
98         auto UserInst = cast<Instruction>(U.getUser());
99         auto UserBlock = UserInst->getParent();
100         if (UserBlock == LoopExitBlock)
101           continue;
102         if (L->contains(UserBlock))
103           continue;
104         LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
105                           << BB->getName() << ")"
106                           << ": " << UserInst->getName() << "("
107                           << UserBlock->getName() << ")"
108                           << "\n");
109         ExternalUsers[&I].push_back(UserInst);
110       }
111     }
112   }
113 
114   for (const auto &II : ExternalUsers) {
115     // For each Def used outside the loop, create NewPhi in
116     // LoopExitBlock. NewPhi receives Def only along exiting blocks that
117     // dominate it, while the remaining values are undefined since those paths
118     // didn't exist in the original CFG.
119     auto Def = II.first;
120     LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
121     auto NewPhi =
122         PHINode::Create(Def->getType(), Incoming.size(),
123                         Def->getName() + ".moved", LoopExitBlock->begin());
124     for (auto *In : Incoming) {
125       LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
126       if (Def->getParent() == In || DT.dominates(Def, In)) {
127         LLVM_DEBUG(dbgs() << "dominated\n");
128         NewPhi->addIncoming(Def, In);
129       } else {
130         LLVM_DEBUG(dbgs() << "not dominated\n");
131         NewPhi->addIncoming(PoisonValue::get(Def->getType()), In);
132       }
133     }
134 
135     LLVM_DEBUG(dbgs() << "external users:");
136     for (auto *U : II.second) {
137       LLVM_DEBUG(dbgs() << " " << U->getName());
138       U->replaceUsesOfWith(Def, NewPhi);
139     }
140     LLVM_DEBUG(dbgs() << "\n");
141   }
142 }
143 
144 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
145   // To unify the loop exits, we need a list of the exiting blocks as
146   // well as exit blocks. The functions for locating these lists both
147   // traverse the entire loop body. It is more efficient to first
148   // locate the exiting blocks and then examine their successors to
149   // locate the exit blocks.
150   SmallVector<BasicBlock *, 8> ExitingBlocks;
151   L->getExitingBlocks(ExitingBlocks);
152 
153   // Redirect exiting edges through a control flow hub.
154   ControlFlowHub CHub;
155   for (auto *BB : ExitingBlocks) {
156     auto *Branch = cast<BranchInst>(BB->getTerminator());
157     BasicBlock *Succ0 = Branch->getSuccessor(0);
158     Succ0 = L->contains(Succ0) ? nullptr : Succ0;
159 
160     BasicBlock *Succ1 =
161         Branch->isUnconditional() ? nullptr : Branch->getSuccessor(1);
162     Succ1 = L->contains(Succ1) ? nullptr : Succ1;
163     CHub.addBranch(BB, Succ0, Succ1);
164 
165     LLVM_DEBUG(dbgs() << "Added exiting branch: " << BB->getName() << " -> {"
166                       << (Succ0 ? Succ0->getName() : "<none>") << ", "
167                       << (Succ1 ? Succ1->getName() : "<none>") << "}\n");
168   }
169 
170   SmallVector<BasicBlock *, 8> GuardBlocks;
171   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
172   BasicBlock *LoopExitBlock = CHub.finalize(
173       &DTU, GuardBlocks, "loop.exit", MaxBooleansInControlFlowHub.getValue());
174 
175   restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
176 
177 #if defined(EXPENSIVE_CHECKS)
178   assert(DT.verify(DominatorTree::VerificationLevel::Full));
179 #else
180   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
181 #endif // EXPENSIVE_CHECKS
182   L->verifyLoop();
183 
184   // The guard blocks were created outside the loop, so they need to become
185   // members of the parent loop.
186   if (auto ParentLoop = L->getParentLoop()) {
187     for (auto *G : GuardBlocks) {
188       ParentLoop->addBasicBlockToLoop(G, LI);
189     }
190     ParentLoop->verifyLoop();
191   }
192 
193 #if defined(EXPENSIVE_CHECKS)
194   LI.verify(DT);
195 #endif // EXPENSIVE_CHECKS
196 
197   return true;
198 }
199 
200 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
201 
202   bool Changed = false;
203   auto Loops = LI.getLoopsInPreorder();
204   for (auto *L : Loops) {
205     LLVM_DEBUG(dbgs() << "Processing loop:\n"; L->print(dbgs()));
206     Changed |= unifyLoopExits(DT, LI, L);
207   }
208   return Changed;
209 }
210 
211 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
212   LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
213                     << "\n");
214   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
215   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
216 
217   assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
218 
219   return runImpl(LI, DT);
220 }
221 
222 namespace llvm {
223 
224 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
225                                           FunctionAnalysisManager &AM) {
226   LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
227                     << "\n");
228   auto &LI = AM.getResult<LoopAnalysis>(F);
229   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
230 
231   if (!runImpl(LI, DT))
232     return PreservedAnalyses::all();
233   PreservedAnalyses PA;
234   PA.preserve<LoopAnalysis>();
235   PA.preserve<DominatorTreeAnalysis>();
236   return PA;
237 }
238 } // namespace llvm
239