xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision cfa582e8aaa791b52110791f5e6504121aaf62bf)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
39 
40 #include <cmath>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 // Enable conversion of operator new calls with a MemProf hot or cold hint
52 // to an operator new call that takes a hot/cold hint. Off by default since
53 // not all allocators currently support this extension.
54 static cl::opt<bool>
55     OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false),
56                        cl::desc("Enable hot/cold operator new library calls"));
57 static cl::opt<bool> OptimizeExistingHotColdNew(
58     "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false),
59     cl::desc(
60         "Enable optimization of existing hot/cold operator new library calls"));
61 
62 namespace {
63 
64 // Specialized parser to ensure the hint is an 8 bit value (we can't specify
65 // uint8_t to opt<> as that is interpreted to mean that we are passing a char
66 // option with a specific set of values.
67 struct HotColdHintParser : public cl::parser<unsigned> {
68   HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {}
69 
70   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
71     if (Arg.getAsInteger(0, Value))
72       return O.error("'" + Arg + "' value invalid for uint argument!");
73 
74     if (Value > 255)
75       return O.error("'" + Arg + "' value must be in the range [0, 255]!");
76 
77     return false;
78   }
79 };
80 
81 } // end anonymous namespace
82 
83 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
84 // and 255 is the hottest. Default to 1 value away from the coldest and hottest
85 // hints, so that the compiler hinted allocations are slightly less strong than
86 // manually inserted hints at the two extremes.
87 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue(
88     "cold-new-hint-value", cl::Hidden, cl::init(1),
89     cl::desc("Value to pass to hot/cold operator new for cold allocation"));
90 static cl::opt<unsigned, false, HotColdHintParser>
91     NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128),
92                         cl::desc("Value to pass to hot/cold operator new for "
93                                  "notcold (warm) allocation"));
94 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue(
95     "hot-new-hint-value", cl::Hidden, cl::init(254),
96     cl::desc("Value to pass to hot/cold operator new for hot allocation"));
97 
98 //===----------------------------------------------------------------------===//
99 // Helper Functions
100 //===----------------------------------------------------------------------===//
101 
102 static bool ignoreCallingConv(LibFunc Func) {
103   return Func == LibFunc_abs || Func == LibFunc_labs ||
104          Func == LibFunc_llabs || Func == LibFunc_strlen;
105 }
106 
107 /// Return true if it is only used in equality comparisons with With.
108 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (IC->isEquality() && IC->getOperand(1) == With)
112         continue;
113     // Unknown instruction.
114     return false;
115   }
116   return true;
117 }
118 
119 static bool callHasFloatingPointArgument(const CallInst *CI) {
120   return any_of(CI->operands(), [](const Use &OI) {
121     return OI->getType()->isFloatingPointTy();
122   });
123 }
124 
125 static bool callHasFP128Argument(const CallInst *CI) {
126   return any_of(CI->operands(), [](const Use &OI) {
127     return OI->getType()->isFP128Ty();
128   });
129 }
130 
131 // Convert the entire string Str representing an integer in Base, up to
132 // the terminating nul if present, to a constant according to the rules
133 // of strtoul[l] or, when AsSigned is set, of strtol[l].  On success
134 // return the result, otherwise null.
135 // The function assumes the string is encoded in ASCII and carefully
136 // avoids converting sequences (including "") that the corresponding
137 // library call might fail and set errno for.
138 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
139                               uint64_t Base, bool AsSigned, IRBuilderBase &B) {
140   if (Base < 2 || Base > 36)
141     if (Base != 0)
142       // Fail for an invalid base (required by POSIX).
143       return nullptr;
144 
145   // Current offset into the original string to reflect in EndPtr.
146   size_t Offset = 0;
147   // Strip leading whitespace.
148   for ( ; Offset != Str.size(); ++Offset)
149     if (!isSpace((unsigned char)Str[Offset])) {
150       Str = Str.substr(Offset);
151       break;
152     }
153 
154   if (Str.empty())
155     // Fail for empty subject sequences (POSIX allows but doesn't require
156     // strtol[l]/strtoul[l] to fail with EINVAL).
157     return nullptr;
158 
159   // Strip but remember the sign.
160   bool Negate = Str[0] == '-';
161   if (Str[0] == '-' || Str[0] == '+') {
162     Str = Str.drop_front();
163     if (Str.empty())
164       // Fail for a sign with nothing after it.
165       return nullptr;
166     ++Offset;
167   }
168 
169   // Set Max to the absolute value of the minimum (for signed), or
170   // to the maximum (for unsigned) value representable in the type.
171   Type *RetTy = CI->getType();
172   unsigned NBits = RetTy->getPrimitiveSizeInBits();
173   uint64_t Max = AsSigned && Negate ? 1 : 0;
174   Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
175 
176   // Autodetect Base if it's zero and consume the "0x" prefix.
177   if (Str.size() > 1) {
178     if (Str[0] == '0') {
179       if (toUpper((unsigned char)Str[1]) == 'X') {
180         if (Str.size() == 2 || (Base && Base != 16))
181           // Fail if Base doesn't allow the "0x" prefix or for the prefix
182           // alone that implementations like BSD set errno to EINVAL for.
183           return nullptr;
184 
185         Str = Str.drop_front(2);
186         Offset += 2;
187         Base = 16;
188       }
189       else if (Base == 0)
190         Base = 8;
191     } else if (Base == 0)
192       Base = 10;
193   }
194   else if (Base == 0)
195     Base = 10;
196 
197   // Convert the rest of the subject sequence, not including the sign,
198   // to its uint64_t representation (this assumes the source character
199   // set is ASCII).
200   uint64_t Result = 0;
201   for (unsigned i = 0; i != Str.size(); ++i) {
202     unsigned char DigVal = Str[i];
203     if (isDigit(DigVal))
204       DigVal = DigVal - '0';
205     else {
206       DigVal = toUpper(DigVal);
207       if (isAlpha(DigVal))
208         DigVal = DigVal - 'A' + 10;
209       else
210         return nullptr;
211     }
212 
213     if (DigVal >= Base)
214       // Fail if the digit is not valid in the Base.
215       return nullptr;
216 
217     // Add the digit and fail if the result is not representable in
218     // the (unsigned form of the) destination type.
219     bool VFlow;
220     Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
221     if (VFlow || Result > Max)
222       return nullptr;
223   }
224 
225   if (EndPtr) {
226     // Store the pointer to the end.
227     Value *Off = B.getInt64(Offset + Str.size());
228     Value *StrBeg = CI->getArgOperand(0);
229     Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
230     B.CreateStore(StrEnd, EndPtr);
231   }
232 
233   if (Negate)
234     // Unsigned negation doesn't overflow.
235     Result = -Result;
236 
237   return ConstantInt::get(RetTy, Result);
238 }
239 
240 static bool isOnlyUsedInComparisonWithZero(Value *V) {
241   for (User *U : V->users()) {
242     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
243       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
244         if (C->isNullValue())
245           continue;
246     // Unknown instruction.
247     return false;
248   }
249   return true;
250 }
251 
252 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
253                                  const DataLayout &DL) {
254   if (!isOnlyUsedInComparisonWithZero(CI))
255     return false;
256 
257   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
258     return false;
259 
260   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
261     return false;
262 
263   return true;
264 }
265 
266 static void annotateDereferenceableBytes(CallInst *CI,
267                                          ArrayRef<unsigned> ArgNos,
268                                          uint64_t DereferenceableBytes) {
269   const Function *F = CI->getCaller();
270   if (!F)
271     return;
272   for (unsigned ArgNo : ArgNos) {
273     uint64_t DerefBytes = DereferenceableBytes;
274     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
275     if (!llvm::NullPointerIsDefined(F, AS) ||
276         CI->paramHasAttr(ArgNo, Attribute::NonNull))
277       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
278                             DereferenceableBytes);
279 
280     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
281       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
282       if (!llvm::NullPointerIsDefined(F, AS) ||
283           CI->paramHasAttr(ArgNo, Attribute::NonNull))
284         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
285       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
286                                   CI->getContext(), DerefBytes));
287     }
288   }
289 }
290 
291 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
292                                          ArrayRef<unsigned> ArgNos) {
293   Function *F = CI->getCaller();
294   if (!F)
295     return;
296 
297   for (unsigned ArgNo : ArgNos) {
298     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
299       CI->addParamAttr(ArgNo, Attribute::NoUndef);
300 
301     if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
302       unsigned AS =
303           CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
304       if (llvm::NullPointerIsDefined(F, AS))
305         continue;
306       CI->addParamAttr(ArgNo, Attribute::NonNull);
307     }
308 
309     annotateDereferenceableBytes(CI, ArgNo, 1);
310   }
311 }
312 
313 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
314                                Value *Size, const DataLayout &DL) {
315   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
316     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
317     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
318   } else if (isKnownNonZero(Size, DL)) {
319     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
320     const APInt *X, *Y;
321     uint64_t DerefMin = 1;
322     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
323       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
324       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
325     }
326   }
327 }
328 
329 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
330 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
331 // in this function when New is created to replace Old. Callers should take
332 // care to check Old.isMustTailCall() if they aren't replacing Old directly
333 // with New.
334 static Value *copyFlags(const CallInst &Old, Value *New) {
335   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
336   assert(!Old.isNoTailCall() && "do not copy notail call flags");
337   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
338     NewCI->setTailCallKind(Old.getTailCallKind());
339   return New;
340 }
341 
342 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
343   NewCI->setAttributes(AttributeList::get(
344       NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
345   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(
346       NewCI->getType(), NewCI->getRetAttributes()));
347   for (unsigned I = 0; I < NewCI->arg_size(); ++I)
348     NewCI->removeParamAttrs(
349         I, AttributeFuncs::typeIncompatible(NewCI->getArgOperand(I)->getType(),
350                                             NewCI->getParamAttributes(I)));
351 
352   return copyFlags(Old, NewCI);
353 }
354 
355 // Helper to avoid truncating the length if size_t is 32-bits.
356 static StringRef substr(StringRef Str, uint64_t Len) {
357   return Len >= Str.size() ? Str : Str.substr(0, Len);
358 }
359 
360 //===----------------------------------------------------------------------===//
361 // String and Memory Library Call Optimizations
362 //===----------------------------------------------------------------------===//
363 
364 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
365   // Extract some information from the instruction
366   Value *Dst = CI->getArgOperand(0);
367   Value *Src = CI->getArgOperand(1);
368   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
369 
370   // See if we can get the length of the input string.
371   uint64_t Len = GetStringLength(Src);
372   if (Len)
373     annotateDereferenceableBytes(CI, 1, Len);
374   else
375     return nullptr;
376   --Len; // Unbias length.
377 
378   // Handle the simple, do-nothing case: strcat(x, "") -> x
379   if (Len == 0)
380     return Dst;
381 
382   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
383 }
384 
385 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
386                                            IRBuilderBase &B) {
387   // We need to find the end of the destination string.  That's where the
388   // memory is to be moved to. We just generate a call to strlen.
389   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
390   if (!DstLen)
391     return nullptr;
392 
393   // Now that we have the destination's length, we must index into the
394   // destination's pointer to get the actual memcpy destination (end of
395   // the string .. we're concatenating).
396   Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
397 
398   // We have enough information to now generate the memcpy call to do the
399   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
400   B.CreateMemCpy(
401       CpyDst, Align(1), Src, Align(1),
402       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
403   return Dst;
404 }
405 
406 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
407   // Extract some information from the instruction.
408   Value *Dst = CI->getArgOperand(0);
409   Value *Src = CI->getArgOperand(1);
410   Value *Size = CI->getArgOperand(2);
411   uint64_t Len;
412   annotateNonNullNoUndefBasedOnAccess(CI, 0);
413   if (isKnownNonZero(Size, DL))
414     annotateNonNullNoUndefBasedOnAccess(CI, 1);
415 
416   // We don't do anything if length is not constant.
417   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
418   if (LengthArg) {
419     Len = LengthArg->getZExtValue();
420     // strncat(x, c, 0) -> x
421     if (!Len)
422       return Dst;
423   } else {
424     return nullptr;
425   }
426 
427   // See if we can get the length of the input string.
428   uint64_t SrcLen = GetStringLength(Src);
429   if (SrcLen) {
430     annotateDereferenceableBytes(CI, 1, SrcLen);
431     --SrcLen; // Unbias length.
432   } else {
433     return nullptr;
434   }
435 
436   // strncat(x, "", c) -> x
437   if (SrcLen == 0)
438     return Dst;
439 
440   // We don't optimize this case.
441   if (Len < SrcLen)
442     return nullptr;
443 
444   // strncat(x, s, c) -> strcat(x, s)
445   // s is constant so the strcat can be optimized further.
446   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
447 }
448 
449 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
450 // NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
451 // is that either S is dereferenceable or the value of N is nonzero.
452 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
453                                   IRBuilderBase &B, const DataLayout &DL)
454 {
455   Value *Src = CI->getArgOperand(0);
456   Value *CharVal = CI->getArgOperand(1);
457 
458   // Fold memchr(A, C, N) == A to N && *A == C.
459   Type *CharTy = B.getInt8Ty();
460   Value *Char0 = B.CreateLoad(CharTy, Src);
461   CharVal = B.CreateTrunc(CharVal, CharTy);
462   Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
463 
464   if (NBytes) {
465     Value *Zero = ConstantInt::get(NBytes->getType(), 0);
466     Value *And = B.CreateICmpNE(NBytes, Zero);
467     Cmp = B.CreateLogicalAnd(And, Cmp);
468   }
469 
470   Value *NullPtr = Constant::getNullValue(CI->getType());
471   return B.CreateSelect(Cmp, Src, NullPtr);
472 }
473 
474 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
475   Value *SrcStr = CI->getArgOperand(0);
476   Value *CharVal = CI->getArgOperand(1);
477   annotateNonNullNoUndefBasedOnAccess(CI, 0);
478 
479   if (isOnlyUsedInEqualityComparison(CI, SrcStr))
480     return memChrToCharCompare(CI, nullptr, B, DL);
481 
482   // If the second operand is non-constant, see if we can compute the length
483   // of the input string and turn this into memchr.
484   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
485   if (!CharC) {
486     uint64_t Len = GetStringLength(SrcStr);
487     if (Len)
488       annotateDereferenceableBytes(CI, 0, Len);
489     else
490       return nullptr;
491 
492     Function *Callee = CI->getCalledFunction();
493     FunctionType *FT = Callee->getFunctionType();
494     unsigned IntBits = TLI->getIntSize();
495     if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'.
496       return nullptr;
497 
498     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
499     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
500     return copyFlags(*CI,
501                      emitMemChr(SrcStr, CharVal, // include nul.
502                                 ConstantInt::get(SizeTTy, Len), B,
503                                 DL, TLI));
504   }
505 
506   if (CharC->isZero()) {
507     Value *NullPtr = Constant::getNullValue(CI->getType());
508     if (isOnlyUsedInEqualityComparison(CI, NullPtr))
509       // Pre-empt the transformation to strlen below and fold
510       // strchr(A, '\0') == null to false.
511       return B.CreateIntToPtr(B.getTrue(), CI->getType());
512   }
513 
514   // Otherwise, the character is a constant, see if the first argument is
515   // a string literal.  If so, we can constant fold.
516   StringRef Str;
517   if (!getConstantStringInfo(SrcStr, Str)) {
518     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
519       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
520         return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
521     return nullptr;
522   }
523 
524   // Compute the offset, make sure to handle the case when we're searching for
525   // zero (a weird way to spell strlen).
526   size_t I = (0xFF & CharC->getSExtValue()) == 0
527                  ? Str.size()
528                  : Str.find(CharC->getSExtValue());
529   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
530     return Constant::getNullValue(CI->getType());
531 
532   // strchr(s+n,c)  -> gep(s+n+i,c)
533   return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
534 }
535 
536 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
537   Value *SrcStr = CI->getArgOperand(0);
538   Value *CharVal = CI->getArgOperand(1);
539   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
540   annotateNonNullNoUndefBasedOnAccess(CI, 0);
541 
542   StringRef Str;
543   if (!getConstantStringInfo(SrcStr, Str)) {
544     // strrchr(s, 0) -> strchr(s, 0)
545     if (CharC && CharC->isZero())
546       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
547     return nullptr;
548   }
549 
550   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
551   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
552 
553   // Try to expand strrchr to the memrchr nonstandard extension if it's
554   // available, or simply fail otherwise.
555   uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
556   Value *Size = ConstantInt::get(SizeTTy, NBytes);
557   return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
558 }
559 
560 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
561   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
562   if (Str1P == Str2P) // strcmp(x,x)  -> 0
563     return ConstantInt::get(CI->getType(), 0);
564 
565   StringRef Str1, Str2;
566   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
567   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
568 
569   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
570   if (HasStr1 && HasStr2)
571     return ConstantInt::get(CI->getType(),
572                             std::clamp(Str1.compare(Str2), -1, 1));
573 
574   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
575     return B.CreateNeg(B.CreateZExt(
576         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
577 
578   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
579     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
580                         CI->getType());
581 
582   // strcmp(P, "x") -> memcmp(P, "x", 2)
583   uint64_t Len1 = GetStringLength(Str1P);
584   if (Len1)
585     annotateDereferenceableBytes(CI, 0, Len1);
586   uint64_t Len2 = GetStringLength(Str2P);
587   if (Len2)
588     annotateDereferenceableBytes(CI, 1, Len2);
589 
590   if (Len1 && Len2) {
591     return copyFlags(
592         *CI, emitMemCmp(Str1P, Str2P,
593                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
594                                          std::min(Len1, Len2)),
595                         B, DL, TLI));
596   }
597 
598   // strcmp to memcmp
599   if (!HasStr1 && HasStr2) {
600     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
601       return copyFlags(
602           *CI,
603           emitMemCmp(Str1P, Str2P,
604                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
605                      B, DL, TLI));
606   } else if (HasStr1 && !HasStr2) {
607     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
608       return copyFlags(
609           *CI,
610           emitMemCmp(Str1P, Str2P,
611                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
612                      B, DL, TLI));
613   }
614 
615   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
616   return nullptr;
617 }
618 
619 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
620 // arrays LHS and RHS and nonconstant Size.
621 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
622                                     Value *Size, bool StrNCmp,
623                                     IRBuilderBase &B, const DataLayout &DL);
624 
625 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
626   Value *Str1P = CI->getArgOperand(0);
627   Value *Str2P = CI->getArgOperand(1);
628   Value *Size = CI->getArgOperand(2);
629   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
630     return ConstantInt::get(CI->getType(), 0);
631 
632   if (isKnownNonZero(Size, DL))
633     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
634   // Get the length argument if it is constant.
635   uint64_t Length;
636   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
637     Length = LengthArg->getZExtValue();
638   else
639     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
640 
641   if (Length == 0) // strncmp(x,y,0)   -> 0
642     return ConstantInt::get(CI->getType(), 0);
643 
644   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
645     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
646 
647   StringRef Str1, Str2;
648   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
649   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
650 
651   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
652   if (HasStr1 && HasStr2) {
653     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
654     StringRef SubStr1 = substr(Str1, Length);
655     StringRef SubStr2 = substr(Str2, Length);
656     return ConstantInt::get(CI->getType(),
657                             std::clamp(SubStr1.compare(SubStr2), -1, 1));
658   }
659 
660   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
661     return B.CreateNeg(B.CreateZExt(
662         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
663 
664   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
665     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
666                         CI->getType());
667 
668   uint64_t Len1 = GetStringLength(Str1P);
669   if (Len1)
670     annotateDereferenceableBytes(CI, 0, Len1);
671   uint64_t Len2 = GetStringLength(Str2P);
672   if (Len2)
673     annotateDereferenceableBytes(CI, 1, Len2);
674 
675   // strncmp to memcmp
676   if (!HasStr1 && HasStr2) {
677     Len2 = std::min(Len2, Length);
678     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
679       return copyFlags(
680           *CI,
681           emitMemCmp(Str1P, Str2P,
682                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
683                      B, DL, TLI));
684   } else if (HasStr1 && !HasStr2) {
685     Len1 = std::min(Len1, Length);
686     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
687       return copyFlags(
688           *CI,
689           emitMemCmp(Str1P, Str2P,
690                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
691                      B, DL, TLI));
692   }
693 
694   return nullptr;
695 }
696 
697 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
698   Value *Src = CI->getArgOperand(0);
699   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
700   uint64_t SrcLen = GetStringLength(Src);
701   if (SrcLen && Size) {
702     annotateDereferenceableBytes(CI, 0, SrcLen);
703     if (SrcLen <= Size->getZExtValue() + 1)
704       return copyFlags(*CI, emitStrDup(Src, B, TLI));
705   }
706 
707   return nullptr;
708 }
709 
710 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
711   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
712   if (Dst == Src) // strcpy(x,x)  -> x
713     return Src;
714 
715   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
716   // See if we can get the length of the input string.
717   uint64_t Len = GetStringLength(Src);
718   if (Len)
719     annotateDereferenceableBytes(CI, 1, Len);
720   else
721     return nullptr;
722 
723   // We have enough information to now generate the memcpy call to do the
724   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
725   CallInst *NewCI =
726       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
727                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
728   mergeAttributesAndFlags(NewCI, *CI);
729   return Dst;
730 }
731 
732 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
733   Function *Callee = CI->getCalledFunction();
734   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
735 
736   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
737   if (CI->use_empty())
738     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
739 
740   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
741     Value *StrLen = emitStrLen(Src, B, DL, TLI);
742     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
743   }
744 
745   // See if we can get the length of the input string.
746   uint64_t Len = GetStringLength(Src);
747   if (Len)
748     annotateDereferenceableBytes(CI, 1, Len);
749   else
750     return nullptr;
751 
752   Type *PT = Callee->getFunctionType()->getParamType(0);
753   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
754   Value *DstEnd = B.CreateInBoundsGEP(
755       B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
756 
757   // We have enough information to now generate the memcpy call to do the
758   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
759   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
760   mergeAttributesAndFlags(NewCI, *CI);
761   return DstEnd;
762 }
763 
764 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
765 
766 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
767   Value *Size = CI->getArgOperand(2);
768   if (isKnownNonZero(Size, DL))
769     // Like snprintf, the function stores into the destination only when
770     // the size argument is nonzero.
771     annotateNonNullNoUndefBasedOnAccess(CI, 0);
772   // The function reads the source argument regardless of Size (it returns
773   // its length).
774   annotateNonNullNoUndefBasedOnAccess(CI, 1);
775 
776   uint64_t NBytes;
777   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
778     NBytes = SizeC->getZExtValue();
779   else
780     return nullptr;
781 
782   Value *Dst = CI->getArgOperand(0);
783   Value *Src = CI->getArgOperand(1);
784   if (NBytes <= 1) {
785     if (NBytes == 1)
786       // For a call to strlcpy(D, S, 1) first store a nul in *D.
787       B.CreateStore(B.getInt8(0), Dst);
788 
789     // Transform strlcpy(D, S, 0) to a call to strlen(S).
790     return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
791   }
792 
793   // Try to determine the length of the source, substituting its size
794   // when it's not nul-terminated (as it's required to be) to avoid
795   // reading past its end.
796   StringRef Str;
797   if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false))
798     return nullptr;
799 
800   uint64_t SrcLen = Str.find('\0');
801   // Set if the terminating nul should be copied by the call to memcpy
802   // below.
803   bool NulTerm = SrcLen < NBytes;
804 
805   if (NulTerm)
806     // Overwrite NBytes with the number of bytes to copy, including
807     // the terminating nul.
808     NBytes = SrcLen + 1;
809   else {
810     // Set the length of the source for the function to return to its
811     // size, and cap NBytes at the same.
812     SrcLen = std::min(SrcLen, uint64_t(Str.size()));
813     NBytes = std::min(NBytes - 1, SrcLen);
814   }
815 
816   if (SrcLen == 0) {
817     // Transform strlcpy(D, "", N) to (*D = '\0, 0).
818     B.CreateStore(B.getInt8(0), Dst);
819     return ConstantInt::get(CI->getType(), 0);
820   }
821 
822   Function *Callee = CI->getCalledFunction();
823   Type *PT = Callee->getFunctionType()->getParamType(0);
824   // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
825   // bound on strlen(S) + 1 and N, optionally followed by a nul store to
826   // D[N' - 1] if necessary.
827   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
828                         ConstantInt::get(DL.getIntPtrType(PT), NBytes));
829   mergeAttributesAndFlags(NewCI, *CI);
830 
831   if (!NulTerm) {
832     Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
833     Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
834     B.CreateStore(B.getInt8(0), EndPtr);
835   }
836 
837   // Like snprintf, strlcpy returns the number of nonzero bytes that would
838   // have been copied if the bound had been sufficiently big (which in this
839   // case is strlen(Src)).
840   return ConstantInt::get(CI->getType(), SrcLen);
841 }
842 
843 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
844 // otherwise.
845 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
846                                              IRBuilderBase &B) {
847   Function *Callee = CI->getCalledFunction();
848   Value *Dst = CI->getArgOperand(0);
849   Value *Src = CI->getArgOperand(1);
850   Value *Size = CI->getArgOperand(2);
851 
852   if (isKnownNonZero(Size, DL)) {
853     // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
854     // only when N is nonzero.
855     annotateNonNullNoUndefBasedOnAccess(CI, 0);
856     annotateNonNullNoUndefBasedOnAccess(CI, 1);
857   }
858 
859   // If the "bound" argument is known set N to it.  Otherwise set it to
860   // UINT64_MAX and handle it later.
861   uint64_t N = UINT64_MAX;
862   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
863     N = SizeC->getZExtValue();
864 
865   if (N == 0)
866     // Fold st{p,r}ncpy(D, S, 0) to D.
867     return Dst;
868 
869   if (N == 1) {
870     Type *CharTy = B.getInt8Ty();
871     Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
872     B.CreateStore(CharVal, Dst);
873     if (!RetEnd)
874       // Transform strncpy(D, S, 1) to return (*D = *S), D.
875       return Dst;
876 
877     // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
878     Value *ZeroChar = ConstantInt::get(CharTy, 0);
879     Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
880 
881     Value *Off1 = B.getInt32(1);
882     Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
883     return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
884   }
885 
886   // If the length of the input string is known set SrcLen to it.
887   uint64_t SrcLen = GetStringLength(Src);
888   if (SrcLen)
889     annotateDereferenceableBytes(CI, 1, SrcLen);
890   else
891     return nullptr;
892 
893   --SrcLen; // Unbias length.
894 
895   if (SrcLen == 0) {
896     // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
897     Align MemSetAlign =
898       CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
899     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
900     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
901     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
902         CI->getContext(), 0, ArgAttrs));
903     copyFlags(*CI, NewCI);
904     return Dst;
905   }
906 
907   if (N > SrcLen + 1) {
908     if (N > 128)
909       // Bail if N is large or unknown.
910       return nullptr;
911 
912     // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
913     StringRef Str;
914     if (!getConstantStringInfo(Src, Str))
915       return nullptr;
916     std::string SrcStr = Str.str();
917     // Create a bigger, nul-padded array with the same length, SrcLen,
918     // as the original string.
919     SrcStr.resize(N, '\0');
920     Src = B.CreateGlobalString(
921         SrcStr, "str", /*AddressSpace=*/DL.getDefaultGlobalsAddressSpace(),
922         /*M=*/nullptr, /*AddNull=*/false);
923   }
924 
925   Type *PT = Callee->getFunctionType()->getParamType(0);
926   // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
927   // S and N are constant.
928   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
929                                    ConstantInt::get(DL.getIntPtrType(PT), N));
930   mergeAttributesAndFlags(NewCI, *CI);
931   if (!RetEnd)
932     return Dst;
933 
934   // stpncpy(D, S, N) returns the address of the first null in D if it writes
935   // one, otherwise D + N.
936   Value *Off = B.getInt64(std::min(SrcLen, N));
937   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
938 }
939 
940 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
941                                                unsigned CharSize,
942                                                Value *Bound) {
943   Value *Src = CI->getArgOperand(0);
944   Type *CharTy = B.getIntNTy(CharSize);
945 
946   if (isOnlyUsedInZeroEqualityComparison(CI) &&
947       (!Bound || isKnownNonZero(Bound, DL))) {
948     // Fold strlen:
949     //   strlen(x) != 0 --> *x != 0
950     //   strlen(x) == 0 --> *x == 0
951     // and likewise strnlen with constant N > 0:
952     //   strnlen(x, N) != 0 --> *x != 0
953     //   strnlen(x, N) == 0 --> *x == 0
954     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
955                         CI->getType());
956   }
957 
958   if (Bound) {
959     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
960       if (BoundCst->isZero())
961         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
962         return ConstantInt::get(CI->getType(), 0);
963 
964       if (BoundCst->isOne()) {
965         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
966         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
967         Value *ZeroChar = ConstantInt::get(CharTy, 0);
968         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
969         return B.CreateZExt(Cmp, CI->getType());
970       }
971     }
972   }
973 
974   if (uint64_t Len = GetStringLength(Src, CharSize)) {
975     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
976     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
977     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
978     if (Bound)
979       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
980     return LenC;
981   }
982 
983   if (Bound)
984     // Punt for strnlen for now.
985     return nullptr;
986 
987   // If s is a constant pointer pointing to a string literal, we can fold
988   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
989   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
990   // We only try to simplify strlen when the pointer s points to an array
991   // of CharSize elements. Otherwise, we would need to scale the offset x before
992   // doing the subtraction. This will make the optimization more complex, and
993   // it's not very useful because calling strlen for a pointer of other types is
994   // very uncommon.
995   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
996     // TODO: Handle subobjects.
997     if (!isGEPBasedOnPointerToString(GEP, CharSize))
998       return nullptr;
999 
1000     ConstantDataArraySlice Slice;
1001     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
1002       uint64_t NullTermIdx;
1003       if (Slice.Array == nullptr) {
1004         NullTermIdx = 0;
1005       } else {
1006         NullTermIdx = ~((uint64_t)0);
1007         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
1008           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
1009             NullTermIdx = I;
1010             break;
1011           }
1012         }
1013         // If the string does not have '\0', leave it to strlen to compute
1014         // its length.
1015         if (NullTermIdx == ~((uint64_t)0))
1016           return nullptr;
1017       }
1018 
1019       Value *Offset = GEP->getOperand(2);
1020       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
1021       uint64_t ArrSize =
1022              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
1023 
1024       // If Offset is not provably in the range [0, NullTermIdx], we can still
1025       // optimize if we can prove that the program has undefined behavior when
1026       // Offset is outside that range. That is the case when GEP->getOperand(0)
1027       // is a pointer to an object whose memory extent is NullTermIdx+1.
1028       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
1029           (isa<GlobalVariable>(GEP->getOperand(0)) &&
1030            NullTermIdx == ArrSize - 1)) {
1031         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
1032         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
1033                            Offset);
1034       }
1035     }
1036   }
1037 
1038   // strlen(x?"foo":"bars") --> x ? 3 : 4
1039   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
1040     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
1041     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
1042     if (LenTrue && LenFalse) {
1043       ORE.emit([&]() {
1044         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
1045                << "folded strlen(select) to select of constants";
1046       });
1047       return B.CreateSelect(SI->getCondition(),
1048                             ConstantInt::get(CI->getType(), LenTrue - 1),
1049                             ConstantInt::get(CI->getType(), LenFalse - 1));
1050     }
1051   }
1052 
1053   return nullptr;
1054 }
1055 
1056 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
1057   if (Value *V = optimizeStringLength(CI, B, 8))
1058     return V;
1059   annotateNonNullNoUndefBasedOnAccess(CI, 0);
1060   return nullptr;
1061 }
1062 
1063 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1064   Value *Bound = CI->getArgOperand(1);
1065   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1066     return V;
1067 
1068   if (isKnownNonZero(Bound, DL))
1069     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1070   return nullptr;
1071 }
1072 
1073 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1074   Module &M = *CI->getModule();
1075   unsigned WCharSize = TLI->getWCharSize(M) * 8;
1076   // We cannot perform this optimization without wchar_size metadata.
1077   if (WCharSize == 0)
1078     return nullptr;
1079 
1080   return optimizeStringLength(CI, B, WCharSize);
1081 }
1082 
1083 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1084   StringRef S1, S2;
1085   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1086   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1087 
1088   // strpbrk(s, "") -> nullptr
1089   // strpbrk("", s) -> nullptr
1090   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1091     return Constant::getNullValue(CI->getType());
1092 
1093   // Constant folding.
1094   if (HasS1 && HasS2) {
1095     size_t I = S1.find_first_of(S2);
1096     if (I == StringRef::npos) // No match.
1097       return Constant::getNullValue(CI->getType());
1098 
1099     return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1100                                B.getInt64(I), "strpbrk");
1101   }
1102 
1103   // strpbrk(s, "a") -> strchr(s, 'a')
1104   if (HasS2 && S2.size() == 1)
1105     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
1106 
1107   return nullptr;
1108 }
1109 
1110 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1111   Value *EndPtr = CI->getArgOperand(1);
1112   if (isa<ConstantPointerNull>(EndPtr)) {
1113     // With a null EndPtr, this function won't capture the main argument.
1114     // It would be readonly too, except that it still may write to errno.
1115     CI->addParamAttr(0, Attribute::NoCapture);
1116   }
1117 
1118   return nullptr;
1119 }
1120 
1121 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1122   StringRef S1, S2;
1123   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1124   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1125 
1126   // strspn(s, "") -> 0
1127   // strspn("", s) -> 0
1128   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1129     return Constant::getNullValue(CI->getType());
1130 
1131   // Constant folding.
1132   if (HasS1 && HasS2) {
1133     size_t Pos = S1.find_first_not_of(S2);
1134     if (Pos == StringRef::npos)
1135       Pos = S1.size();
1136     return ConstantInt::get(CI->getType(), Pos);
1137   }
1138 
1139   return nullptr;
1140 }
1141 
1142 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1143   StringRef S1, S2;
1144   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1145   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1146 
1147   // strcspn("", s) -> 0
1148   if (HasS1 && S1.empty())
1149     return Constant::getNullValue(CI->getType());
1150 
1151   // Constant folding.
1152   if (HasS1 && HasS2) {
1153     size_t Pos = S1.find_first_of(S2);
1154     if (Pos == StringRef::npos)
1155       Pos = S1.size();
1156     return ConstantInt::get(CI->getType(), Pos);
1157   }
1158 
1159   // strcspn(s, "") -> strlen(s)
1160   if (HasS2 && S2.empty())
1161     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
1162 
1163   return nullptr;
1164 }
1165 
1166 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1167   // fold strstr(x, x) -> x.
1168   if (CI->getArgOperand(0) == CI->getArgOperand(1))
1169     return CI->getArgOperand(0);
1170 
1171   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1172   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
1173     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
1174     if (!StrLen)
1175       return nullptr;
1176     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
1177                                  StrLen, B, DL, TLI);
1178     if (!StrNCmp)
1179       return nullptr;
1180     for (User *U : llvm::make_early_inc_range(CI->users())) {
1181       ICmpInst *Old = cast<ICmpInst>(U);
1182       Value *Cmp =
1183           B.CreateICmp(Old->getPredicate(), StrNCmp,
1184                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1185       replaceAllUsesWith(Old, Cmp);
1186     }
1187     return CI;
1188   }
1189 
1190   // See if either input string is a constant string.
1191   StringRef SearchStr, ToFindStr;
1192   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1193   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1194 
1195   // fold strstr(x, "") -> x.
1196   if (HasStr2 && ToFindStr.empty())
1197     return CI->getArgOperand(0);
1198 
1199   // If both strings are known, constant fold it.
1200   if (HasStr1 && HasStr2) {
1201     size_t Offset = SearchStr.find(ToFindStr);
1202 
1203     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1204       return Constant::getNullValue(CI->getType());
1205 
1206     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1207     return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0),
1208                                         Offset, "strstr");
1209   }
1210 
1211   // fold strstr(x, "y") -> strchr(x, 'y').
1212   if (HasStr2 && ToFindStr.size() == 1) {
1213     return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1214   }
1215 
1216   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1217   return nullptr;
1218 }
1219 
1220 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1221   Value *SrcStr = CI->getArgOperand(0);
1222   Value *Size = CI->getArgOperand(2);
1223   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1224   Value *CharVal = CI->getArgOperand(1);
1225   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1226   Value *NullPtr = Constant::getNullValue(CI->getType());
1227 
1228   if (LenC) {
1229     if (LenC->isZero())
1230       // Fold memrchr(x, y, 0) --> null.
1231       return NullPtr;
1232 
1233     if (LenC->isOne()) {
1234       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1235       // constant or otherwise.
1236       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1237       // Slice off the character's high end bits.
1238       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1239       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1240       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1241     }
1242   }
1243 
1244   StringRef Str;
1245   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1246     return nullptr;
1247 
1248   if (Str.size() == 0)
1249     // If the array is empty fold memrchr(A, C, N) to null for any value
1250     // of C and N on the basis that the only valid value of N is zero
1251     // (otherwise the call is undefined).
1252     return NullPtr;
1253 
1254   uint64_t EndOff = UINT64_MAX;
1255   if (LenC) {
1256     EndOff = LenC->getZExtValue();
1257     if (Str.size() < EndOff)
1258       // Punt out-of-bounds accesses to sanitizers and/or libc.
1259       return nullptr;
1260   }
1261 
1262   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1263     // Fold memrchr(S, C, N) for a constant C.
1264     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1265     if (Pos == StringRef::npos)
1266       // When the character is not in the source array fold the result
1267       // to null regardless of Size.
1268       return NullPtr;
1269 
1270     if (LenC)
1271       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1272       return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1273 
1274     if (Str.find(Str[Pos]) == Pos) {
1275       // When there is just a single occurrence of C in S, i.e., the one
1276       // in Str[Pos], fold
1277       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1278       // for nonconstant N.
1279       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1280                                    "memrchr.cmp");
1281       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1282                                            B.getInt64(Pos), "memrchr.ptr_plus");
1283       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1284     }
1285   }
1286 
1287   // Truncate the string to search at most EndOff characters.
1288   Str = Str.substr(0, EndOff);
1289   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1290     return nullptr;
1291 
1292   // If the source array consists of all equal characters, then for any
1293   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1294   //   N != 0 && *S == C ? S + N - 1 : null
1295   Type *SizeTy = Size->getType();
1296   Type *Int8Ty = B.getInt8Ty();
1297   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1298   // Slice off the sought character's high end bits.
1299   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1300   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1301   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1302   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1303   Value *SrcPlus =
1304       B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1305   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1306 }
1307 
1308 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1309   Value *SrcStr = CI->getArgOperand(0);
1310   Value *Size = CI->getArgOperand(2);
1311 
1312   if (isKnownNonZero(Size, DL)) {
1313     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1314     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1315       return memChrToCharCompare(CI, Size, B, DL);
1316   }
1317 
1318   Value *CharVal = CI->getArgOperand(1);
1319   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1320   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1321   Value *NullPtr = Constant::getNullValue(CI->getType());
1322 
1323   // memchr(x, y, 0) -> null
1324   if (LenC) {
1325     if (LenC->isZero())
1326       return NullPtr;
1327 
1328     if (LenC->isOne()) {
1329       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1330       // constant or otherwise.
1331       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1332       // Slice off the character's high end bits.
1333       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1334       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1335       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1336     }
1337   }
1338 
1339   StringRef Str;
1340   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1341     return nullptr;
1342 
1343   if (CharC) {
1344     size_t Pos = Str.find(CharC->getZExtValue());
1345     if (Pos == StringRef::npos)
1346       // When the character is not in the source array fold the result
1347       // to null regardless of Size.
1348       return NullPtr;
1349 
1350     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1351     // When the constant Size is less than or equal to the character
1352     // position also fold the result to null.
1353     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1354                                  "memchr.cmp");
1355     Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1356                                          "memchr.ptr");
1357     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1358   }
1359 
1360   if (Str.size() == 0)
1361     // If the array is empty fold memchr(A, C, N) to null for any value
1362     // of C and N on the basis that the only valid value of N is zero
1363     // (otherwise the call is undefined).
1364     return NullPtr;
1365 
1366   if (LenC)
1367     Str = substr(Str, LenC->getZExtValue());
1368 
1369   size_t Pos = Str.find_first_not_of(Str[0]);
1370   if (Pos == StringRef::npos
1371       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1372     // If the source array consists of at most two consecutive sequences
1373     // of the same characters, then for any C and N (whether in bounds or
1374     // not), fold memchr(S, C, N) to
1375     //   N != 0 && *S == C ? S : null
1376     // or for the two sequences to:
1377     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1378     //   ^Sel2                   ^Sel1 are denoted above.
1379     // The latter makes it also possible to fold strchr() calls with strings
1380     // of the same characters.
1381     Type *SizeTy = Size->getType();
1382     Type *Int8Ty = B.getInt8Ty();
1383 
1384     // Slice off the sought character's high end bits.
1385     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1386 
1387     Value *Sel1 = NullPtr;
1388     if (Pos != StringRef::npos) {
1389       // Handle two consecutive sequences of the same characters.
1390       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1391       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1392       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1393       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1394       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1395       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1396       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1397     }
1398 
1399     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1400     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1401     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1402     Value *And = B.CreateAnd(NNeZ, CEqS0);
1403     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1404   }
1405 
1406   if (!LenC) {
1407     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1408       // S is dereferenceable so it's safe to load from it and fold
1409       //   memchr(S, C, N) == S to N && *S == C for any C and N.
1410       // TODO: This is safe even for nonconstant S.
1411       return memChrToCharCompare(CI, Size, B, DL);
1412 
1413     // From now on we need a constant length and constant array.
1414     return nullptr;
1415   }
1416 
1417   bool OptForSize = llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
1418                                                 PGSOQueryType::IRPass);
1419 
1420   // If the char is variable but the input str and length are not we can turn
1421   // this memchr call into a simple bit field test. Of course this only works
1422   // when the return value is only checked against null.
1423   //
1424   // It would be really nice to reuse switch lowering here but we can't change
1425   // the CFG at this point.
1426   //
1427   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1428   // != 0
1429   //   after bounds check.
1430   if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1431     return nullptr;
1432 
1433   unsigned char Max =
1434       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1435                         reinterpret_cast<const unsigned char *>(Str.end()));
1436 
1437   // Make sure the bit field we're about to create fits in a register on the
1438   // target.
1439   // FIXME: On a 64 bit architecture this prevents us from using the
1440   // interesting range of alpha ascii chars. We could do better by emitting
1441   // two bitfields or shifting the range by 64 if no lower chars are used.
1442   if (!DL.fitsInLegalInteger(Max + 1)) {
1443     // Build chain of ORs
1444     // Transform:
1445     //    memchr("abcd", C, 4) != nullptr
1446     // to:
1447     //    (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1448     std::string SortedStr = Str.str();
1449     llvm::sort(SortedStr);
1450     // Compute the number of of non-contiguous ranges.
1451     unsigned NonContRanges = 1;
1452     for (size_t i = 1; i < SortedStr.size(); ++i) {
1453       if (SortedStr[i] > SortedStr[i - 1] + 1) {
1454         NonContRanges++;
1455       }
1456     }
1457 
1458     // Restrict this optimization to profitable cases with one or two range
1459     // checks.
1460     if (NonContRanges > 2)
1461       return nullptr;
1462 
1463     // Slice off the character's high end bits.
1464     CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1465 
1466     SmallVector<Value *> CharCompares;
1467     for (unsigned char C : SortedStr)
1468       CharCompares.push_back(B.CreateICmpEQ(CharVal, B.getInt8(C)));
1469 
1470     return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType());
1471   }
1472 
1473   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1474   // creating unnecessary illegal types.
1475   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1476 
1477   // Now build the bit field.
1478   APInt Bitfield(Width, 0);
1479   for (char C : Str)
1480     Bitfield.setBit((unsigned char)C);
1481   Value *BitfieldC = B.getInt(Bitfield);
1482 
1483   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1484   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1485   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1486 
1487   // First check that the bit field access is within bounds.
1488   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1489                                "memchr.bounds");
1490 
1491   // Create code that checks if the given bit is set in the field.
1492   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1493   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1494 
1495   // Finally merge both checks and cast to pointer type. The inttoptr
1496   // implicitly zexts the i1 to intptr type.
1497   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1498                           CI->getType());
1499 }
1500 
1501 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1502 // arrays LHS and RHS and nonconstant Size.
1503 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1504                                     Value *Size, bool StrNCmp,
1505                                     IRBuilderBase &B, const DataLayout &DL) {
1506   if (LHS == RHS) // memcmp(s,s,x) -> 0
1507     return Constant::getNullValue(CI->getType());
1508 
1509   StringRef LStr, RStr;
1510   if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) ||
1511       !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false))
1512     return nullptr;
1513 
1514   // If the contents of both constant arrays are known, fold a call to
1515   // memcmp(A, B, N) to
1516   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1517   // where Pos is the first mismatch between A and B, determined below.
1518 
1519   uint64_t Pos = 0;
1520   Value *Zero = ConstantInt::get(CI->getType(), 0);
1521   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1522     if (Pos == MinSize ||
1523         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1524       // One array is a leading part of the other of equal or greater
1525       // size, or for strncmp, the arrays are equal strings.
1526       // Fold the result to zero.  Size is assumed to be in bounds, since
1527       // otherwise the call would be undefined.
1528       return Zero;
1529     }
1530 
1531     if (LStr[Pos] != RStr[Pos])
1532       break;
1533   }
1534 
1535   // Normalize the result.
1536   typedef unsigned char UChar;
1537   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1538   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1539   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1540   Value *Res = ConstantInt::get(CI->getType(), IRes);
1541   return B.CreateSelect(Cmp, Zero, Res);
1542 }
1543 
1544 // Optimize a memcmp call CI with constant size Len.
1545 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1546                                          uint64_t Len, IRBuilderBase &B,
1547                                          const DataLayout &DL) {
1548   if (Len == 0) // memcmp(s1,s2,0) -> 0
1549     return Constant::getNullValue(CI->getType());
1550 
1551   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1552   if (Len == 1) {
1553     Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"),
1554                                CI->getType(), "lhsv");
1555     Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"),
1556                                CI->getType(), "rhsv");
1557     return B.CreateSub(LHSV, RHSV, "chardiff");
1558   }
1559 
1560   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1561   // TODO: The case where both inputs are constants does not need to be limited
1562   // to legal integers or equality comparison. See block below this.
1563   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1564     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1565     Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1566 
1567     // First, see if we can fold either argument to a constant.
1568     Value *LHSV = nullptr;
1569     if (auto *LHSC = dyn_cast<Constant>(LHS))
1570       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1571 
1572     Value *RHSV = nullptr;
1573     if (auto *RHSC = dyn_cast<Constant>(RHS))
1574       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1575 
1576     // Don't generate unaligned loads. If either source is constant data,
1577     // alignment doesn't matter for that source because there is no load.
1578     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1579         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1580       if (!LHSV)
1581         LHSV = B.CreateLoad(IntType, LHS, "lhsv");
1582       if (!RHSV)
1583         RHSV = B.CreateLoad(IntType, RHS, "rhsv");
1584       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1585     }
1586   }
1587 
1588   return nullptr;
1589 }
1590 
1591 // Most simplifications for memcmp also apply to bcmp.
1592 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1593                                                    IRBuilderBase &B) {
1594   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1595   Value *Size = CI->getArgOperand(2);
1596 
1597   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1598 
1599   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1600     return Res;
1601 
1602   // Handle constant Size.
1603   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1604   if (!LenC)
1605     return nullptr;
1606 
1607   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1608 }
1609 
1610 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1611   Module *M = CI->getModule();
1612   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1613     return V;
1614 
1615   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1616   // bcmp can be more efficient than memcmp because it only has to know that
1617   // there is a difference, not how different one is to the other.
1618   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1619       isOnlyUsedInZeroEqualityComparison(CI)) {
1620     Value *LHS = CI->getArgOperand(0);
1621     Value *RHS = CI->getArgOperand(1);
1622     Value *Size = CI->getArgOperand(2);
1623     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1624   }
1625 
1626   return nullptr;
1627 }
1628 
1629 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1630   return optimizeMemCmpBCmpCommon(CI, B);
1631 }
1632 
1633 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1634   Value *Size = CI->getArgOperand(2);
1635   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1636   if (isa<IntrinsicInst>(CI))
1637     return nullptr;
1638 
1639   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1640   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1641                                    CI->getArgOperand(1), Align(1), Size);
1642   mergeAttributesAndFlags(NewCI, *CI);
1643   return CI->getArgOperand(0);
1644 }
1645 
1646 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1647   Value *Dst = CI->getArgOperand(0);
1648   Value *Src = CI->getArgOperand(1);
1649   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1650   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1651   StringRef SrcStr;
1652   if (CI->use_empty() && Dst == Src)
1653     return Dst;
1654   // memccpy(d, s, c, 0) -> nullptr
1655   if (N) {
1656     if (N->isNullValue())
1657       return Constant::getNullValue(CI->getType());
1658     if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) ||
1659         // TODO: Handle zeroinitializer.
1660         !StopChar)
1661       return nullptr;
1662   } else {
1663     return nullptr;
1664   }
1665 
1666   // Wrap arg 'c' of type int to char
1667   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1668   if (Pos == StringRef::npos) {
1669     if (N->getZExtValue() <= SrcStr.size()) {
1670       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1671                                     CI->getArgOperand(3)));
1672       return Constant::getNullValue(CI->getType());
1673     }
1674     return nullptr;
1675   }
1676 
1677   Value *NewN =
1678       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1679   // memccpy -> llvm.memcpy
1680   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1681   return Pos + 1 <= N->getZExtValue()
1682              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1683              : Constant::getNullValue(CI->getType());
1684 }
1685 
1686 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1687   Value *Dst = CI->getArgOperand(0);
1688   Value *N = CI->getArgOperand(2);
1689   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1690   CallInst *NewCI =
1691       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1692   // Propagate attributes, but memcpy has no return value, so make sure that
1693   // any return attributes are compliant.
1694   // TODO: Attach return value attributes to the 1st operand to preserve them?
1695   mergeAttributesAndFlags(NewCI, *CI);
1696   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1697 }
1698 
1699 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1700   Value *Size = CI->getArgOperand(2);
1701   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1702   if (isa<IntrinsicInst>(CI))
1703     return nullptr;
1704 
1705   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1706   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1707                                     CI->getArgOperand(1), Align(1), Size);
1708   mergeAttributesAndFlags(NewCI, *CI);
1709   return CI->getArgOperand(0);
1710 }
1711 
1712 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1713   Value *Size = CI->getArgOperand(2);
1714   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1715   if (isa<IntrinsicInst>(CI))
1716     return nullptr;
1717 
1718   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1719   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1720   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1721   mergeAttributesAndFlags(NewCI, *CI);
1722   return CI->getArgOperand(0);
1723 }
1724 
1725 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1726   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1727     return copyFlags(*CI, emitMalloc(CI->getArgOperand(0)->getType(),
1728                                      CI->getArgOperand(1), B, DL, TLI));
1729 
1730   return nullptr;
1731 }
1732 
1733 // When enabled, replace operator new() calls marked with a hot or cold memprof
1734 // attribute with an operator new() call that takes a __hot_cold_t parameter.
1735 // Currently this is supported by the open source version of tcmalloc, see:
1736 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1737 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B,
1738                                       LibFunc &Func) {
1739   if (!OptimizeHotColdNew)
1740     return nullptr;
1741 
1742   uint8_t HotCold;
1743   if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold")
1744     HotCold = ColdNewHintValue;
1745   else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() ==
1746            "notcold")
1747     HotCold = NotColdNewHintValue;
1748   else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot")
1749     HotCold = HotNewHintValue;
1750   else
1751     return nullptr;
1752 
1753   // For calls that already pass a hot/cold hint, only update the hint if
1754   // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint
1755   // if cold or hot, and leave as-is for default handling if "notcold" aka warm.
1756   // Note that in cases where we decide it is "notcold", it might be slightly
1757   // better to replace the hinted call with a non hinted call, to avoid the
1758   // extra parameter and the if condition check of the hint value in the
1759   // allocator. This can be considered in the future.
1760   switch (Func) {
1761   case LibFunc_Znwm12__hot_cold_t:
1762     if (OptimizeExistingHotColdNew)
1763       return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1764                             LibFunc_Znwm12__hot_cold_t, HotCold);
1765     break;
1766   case LibFunc_Znwm:
1767     if (HotCold != NotColdNewHintValue)
1768       return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1769                             LibFunc_Znwm12__hot_cold_t, HotCold);
1770     break;
1771   case LibFunc_Znam12__hot_cold_t:
1772     if (OptimizeExistingHotColdNew)
1773       return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1774                             LibFunc_Znam12__hot_cold_t, HotCold);
1775     break;
1776   case LibFunc_Znam:
1777     if (HotCold != NotColdNewHintValue)
1778       return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI,
1779                             LibFunc_Znam12__hot_cold_t, HotCold);
1780     break;
1781   case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
1782     if (OptimizeExistingHotColdNew)
1783       return emitHotColdNewNoThrow(
1784           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1785           LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1786     break;
1787   case LibFunc_ZnwmRKSt9nothrow_t:
1788     if (HotCold != NotColdNewHintValue)
1789       return emitHotColdNewNoThrow(
1790           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1791           LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1792     break;
1793   case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
1794     if (OptimizeExistingHotColdNew)
1795       return emitHotColdNewNoThrow(
1796           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1797           LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1798     break;
1799   case LibFunc_ZnamRKSt9nothrow_t:
1800     if (HotCold != NotColdNewHintValue)
1801       return emitHotColdNewNoThrow(
1802           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1803           LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1804     break;
1805   case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
1806     if (OptimizeExistingHotColdNew)
1807       return emitHotColdNewAligned(
1808           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1809           LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1810     break;
1811   case LibFunc_ZnwmSt11align_val_t:
1812     if (HotCold != NotColdNewHintValue)
1813       return emitHotColdNewAligned(
1814           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1815           LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1816     break;
1817   case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
1818     if (OptimizeExistingHotColdNew)
1819       return emitHotColdNewAligned(
1820           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1821           LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1822     break;
1823   case LibFunc_ZnamSt11align_val_t:
1824     if (HotCold != NotColdNewHintValue)
1825       return emitHotColdNewAligned(
1826           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1827           LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1828     break;
1829   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1830     if (OptimizeExistingHotColdNew)
1831       return emitHotColdNewAlignedNoThrow(
1832           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1833           CI->getArgOperand(2), B, TLI,
1834           LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1835     break;
1836   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1837     if (HotCold != NotColdNewHintValue)
1838       return emitHotColdNewAlignedNoThrow(
1839           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1840           CI->getArgOperand(2), B, TLI,
1841           LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1842     break;
1843   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1844     if (OptimizeExistingHotColdNew)
1845       return emitHotColdNewAlignedNoThrow(
1846           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1847           CI->getArgOperand(2), B, TLI,
1848           LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1849     break;
1850   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1851     if (HotCold != NotColdNewHintValue)
1852       return emitHotColdNewAlignedNoThrow(
1853           CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1),
1854           CI->getArgOperand(2), B, TLI,
1855           LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1856     break;
1857   case LibFunc_size_returning_new:
1858     if (HotCold != NotColdNewHintValue)
1859       return emitHotColdSizeReturningNew(
1860           CI->getType()->getStructElementType(0), CI->getArgOperand(0), B, TLI,
1861           LibFunc_size_returning_new_hot_cold, HotCold);
1862     break;
1863   case LibFunc_size_returning_new_hot_cold:
1864     if (OptimizeExistingHotColdNew)
1865       return emitHotColdSizeReturningNew(
1866           CI->getType()->getStructElementType(0), CI->getArgOperand(0), B, TLI,
1867           LibFunc_size_returning_new_hot_cold, HotCold);
1868     break;
1869   case LibFunc_size_returning_new_aligned:
1870     if (HotCold != NotColdNewHintValue)
1871       return emitHotColdSizeReturningNewAligned(
1872           CI->getType()->getStructElementType(0), CI->getArgOperand(0),
1873           CI->getArgOperand(1), B, TLI,
1874           LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1875     break;
1876   case LibFunc_size_returning_new_aligned_hot_cold:
1877     if (OptimizeExistingHotColdNew)
1878       return emitHotColdSizeReturningNewAligned(
1879           CI->getType()->getStructElementType(0), CI->getArgOperand(0),
1880           CI->getArgOperand(1), B, TLI,
1881           LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1882     break;
1883   default:
1884     return nullptr;
1885   }
1886   return nullptr;
1887 }
1888 
1889 //===----------------------------------------------------------------------===//
1890 // Math Library Optimizations
1891 //===----------------------------------------------------------------------===//
1892 
1893 // Replace a libcall \p CI with a call to intrinsic \p IID
1894 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1895                                Intrinsic::ID IID) {
1896   CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI);
1897   NewCall->takeName(CI);
1898   return copyFlags(*CI, NewCall);
1899 }
1900 
1901 /// Return a variant of Val with float type.
1902 /// Currently this works in two cases: If Val is an FPExtension of a float
1903 /// value to something bigger, simply return the operand.
1904 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1905 /// loss of precision do so.
1906 static Value *valueHasFloatPrecision(Value *Val) {
1907   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1908     Value *Op = Cast->getOperand(0);
1909     if (Op->getType()->isFloatTy())
1910       return Op;
1911   }
1912   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1913     APFloat F = Const->getValueAPF();
1914     bool losesInfo;
1915     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1916                     &losesInfo);
1917     if (!losesInfo)
1918       return ConstantFP::get(Const->getContext(), F);
1919   }
1920   return nullptr;
1921 }
1922 
1923 /// Shrink double -> float functions.
1924 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1925                                bool isBinary, const TargetLibraryInfo *TLI,
1926                                bool isPrecise = false) {
1927   Function *CalleeFn = CI->getCalledFunction();
1928   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1929     return nullptr;
1930 
1931   // If not all the uses of the function are converted to float, then bail out.
1932   // This matters if the precision of the result is more important than the
1933   // precision of the arguments.
1934   if (isPrecise)
1935     for (User *U : CI->users()) {
1936       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1937       if (!Cast || !Cast->getType()->isFloatTy())
1938         return nullptr;
1939     }
1940 
1941   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1942   Value *V[2];
1943   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1944   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1945   if (!V[0] || (isBinary && !V[1]))
1946     return nullptr;
1947 
1948   // If call isn't an intrinsic, check that it isn't within a function with the
1949   // same name as the float version of this call, otherwise the result is an
1950   // infinite loop.  For example, from MinGW-w64:
1951   //
1952   // float expf(float val) { return (float) exp((double) val); }
1953   StringRef CalleeName = CalleeFn->getName();
1954   bool IsIntrinsic = CalleeFn->isIntrinsic();
1955   if (!IsIntrinsic) {
1956     StringRef CallerName = CI->getFunction()->getName();
1957     if (!CallerName.empty() && CallerName.back() == 'f' &&
1958         CallerName.size() == (CalleeName.size() + 1) &&
1959         CallerName.starts_with(CalleeName))
1960       return nullptr;
1961   }
1962 
1963   // Propagate the math semantics from the current function to the new function.
1964   IRBuilderBase::FastMathFlagGuard Guard(B);
1965   B.setFastMathFlags(CI->getFastMathFlags());
1966 
1967   // g((double) float) -> (double) gf(float)
1968   Value *R;
1969   if (IsIntrinsic) {
1970     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1971     R = isBinary ? B.CreateIntrinsic(IID, B.getFloatTy(), V)
1972                  : B.CreateIntrinsic(IID, B.getFloatTy(), V[0]);
1973   } else {
1974     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1975     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1976                                          CalleeAttrs)
1977                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1978   }
1979   return B.CreateFPExt(R, B.getDoubleTy());
1980 }
1981 
1982 /// Shrink double -> float for unary functions.
1983 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1984                                     const TargetLibraryInfo *TLI,
1985                                     bool isPrecise = false) {
1986   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1987 }
1988 
1989 /// Shrink double -> float for binary functions.
1990 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1991                                      const TargetLibraryInfo *TLI,
1992                                      bool isPrecise = false) {
1993   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1994 }
1995 
1996 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1997 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1998   Value *Real, *Imag;
1999 
2000   if (CI->arg_size() == 1) {
2001 
2002     if (!CI->isFast())
2003       return nullptr;
2004 
2005     Value *Op = CI->getArgOperand(0);
2006     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
2007 
2008     Real = B.CreateExtractValue(Op, 0, "real");
2009     Imag = B.CreateExtractValue(Op, 1, "imag");
2010 
2011   } else {
2012     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
2013 
2014     Real = CI->getArgOperand(0);
2015     Imag = CI->getArgOperand(1);
2016 
2017     // if real or imaginary part is zero, simplify to abs(cimag(z))
2018     // or abs(creal(z))
2019     Value *AbsOp = nullptr;
2020     if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) {
2021       if (ConstReal->isZero())
2022         AbsOp = Imag;
2023 
2024     } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) {
2025       if (ConstImag->isZero())
2026         AbsOp = Real;
2027     }
2028 
2029     if (AbsOp) {
2030       IRBuilderBase::FastMathFlagGuard Guard(B);
2031       B.setFastMathFlags(CI->getFastMathFlags());
2032 
2033       return copyFlags(
2034           *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, nullptr, "cabs"));
2035     }
2036 
2037     if (!CI->isFast())
2038       return nullptr;
2039   }
2040 
2041   // Propagate fast-math flags from the existing call to new instructions.
2042   IRBuilderBase::FastMathFlagGuard Guard(B);
2043   B.setFastMathFlags(CI->getFastMathFlags());
2044 
2045   Value *RealReal = B.CreateFMul(Real, Real);
2046   Value *ImagImag = B.CreateFMul(Imag, Imag);
2047 
2048   return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt,
2049                                                B.CreateFAdd(RealReal, ImagImag),
2050                                                nullptr, "cabs"));
2051 }
2052 
2053 // Return a properly extended integer (DstWidth bits wide) if the operation is
2054 // an itofp.
2055 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
2056   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
2057     Value *Op = cast<Instruction>(I2F)->getOperand(0);
2058     // Make sure that the exponent fits inside an "int" of size DstWidth,
2059     // thus avoiding any range issues that FP has not.
2060     unsigned BitWidth = Op->getType()->getScalarSizeInBits();
2061     if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) {
2062       Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth);
2063       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy)
2064                                   : B.CreateZExt(Op, IntTy);
2065     }
2066   }
2067 
2068   return nullptr;
2069 }
2070 
2071 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
2072 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
2073 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
2074 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
2075   Module *M = Pow->getModule();
2076   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2077   Type *Ty = Pow->getType();
2078   bool Ignored;
2079 
2080   // Evaluate special cases related to a nested function as the base.
2081 
2082   // pow(exp(x), y) -> exp(x * y)
2083   // pow(exp2(x), y) -> exp2(x * y)
2084   // If exp{,2}() is used only once, it is better to fold two transcendental
2085   // math functions into one.  If used again, exp{,2}() would still have to be
2086   // called with the original argument, then keep both original transcendental
2087   // functions.  However, this transformation is only safe with fully relaxed
2088   // math semantics, since, besides rounding differences, it changes overflow
2089   // and underflow behavior quite dramatically.  For example:
2090   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
2091   // Whereas:
2092   //   exp(1000 * 0.001) = exp(1)
2093   // TODO: Loosen the requirement for fully relaxed math semantics.
2094   // TODO: Handle exp10() when more targets have it available.
2095   CallInst *BaseFn = dyn_cast<CallInst>(Base);
2096   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
2097     LibFunc LibFn;
2098 
2099     Function *CalleeFn = BaseFn->getCalledFunction();
2100     if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
2101         isLibFuncEmittable(M, TLI, LibFn)) {
2102       StringRef ExpName;
2103       Intrinsic::ID ID;
2104       Value *ExpFn;
2105       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
2106 
2107       switch (LibFn) {
2108       default:
2109         return nullptr;
2110       case LibFunc_expf:
2111       case LibFunc_exp:
2112       case LibFunc_expl:
2113         ExpName = TLI->getName(LibFunc_exp);
2114         ID = Intrinsic::exp;
2115         LibFnFloat = LibFunc_expf;
2116         LibFnDouble = LibFunc_exp;
2117         LibFnLongDouble = LibFunc_expl;
2118         break;
2119       case LibFunc_exp2f:
2120       case LibFunc_exp2:
2121       case LibFunc_exp2l:
2122         ExpName = TLI->getName(LibFunc_exp2);
2123         ID = Intrinsic::exp2;
2124         LibFnFloat = LibFunc_exp2f;
2125         LibFnDouble = LibFunc_exp2;
2126         LibFnLongDouble = LibFunc_exp2l;
2127         break;
2128       }
2129 
2130       // Create new exp{,2}() with the product as its argument.
2131       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
2132       ExpFn = BaseFn->doesNotAccessMemory()
2133                   ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName)
2134                   : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
2135                                          LibFnLongDouble, B,
2136                                          BaseFn->getAttributes());
2137 
2138       // Since the new exp{,2}() is different from the original one, dead code
2139       // elimination cannot be trusted to remove it, since it may have side
2140       // effects (e.g., errno).  When the only consumer for the original
2141       // exp{,2}() is pow(), then it has to be explicitly erased.
2142       substituteInParent(BaseFn, ExpFn);
2143       return ExpFn;
2144     }
2145   }
2146 
2147   // Evaluate special cases related to a constant base.
2148 
2149   const APFloat *BaseF;
2150   if (!match(Base, m_APFloat(BaseF)))
2151     return nullptr;
2152 
2153   AttributeList NoAttrs; // Attributes are only meaningful on the original call
2154 
2155   const bool UseIntrinsic = Pow->doesNotAccessMemory();
2156 
2157   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2158   if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) &&
2159       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
2160       (UseIntrinsic ||
2161        hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2162 
2163     // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can
2164     // just directly use the original integer type.
2165     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) {
2166       Constant *One = ConstantFP::get(Ty, 1.0);
2167 
2168       if (UseIntrinsic) {
2169         return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp,
2170                                                  {Ty, ExpoI->getType()},
2171                                                  {One, ExpoI}, Pow, "exp2"));
2172       }
2173 
2174       return copyFlags(*Pow, emitBinaryFloatFnCall(
2175                                  One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2176                                  LibFunc_ldexpl, B, NoAttrs));
2177     }
2178   }
2179 
2180   // pow(2.0 ** n, x) -> exp2(n * x)
2181   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
2182     APFloat BaseR = APFloat(1.0);
2183     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
2184     BaseR = BaseR / *BaseF;
2185     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
2186     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2187     APSInt NI(64, false);
2188     if ((IsInteger || IsReciprocal) &&
2189         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
2190             APFloat::opOK &&
2191         NI > 1 && NI.isPowerOf2()) {
2192       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2193       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
2194       if (Pow->doesNotAccessMemory())
2195         return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2196                                                       nullptr, "exp2"));
2197       else
2198         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2199                                                     LibFunc_exp2f,
2200                                                     LibFunc_exp2l, B, NoAttrs));
2201     }
2202   }
2203 
2204   // pow(10.0, x) -> exp10(x)
2205   if (BaseF->isExactlyValue(10.0) &&
2206       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) {
2207 
2208     if (Pow->doesNotAccessMemory()) {
2209       CallInst *NewExp10 =
2210           B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10");
2211       return copyFlags(*Pow, NewExp10);
2212     }
2213 
2214     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
2215                                                 LibFunc_exp10f, LibFunc_exp10l,
2216                                                 B, NoAttrs));
2217   }
2218 
2219   // pow(x, y) -> exp2(log2(x) * y)
2220   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
2221       !BaseF->isNegative()) {
2222     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2223     // Luckily optimizePow has already handled the x == 1 case.
2224     assert(!match(Base, m_FPOne()) &&
2225            "pow(1.0, y) should have been simplified earlier!");
2226 
2227     Value *Log = nullptr;
2228     if (Ty->isFloatTy())
2229       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
2230     else if (Ty->isDoubleTy())
2231       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
2232 
2233     if (Log) {
2234       Value *FMul = B.CreateFMul(Log, Expo, "mul");
2235       if (Pow->doesNotAccessMemory())
2236         return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2237                                                       nullptr, "exp2"));
2238       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2239                           LibFunc_exp2l))
2240         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2241                                                     LibFunc_exp2f,
2242                                                     LibFunc_exp2l, B, NoAttrs));
2243     }
2244   }
2245 
2246   return nullptr;
2247 }
2248 
2249 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2250                           Module *M, IRBuilderBase &B,
2251                           const TargetLibraryInfo *TLI) {
2252   // If errno is never set, then use the intrinsic for sqrt().
2253   if (NoErrno)
2254     return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt");
2255 
2256   // Otherwise, use the libcall for sqrt().
2257   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2258                  LibFunc_sqrtl))
2259     // TODO: We also should check that the target can in fact lower the sqrt()
2260     // libcall. We currently have no way to ask this question, so we ask if
2261     // the target has a sqrt() libcall, which is not exactly the same.
2262     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
2263                                 LibFunc_sqrtl, B, Attrs);
2264 
2265   return nullptr;
2266 }
2267 
2268 /// Use square root in place of pow(x, +/-0.5).
2269 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2270   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2271   Module *Mod = Pow->getModule();
2272   Type *Ty = Pow->getType();
2273 
2274   const APFloat *ExpoF;
2275   if (!match(Expo, m_APFloat(ExpoF)) ||
2276       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
2277     return nullptr;
2278 
2279   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2280   // so that requires fast-math-flags (afn or reassoc).
2281   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2282     return nullptr;
2283 
2284   // If we have a pow() library call (accesses memory) and we can't guarantee
2285   // that the base is not an infinity, give up:
2286   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2287   // errno), but sqrt(-Inf) is required by various standards to set errno.
2288   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2289       !isKnownNeverInfinity(
2290           Base, 0, SimplifyQuery(DL, TLI, DT, AC, Pow, true, true, DC)))
2291     return nullptr;
2292 
2293   Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B,
2294                      TLI);
2295   if (!Sqrt)
2296     return nullptr;
2297 
2298   // Handle signed zero base by expanding to fabs(sqrt(x)).
2299   if (!Pow->hasNoSignedZeros())
2300     Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs");
2301 
2302   Sqrt = copyFlags(*Pow, Sqrt);
2303 
2304   // Handle non finite base by expanding to
2305   // (x == -infinity ? +infinity : sqrt(x)).
2306   if (!Pow->hasNoInfs()) {
2307     Value *PosInf = ConstantFP::getInfinity(Ty),
2308           *NegInf = ConstantFP::getInfinity(Ty, true);
2309     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2310     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2311   }
2312 
2313   // If the exponent is negative, then get the reciprocal.
2314   if (ExpoF->isNegative())
2315     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2316 
2317   return Sqrt;
2318 }
2319 
2320 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2321                                            IRBuilderBase &B) {
2322   Value *Args[] = {Base, Expo};
2323   Type *Types[] = {Base->getType(), Expo->getType()};
2324   return B.CreateIntrinsic(Intrinsic::powi, Types, Args);
2325 }
2326 
2327 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2328   Value *Base = Pow->getArgOperand(0);
2329   Value *Expo = Pow->getArgOperand(1);
2330   Function *Callee = Pow->getCalledFunction();
2331   StringRef Name = Callee->getName();
2332   Type *Ty = Pow->getType();
2333   Module *M = Pow->getModule();
2334   bool AllowApprox = Pow->hasApproxFunc();
2335   bool Ignored;
2336 
2337   // Propagate the math semantics from the call to any created instructions.
2338   IRBuilderBase::FastMathFlagGuard Guard(B);
2339   B.setFastMathFlags(Pow->getFastMathFlags());
2340   // Evaluate special cases related to the base.
2341 
2342   // pow(1.0, x) -> 1.0
2343   if (match(Base, m_FPOne()))
2344     return Base;
2345 
2346   if (Value *Exp = replacePowWithExp(Pow, B))
2347     return Exp;
2348 
2349   // Evaluate special cases related to the exponent.
2350 
2351   // pow(x, -1.0) -> 1.0 / x
2352   if (match(Expo, m_SpecificFP(-1.0)))
2353     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2354 
2355   // pow(x, +/-0.0) -> 1.0
2356   if (match(Expo, m_AnyZeroFP()))
2357     return ConstantFP::get(Ty, 1.0);
2358 
2359   // pow(x, 1.0) -> x
2360   if (match(Expo, m_FPOne()))
2361     return Base;
2362 
2363   // pow(x, 2.0) -> x * x
2364   if (match(Expo, m_SpecificFP(2.0)))
2365     return B.CreateFMul(Base, Base, "square");
2366 
2367   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2368     return Sqrt;
2369 
2370   // If we can approximate pow:
2371   // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2372   // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2373   const APFloat *ExpoF;
2374   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2375       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2376     APFloat ExpoA(abs(*ExpoF));
2377     APFloat ExpoI(*ExpoF);
2378     Value *Sqrt = nullptr;
2379     if (!ExpoA.isInteger()) {
2380       APFloat Expo2 = ExpoA;
2381       // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2382       // is no floating point exception and the result is an integer, then
2383       // ExpoA == integer + 0.5
2384       if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2385         return nullptr;
2386 
2387       if (!Expo2.isInteger())
2388         return nullptr;
2389 
2390       if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2391           APFloat::opInexact)
2392         return nullptr;
2393       if (!ExpoI.isInteger())
2394         return nullptr;
2395       ExpoF = &ExpoI;
2396 
2397       Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M,
2398                          B, TLI);
2399       if (!Sqrt)
2400         return nullptr;
2401     }
2402 
2403     // 0.5 fraction is now optionally handled.
2404     // Do pow -> powi for remaining integer exponent
2405     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2406     if (ExpoF->isInteger() &&
2407         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2408             APFloat::opOK) {
2409       Value *PowI = copyFlags(
2410           *Pow,
2411           createPowWithIntegerExponent(
2412               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2413               M, B));
2414 
2415       if (PowI && Sqrt)
2416         return B.CreateFMul(PowI, Sqrt);
2417 
2418       return PowI;
2419     }
2420   }
2421 
2422   // powf(x, itofp(y)) -> powi(x, y)
2423   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2424     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2425       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2426   }
2427 
2428   // Shrink pow() to powf() if the arguments are single precision,
2429   // unless the result is expected to be double precision.
2430   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2431       hasFloatVersion(M, Name)) {
2432     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2433       return Shrunk;
2434   }
2435 
2436   return nullptr;
2437 }
2438 
2439 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2440   Module *M = CI->getModule();
2441   Function *Callee = CI->getCalledFunction();
2442   StringRef Name = Callee->getName();
2443   Value *Ret = nullptr;
2444   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2445       hasFloatVersion(M, Name))
2446     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2447 
2448   // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we
2449   // have the libcall, emit the libcall.
2450   //
2451   // TODO: In principle we should be able to just always use the intrinsic for
2452   // any doesNotAccessMemory callsite.
2453 
2454   const bool UseIntrinsic = Callee->isIntrinsic();
2455   // Bail out for vectors because the code below only expects scalars.
2456   Type *Ty = CI->getType();
2457   if (!UseIntrinsic && Ty->isVectorTy())
2458     return Ret;
2459 
2460   // exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2461   // exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2462   Value *Op = CI->getArgOperand(0);
2463   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2464       (UseIntrinsic ||
2465        hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2466     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) {
2467       Constant *One = ConstantFP::get(Ty, 1.0);
2468 
2469       if (UseIntrinsic) {
2470         return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp,
2471                                                 {Ty, Exp->getType()},
2472                                                 {One, Exp}, CI));
2473       }
2474 
2475       IRBuilderBase::FastMathFlagGuard Guard(B);
2476       B.setFastMathFlags(CI->getFastMathFlags());
2477       return copyFlags(*CI, emitBinaryFloatFnCall(
2478                                 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2479                                 LibFunc_ldexpl, B, AttributeList()));
2480     }
2481   }
2482 
2483   return Ret;
2484 }
2485 
2486 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2487   Module *M = CI->getModule();
2488 
2489   // If we can shrink the call to a float function rather than a double
2490   // function, do that first.
2491   Function *Callee = CI->getCalledFunction();
2492   StringRef Name = Callee->getName();
2493   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2494     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2495       return Ret;
2496 
2497   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2498   // the intrinsics for improved optimization (for example, vectorization).
2499   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2500   // From the C standard draft WG14/N1256:
2501   // "Ideally, fmax would be sensitive to the sign of zero, for example
2502   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2503   // might be impractical."
2504   IRBuilderBase::FastMathFlagGuard Guard(B);
2505   FastMathFlags FMF = CI->getFastMathFlags();
2506   FMF.setNoSignedZeros();
2507   B.setFastMathFlags(FMF);
2508 
2509   Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum
2510                                                             : Intrinsic::maxnum;
2511   return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0),
2512                                                 CI->getArgOperand(1)));
2513 }
2514 
2515 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2516   Function *LogFn = Log->getCalledFunction();
2517   StringRef LogNm = LogFn->getName();
2518   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2519   Module *Mod = Log->getModule();
2520   Type *Ty = Log->getType();
2521 
2522   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2523     if (Value *Ret = optimizeUnaryDoubleFP(Log, B, TLI, true))
2524       return Ret;
2525 
2526   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2527 
2528   // This is only applicable to log(), log2(), log10().
2529   if (TLI->getLibFunc(LogNm, LogLb)) {
2530     switch (LogLb) {
2531     case LibFunc_logf:
2532       LogID = Intrinsic::log;
2533       ExpLb = LibFunc_expf;
2534       Exp2Lb = LibFunc_exp2f;
2535       Exp10Lb = LibFunc_exp10f;
2536       PowLb = LibFunc_powf;
2537       break;
2538     case LibFunc_log:
2539       LogID = Intrinsic::log;
2540       ExpLb = LibFunc_exp;
2541       Exp2Lb = LibFunc_exp2;
2542       Exp10Lb = LibFunc_exp10;
2543       PowLb = LibFunc_pow;
2544       break;
2545     case LibFunc_logl:
2546       LogID = Intrinsic::log;
2547       ExpLb = LibFunc_expl;
2548       Exp2Lb = LibFunc_exp2l;
2549       Exp10Lb = LibFunc_exp10l;
2550       PowLb = LibFunc_powl;
2551       break;
2552     case LibFunc_log2f:
2553       LogID = Intrinsic::log2;
2554       ExpLb = LibFunc_expf;
2555       Exp2Lb = LibFunc_exp2f;
2556       Exp10Lb = LibFunc_exp10f;
2557       PowLb = LibFunc_powf;
2558       break;
2559     case LibFunc_log2:
2560       LogID = Intrinsic::log2;
2561       ExpLb = LibFunc_exp;
2562       Exp2Lb = LibFunc_exp2;
2563       Exp10Lb = LibFunc_exp10;
2564       PowLb = LibFunc_pow;
2565       break;
2566     case LibFunc_log2l:
2567       LogID = Intrinsic::log2;
2568       ExpLb = LibFunc_expl;
2569       Exp2Lb = LibFunc_exp2l;
2570       Exp10Lb = LibFunc_exp10l;
2571       PowLb = LibFunc_powl;
2572       break;
2573     case LibFunc_log10f:
2574       LogID = Intrinsic::log10;
2575       ExpLb = LibFunc_expf;
2576       Exp2Lb = LibFunc_exp2f;
2577       Exp10Lb = LibFunc_exp10f;
2578       PowLb = LibFunc_powf;
2579       break;
2580     case LibFunc_log10:
2581       LogID = Intrinsic::log10;
2582       ExpLb = LibFunc_exp;
2583       Exp2Lb = LibFunc_exp2;
2584       Exp10Lb = LibFunc_exp10;
2585       PowLb = LibFunc_pow;
2586       break;
2587     case LibFunc_log10l:
2588       LogID = Intrinsic::log10;
2589       ExpLb = LibFunc_expl;
2590       Exp2Lb = LibFunc_exp2l;
2591       Exp10Lb = LibFunc_exp10l;
2592       PowLb = LibFunc_powl;
2593       break;
2594     default:
2595       return nullptr;
2596     }
2597 
2598     // Convert libcall to intrinsic if the value is known > 0.
2599     bool IsKnownNoErrno = Log->hasNoNaNs() && Log->hasNoInfs();
2600     if (!IsKnownNoErrno) {
2601       SimplifyQuery SQ(DL, TLI, DT, AC, Log, true, true, DC);
2602       KnownFPClass Known = computeKnownFPClass(
2603           Log->getOperand(0),
2604           KnownFPClass::OrderedLessThanZeroMask | fcSubnormal,
2605           /*Depth=*/0, SQ);
2606       Function *F = Log->getParent()->getParent();
2607       IsKnownNoErrno = Known.cannotBeOrderedLessThanZero() &&
2608                        Known.isKnownNeverLogicalZero(*F, Ty);
2609     }
2610     if (IsKnownNoErrno) {
2611       auto *NewLog = B.CreateUnaryIntrinsic(LogID, Log->getArgOperand(0), Log);
2612       NewLog->copyMetadata(*Log);
2613       return copyFlags(*Log, NewLog);
2614     }
2615   } else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2616              LogID == Intrinsic::log10) {
2617     if (Ty->getScalarType()->isFloatTy()) {
2618       ExpLb = LibFunc_expf;
2619       Exp2Lb = LibFunc_exp2f;
2620       Exp10Lb = LibFunc_exp10f;
2621       PowLb = LibFunc_powf;
2622     } else if (Ty->getScalarType()->isDoubleTy()) {
2623       ExpLb = LibFunc_exp;
2624       Exp2Lb = LibFunc_exp2;
2625       Exp10Lb = LibFunc_exp10;
2626       PowLb = LibFunc_pow;
2627     } else
2628       return nullptr;
2629   } else
2630     return nullptr;
2631 
2632   // The earlier call must also be 'fast' in order to do these transforms.
2633   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2634   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2635     return nullptr;
2636 
2637   IRBuilderBase::FastMathFlagGuard Guard(B);
2638   B.setFastMathFlags(FastMathFlags::getFast());
2639 
2640   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2641   LibFunc ArgLb = NotLibFunc;
2642   TLI->getLibFunc(*Arg, ArgLb);
2643 
2644   // log(pow(x,y)) -> y*log(x)
2645   AttributeList NoAttrs;
2646   if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2647     Value *LogX =
2648         Log->doesNotAccessMemory()
2649             ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log")
2650             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs);
2651     Value *Y = Arg->getArgOperand(1);
2652     // Cast exponent to FP if integer.
2653     if (ArgID == Intrinsic::powi)
2654       Y = B.CreateSIToFP(Y, Ty, "cast");
2655     Value *MulY = B.CreateFMul(Y, LogX, "mul");
2656     // Since pow() may have side effects, e.g. errno,
2657     // dead code elimination may not be trusted to remove it.
2658     substituteInParent(Arg, MulY);
2659     return MulY;
2660   }
2661 
2662   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2663   // TODO: There is no exp10() intrinsic yet.
2664   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2665            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2666     Constant *Eul;
2667     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2668       // FIXME: Add more precise value of e for long double.
2669       Eul = ConstantFP::get(Log->getType(), numbers::e);
2670     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2671       Eul = ConstantFP::get(Log->getType(), 2.0);
2672     else
2673       Eul = ConstantFP::get(Log->getType(), 10.0);
2674     Value *LogE = Log->doesNotAccessMemory()
2675                       ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log")
2676                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs);
2677     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2678     // Since exp() may have side effects, e.g. errno,
2679     // dead code elimination may not be trusted to remove it.
2680     substituteInParent(Arg, MulY);
2681     return MulY;
2682   }
2683 
2684   return nullptr;
2685 }
2686 
2687 // sqrt(exp(X)) -> exp(X * 0.5)
2688 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) {
2689   if (!CI->hasAllowReassoc())
2690     return nullptr;
2691 
2692   Function *SqrtFn = CI->getCalledFunction();
2693   CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0));
2694   if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse())
2695     return nullptr;
2696   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2697   LibFunc ArgLb = NotLibFunc;
2698   TLI->getLibFunc(*Arg, ArgLb);
2699 
2700   LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb;
2701 
2702   if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb))
2703     switch (SqrtLb) {
2704     case LibFunc_sqrtf:
2705       ExpLb = LibFunc_expf;
2706       Exp2Lb = LibFunc_exp2f;
2707       Exp10Lb = LibFunc_exp10f;
2708       break;
2709     case LibFunc_sqrt:
2710       ExpLb = LibFunc_exp;
2711       Exp2Lb = LibFunc_exp2;
2712       Exp10Lb = LibFunc_exp10;
2713       break;
2714     case LibFunc_sqrtl:
2715       ExpLb = LibFunc_expl;
2716       Exp2Lb = LibFunc_exp2l;
2717       Exp10Lb = LibFunc_exp10l;
2718       break;
2719     default:
2720       return nullptr;
2721     }
2722   else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) {
2723     if (CI->getType()->getScalarType()->isFloatTy()) {
2724       ExpLb = LibFunc_expf;
2725       Exp2Lb = LibFunc_exp2f;
2726       Exp10Lb = LibFunc_exp10f;
2727     } else if (CI->getType()->getScalarType()->isDoubleTy()) {
2728       ExpLb = LibFunc_exp;
2729       Exp2Lb = LibFunc_exp2;
2730       Exp10Lb = LibFunc_exp10;
2731     } else
2732       return nullptr;
2733   } else
2734     return nullptr;
2735 
2736   if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb &&
2737       ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2)
2738     return nullptr;
2739 
2740   IRBuilderBase::InsertPointGuard Guard(B);
2741   B.SetInsertPoint(Arg);
2742   auto *ExpOperand = Arg->getOperand(0);
2743   auto *FMul =
2744       B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5),
2745                       CI, "merged.sqrt");
2746 
2747   Arg->setOperand(0, FMul);
2748   return Arg;
2749 }
2750 
2751 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2752   Module *M = CI->getModule();
2753   Function *Callee = CI->getCalledFunction();
2754   Value *Ret = nullptr;
2755   // TODO: Once we have a way (other than checking for the existince of the
2756   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2757   // condition below.
2758   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2759       (Callee->getName() == "sqrt" ||
2760        Callee->getIntrinsicID() == Intrinsic::sqrt))
2761     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2762 
2763   if (Value *Opt = mergeSqrtToExp(CI, B))
2764     return Opt;
2765 
2766   if (!CI->isFast())
2767     return Ret;
2768 
2769   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2770   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2771     return Ret;
2772 
2773   // We're looking for a repeated factor in a multiplication tree,
2774   // so we can do this fold: sqrt(x * x) -> fabs(x);
2775   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2776   Value *Op0 = I->getOperand(0);
2777   Value *Op1 = I->getOperand(1);
2778   Value *RepeatOp = nullptr;
2779   Value *OtherOp = nullptr;
2780   if (Op0 == Op1) {
2781     // Simple match: the operands of the multiply are identical.
2782     RepeatOp = Op0;
2783   } else {
2784     // Look for a more complicated pattern: one of the operands is itself
2785     // a multiply, so search for a common factor in that multiply.
2786     // Note: We don't bother looking any deeper than this first level or for
2787     // variations of this pattern because instcombine's visitFMUL and/or the
2788     // reassociation pass should give us this form.
2789     Value *MulOp;
2790     if (match(Op0, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) &&
2791         cast<Instruction>(Op0)->isFast()) {
2792       // Pattern: sqrt((x * x) * z)
2793       RepeatOp = MulOp;
2794       OtherOp = Op1;
2795     } else if (match(Op1, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) &&
2796                cast<Instruction>(Op1)->isFast()) {
2797       // Pattern: sqrt(z * (x * x))
2798       RepeatOp = MulOp;
2799       OtherOp = Op0;
2800     }
2801   }
2802   if (!RepeatOp)
2803     return Ret;
2804 
2805   // Fast math flags for any created instructions should match the sqrt
2806   // and multiply.
2807   IRBuilderBase::FastMathFlagGuard Guard(B);
2808   B.setFastMathFlags(I->getFastMathFlags());
2809 
2810   // If we found a repeated factor, hoist it out of the square root and
2811   // replace it with the fabs of that factor.
2812   Value *FabsCall =
2813       B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs");
2814   if (OtherOp) {
2815     // If we found a non-repeated factor, we still need to get its square
2816     // root. We then multiply that by the value that was simplified out
2817     // of the square root calculation.
2818     Value *SqrtCall =
2819         B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt");
2820     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2821   }
2822   return copyFlags(*CI, FabsCall);
2823 }
2824 
2825 Value *LibCallSimplifier::optimizeFMod(CallInst *CI, IRBuilderBase &B) {
2826 
2827   // fmod(x,y) can set errno if y == 0 or x == +/-inf, and returns Nan in those
2828   // case. If we know those do not happen, then we can convert the fmod into
2829   // frem.
2830   bool IsNoNan = CI->hasNoNaNs();
2831   if (!IsNoNan) {
2832     SimplifyQuery SQ(DL, TLI, DT, AC, CI, true, true, DC);
2833     KnownFPClass Known0 = computeKnownFPClass(CI->getOperand(0), fcInf,
2834                                               /*Depth=*/0, SQ);
2835     if (Known0.isKnownNeverInfinity()) {
2836       KnownFPClass Known1 =
2837           computeKnownFPClass(CI->getOperand(1), fcZero | fcSubnormal,
2838                               /*Depth=*/0, SQ);
2839       Function *F = CI->getParent()->getParent();
2840       IsNoNan = Known1.isKnownNeverLogicalZero(*F, CI->getType());
2841     }
2842   }
2843 
2844   if (IsNoNan) {
2845     Value *FRem = B.CreateFRemFMF(CI->getOperand(0), CI->getOperand(1), CI);
2846     if (auto *FRemI = dyn_cast<Instruction>(FRem))
2847       FRemI->setHasNoNaNs(true);
2848     return FRem;
2849   }
2850   return nullptr;
2851 }
2852 
2853 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI,
2854                                                      IRBuilderBase &B) {
2855   Module *M = CI->getModule();
2856   Function *Callee = CI->getCalledFunction();
2857   Value *Ret = nullptr;
2858   StringRef Name = Callee->getName();
2859   if (UnsafeFPShrink &&
2860       (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" ||
2861        Name == "asinh") &&
2862       hasFloatVersion(M, Name))
2863     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2864 
2865   Value *Op1 = CI->getArgOperand(0);
2866   auto *OpC = dyn_cast<CallInst>(Op1);
2867   if (!OpC)
2868     return Ret;
2869 
2870   // Both calls must be 'fast' in order to remove them.
2871   if (!CI->isFast() || !OpC->isFast())
2872     return Ret;
2873 
2874   // tan(atan(x)) -> x
2875   // atanh(tanh(x)) -> x
2876   // sinh(asinh(x)) -> x
2877   // asinh(sinh(x)) -> x
2878   // cosh(acosh(x)) -> x
2879   LibFunc Func;
2880   Function *F = OpC->getCalledFunction();
2881   if (F && TLI->getLibFunc(F->getName(), Func) &&
2882       isLibFuncEmittable(M, TLI, Func)) {
2883     LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName())
2884                               .Case("tan", LibFunc_atan)
2885                               .Case("atanh", LibFunc_tanh)
2886                               .Case("sinh", LibFunc_asinh)
2887                               .Case("cosh", LibFunc_acosh)
2888                               .Case("tanf", LibFunc_atanf)
2889                               .Case("atanhf", LibFunc_tanhf)
2890                               .Case("sinhf", LibFunc_asinhf)
2891                               .Case("coshf", LibFunc_acoshf)
2892                               .Case("tanl", LibFunc_atanl)
2893                               .Case("atanhl", LibFunc_tanhl)
2894                               .Case("sinhl", LibFunc_asinhl)
2895                               .Case("coshl", LibFunc_acoshl)
2896                               .Case("asinh", LibFunc_sinh)
2897                               .Case("asinhf", LibFunc_sinhf)
2898                               .Case("asinhl", LibFunc_sinhl)
2899                               .Default(NumLibFuncs); // Used as error value
2900     if (Func == inverseFunc)
2901       Ret = OpC->getArgOperand(0);
2902   }
2903   return Ret;
2904 }
2905 
2906 static bool isTrigLibCall(CallInst *CI) {
2907   // We can only hope to do anything useful if we can ignore things like errno
2908   // and floating-point exceptions.
2909   // We already checked the prototype.
2910   return CI->doesNotThrow() && CI->doesNotAccessMemory();
2911 }
2912 
2913 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2914                              bool UseFloat, Value *&Sin, Value *&Cos,
2915                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2916   Module *M = OrigCallee->getParent();
2917   Type *ArgTy = Arg->getType();
2918   Type *ResTy;
2919   StringRef Name;
2920 
2921   Triple T(OrigCallee->getParent()->getTargetTriple());
2922   if (UseFloat) {
2923     Name = "__sincospif_stret";
2924 
2925     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2926     // x86_64 can't use {float, float} since that would be returned in both
2927     // xmm0 and xmm1, which isn't what a real struct would do.
2928     ResTy = T.getArch() == Triple::x86_64
2929                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2930                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2931   } else {
2932     Name = "__sincospi_stret";
2933     ResTy = StructType::get(ArgTy, ArgTy);
2934   }
2935 
2936   if (!isLibFuncEmittable(M, TLI, Name))
2937     return false;
2938   LibFunc TheLibFunc;
2939   TLI->getLibFunc(Name, TheLibFunc);
2940   FunctionCallee Callee = getOrInsertLibFunc(
2941       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2942 
2943   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2944     // If the argument is an instruction, it must dominate all uses so put our
2945     // sincos call there.
2946     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2947   } else {
2948     // Otherwise (e.g. for a constant) the beginning of the function is as
2949     // good a place as any.
2950     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2951     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2952   }
2953 
2954   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2955 
2956   if (SinCos->getType()->isStructTy()) {
2957     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2958     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2959   } else {
2960     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2961                                  "sinpi");
2962     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2963                                  "cospi");
2964   }
2965 
2966   return true;
2967 }
2968 
2969 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven,
2970                                     IRBuilderBase &B) {
2971   Value *X;
2972   Value *Src = CI->getArgOperand(0);
2973 
2974   if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) {
2975     IRBuilderBase::FastMathFlagGuard Guard(B);
2976     B.setFastMathFlags(CI->getFastMathFlags());
2977 
2978     auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2979     if (IsEven) {
2980       // Even function: f(-x) = f(x)
2981       return CallInst;
2982     }
2983     // Odd function: f(-x) = -f(x)
2984     return B.CreateFNeg(CallInst);
2985   }
2986 
2987   // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x)
2988   if (IsEven && (match(Src, m_FAbs(m_Value(X))) ||
2989                  match(Src, m_CopySign(m_Value(X), m_Value())))) {
2990     IRBuilderBase::FastMathFlagGuard Guard(B);
2991     B.setFastMathFlags(CI->getFastMathFlags());
2992 
2993     auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2994     return CallInst;
2995   }
2996 
2997   return nullptr;
2998 }
2999 
3000 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func,
3001                                             IRBuilderBase &B) {
3002   switch (Func) {
3003   case LibFunc_cos:
3004   case LibFunc_cosf:
3005   case LibFunc_cosl:
3006     return optimizeSymmetricCall(CI, /*IsEven*/ true, B);
3007 
3008   case LibFunc_sin:
3009   case LibFunc_sinf:
3010   case LibFunc_sinl:
3011 
3012   case LibFunc_tan:
3013   case LibFunc_tanf:
3014   case LibFunc_tanl:
3015 
3016   case LibFunc_erf:
3017   case LibFunc_erff:
3018   case LibFunc_erfl:
3019     return optimizeSymmetricCall(CI, /*IsEven*/ false, B);
3020 
3021   default:
3022     return nullptr;
3023   }
3024 }
3025 
3026 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) {
3027   // Make sure the prototype is as expected, otherwise the rest of the
3028   // function is probably invalid and likely to abort.
3029   if (!isTrigLibCall(CI))
3030     return nullptr;
3031 
3032   Value *Arg = CI->getArgOperand(0);
3033   SmallVector<CallInst *, 1> SinCalls;
3034   SmallVector<CallInst *, 1> CosCalls;
3035   SmallVector<CallInst *, 1> SinCosCalls;
3036 
3037   bool IsFloat = Arg->getType()->isFloatTy();
3038 
3039   // Look for all compatible sinpi, cospi and sincospi calls with the same
3040   // argument. If there are enough (in some sense) we can make the
3041   // substitution.
3042   Function *F = CI->getFunction();
3043   for (User *U : Arg->users())
3044     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
3045 
3046   // It's only worthwhile if both sinpi and cospi are actually used.
3047   if (SinCalls.empty() || CosCalls.empty())
3048     return nullptr;
3049 
3050   Value *Sin, *Cos, *SinCos;
3051   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
3052                         SinCos, TLI))
3053     return nullptr;
3054 
3055   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
3056                                  Value *Res) {
3057     for (CallInst *C : Calls)
3058       replaceAllUsesWith(C, Res);
3059   };
3060 
3061   replaceTrigInsts(SinCalls, Sin);
3062   replaceTrigInsts(CosCalls, Cos);
3063   replaceTrigInsts(SinCosCalls, SinCos);
3064 
3065   return IsSin ? Sin : Cos;
3066 }
3067 
3068 void LibCallSimplifier::classifyArgUse(
3069     Value *Val, Function *F, bool IsFloat,
3070     SmallVectorImpl<CallInst *> &SinCalls,
3071     SmallVectorImpl<CallInst *> &CosCalls,
3072     SmallVectorImpl<CallInst *> &SinCosCalls) {
3073   auto *CI = dyn_cast<CallInst>(Val);
3074   if (!CI || CI->use_empty())
3075     return;
3076 
3077   // Don't consider calls in other functions.
3078   if (CI->getFunction() != F)
3079     return;
3080 
3081   Module *M = CI->getModule();
3082   Function *Callee = CI->getCalledFunction();
3083   LibFunc Func;
3084   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
3085       !isLibFuncEmittable(M, TLI, Func) ||
3086       !isTrigLibCall(CI))
3087     return;
3088 
3089   if (IsFloat) {
3090     if (Func == LibFunc_sinpif)
3091       SinCalls.push_back(CI);
3092     else if (Func == LibFunc_cospif)
3093       CosCalls.push_back(CI);
3094     else if (Func == LibFunc_sincospif_stret)
3095       SinCosCalls.push_back(CI);
3096   } else {
3097     if (Func == LibFunc_sinpi)
3098       SinCalls.push_back(CI);
3099     else if (Func == LibFunc_cospi)
3100       CosCalls.push_back(CI);
3101     else if (Func == LibFunc_sincospi_stret)
3102       SinCosCalls.push_back(CI);
3103   }
3104 }
3105 
3106 /// Constant folds remquo
3107 Value *LibCallSimplifier::optimizeRemquo(CallInst *CI, IRBuilderBase &B) {
3108   const APFloat *X, *Y;
3109   if (!match(CI->getArgOperand(0), m_APFloat(X)) ||
3110       !match(CI->getArgOperand(1), m_APFloat(Y)))
3111     return nullptr;
3112 
3113   APFloat::opStatus Status;
3114   APFloat Quot = *X;
3115   Status = Quot.divide(*Y, APFloat::rmNearestTiesToEven);
3116   if (Status != APFloat::opOK && Status != APFloat::opInexact)
3117     return nullptr;
3118   APFloat Rem = *X;
3119   if (Rem.remainder(*Y) != APFloat::opOK)
3120     return nullptr;
3121 
3122   // TODO: We can only keep at least the three of the last bits of x/y
3123   unsigned IntBW = TLI->getIntSize();
3124   APSInt QuotInt(IntBW, /*isUnsigned=*/false);
3125   bool IsExact;
3126   Status =
3127       Quot.convertToInteger(QuotInt, APFloat::rmNearestTiesToEven, &IsExact);
3128   if (Status != APFloat::opOK && Status != APFloat::opInexact)
3129     return nullptr;
3130 
3131   B.CreateAlignedStore(
3132       ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()),
3133       CI->getArgOperand(2), CI->getParamAlign(2));
3134   return ConstantFP::get(CI->getType(), Rem);
3135 }
3136 
3137 /// Constant folds fdim
3138 Value *LibCallSimplifier::optimizeFdim(CallInst *CI, IRBuilderBase &B) {
3139   // Cannot perform the fold unless the call has attribute memory(none)
3140   if (!CI->doesNotAccessMemory())
3141     return nullptr;
3142 
3143   // TODO : Handle undef values
3144   // Propagate poison if any
3145   if (isa<PoisonValue>(CI->getArgOperand(0)))
3146     return CI->getArgOperand(0);
3147   if (isa<PoisonValue>(CI->getArgOperand(1)))
3148     return CI->getArgOperand(1);
3149 
3150   const APFloat *X, *Y;
3151   // Check if both values are constants
3152   if (!match(CI->getArgOperand(0), m_APFloat(X)) ||
3153       !match(CI->getArgOperand(1), m_APFloat(Y)))
3154     return nullptr;
3155 
3156   APFloat Difference = *X;
3157   Difference.subtract(*Y, RoundingMode::NearestTiesToEven);
3158 
3159   APFloat MaxVal =
3160       maximum(Difference, APFloat::getZero(CI->getType()->getFltSemantics()));
3161   return ConstantFP::get(CI->getType(), MaxVal);
3162 }
3163 
3164 //===----------------------------------------------------------------------===//
3165 // Integer Library Call Optimizations
3166 //===----------------------------------------------------------------------===//
3167 
3168 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
3169   // All variants of ffs return int which need not be 32 bits wide.
3170   // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
3171   Type *RetType = CI->getType();
3172   Value *Op = CI->getArgOperand(0);
3173   Type *ArgType = Op->getType();
3174   Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()},
3175                                nullptr, "cttz");
3176   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
3177   V = B.CreateIntCast(V, RetType, false);
3178 
3179   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
3180   return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
3181 }
3182 
3183 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
3184   // All variants of fls return int which need not be 32 bits wide.
3185   // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
3186   Value *Op = CI->getArgOperand(0);
3187   Type *ArgType = Op->getType();
3188   Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()},
3189                                nullptr, "ctlz");
3190   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
3191                   V);
3192   return B.CreateIntCast(V, CI->getType(), false);
3193 }
3194 
3195 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
3196   // abs(x) -> x <s 0 ? -x : x
3197   // The negation has 'nsw' because abs of INT_MIN is undefined.
3198   Value *X = CI->getArgOperand(0);
3199   Value *IsNeg = B.CreateIsNeg(X);
3200   Value *NegX = B.CreateNSWNeg(X, "neg");
3201   return B.CreateSelect(IsNeg, NegX, X);
3202 }
3203 
3204 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
3205   // isdigit(c) -> (c-'0') <u 10
3206   Value *Op = CI->getArgOperand(0);
3207   Type *ArgType = Op->getType();
3208   Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
3209   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
3210   return B.CreateZExt(Op, CI->getType());
3211 }
3212 
3213 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
3214   // isascii(c) -> c <u 128
3215   Value *Op = CI->getArgOperand(0);
3216   Type *ArgType = Op->getType();
3217   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
3218   return B.CreateZExt(Op, CI->getType());
3219 }
3220 
3221 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
3222   // toascii(c) -> c & 0x7f
3223   return B.CreateAnd(CI->getArgOperand(0),
3224                      ConstantInt::get(CI->getType(), 0x7F));
3225 }
3226 
3227 // Fold calls to atoi, atol, and atoll.
3228 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
3229   CI->addParamAttr(0, Attribute::NoCapture);
3230 
3231   StringRef Str;
3232   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3233     return nullptr;
3234 
3235   return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
3236 }
3237 
3238 // Fold calls to strtol, strtoll, strtoul, and strtoull.
3239 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
3240                                            bool AsSigned) {
3241   Value *EndPtr = CI->getArgOperand(1);
3242   if (isa<ConstantPointerNull>(EndPtr)) {
3243     // With a null EndPtr, this function won't capture the main argument.
3244     // It would be readonly too, except that it still may write to errno.
3245     CI->addParamAttr(0, Attribute::NoCapture);
3246     EndPtr = nullptr;
3247   } else if (!isKnownNonZero(EndPtr, DL))
3248     return nullptr;
3249 
3250   StringRef Str;
3251   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3252     return nullptr;
3253 
3254   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
3255     return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
3256   }
3257 
3258   return nullptr;
3259 }
3260 
3261 //===----------------------------------------------------------------------===//
3262 // Formatting and IO Library Call Optimizations
3263 //===----------------------------------------------------------------------===//
3264 
3265 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
3266 
3267 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
3268                                                  int StreamArg) {
3269   Function *Callee = CI->getCalledFunction();
3270   // Error reporting calls should be cold, mark them as such.
3271   // This applies even to non-builtin calls: it is only a hint and applies to
3272   // functions that the frontend might not understand as builtins.
3273 
3274   // This heuristic was suggested in:
3275   // Improving Static Branch Prediction in a Compiler
3276   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
3277   // Proceedings of PACT'98, Oct. 1998, IEEE
3278   if (!CI->hasFnAttr(Attribute::Cold) &&
3279       isReportingError(Callee, CI, StreamArg)) {
3280     CI->addFnAttr(Attribute::Cold);
3281   }
3282 
3283   return nullptr;
3284 }
3285 
3286 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
3287   if (!Callee || !Callee->isDeclaration())
3288     return false;
3289 
3290   if (StreamArg < 0)
3291     return true;
3292 
3293   // These functions might be considered cold, but only if their stream
3294   // argument is stderr.
3295 
3296   if (StreamArg >= (int)CI->arg_size())
3297     return false;
3298   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
3299   if (!LI)
3300     return false;
3301   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
3302   if (!GV || !GV->isDeclaration())
3303     return false;
3304   return GV->getName() == "stderr";
3305 }
3306 
3307 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
3308   // Check for a fixed format string.
3309   StringRef FormatStr;
3310   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
3311     return nullptr;
3312 
3313   // Empty format string -> noop.
3314   if (FormatStr.empty()) // Tolerate printf's declared void.
3315     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
3316 
3317   // Do not do any of the following transformations if the printf return value
3318   // is used, in general the printf return value is not compatible with either
3319   // putchar() or puts().
3320   if (!CI->use_empty())
3321     return nullptr;
3322 
3323   Type *IntTy = CI->getType();
3324   // printf("x") -> putchar('x'), even for "%" and "%%".
3325   if (FormatStr.size() == 1 || FormatStr == "%%") {
3326     // Convert the character to unsigned char before passing it to putchar
3327     // to avoid host-specific sign extension in the IR.  Putchar converts
3328     // it to unsigned char regardless.
3329     Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
3330     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3331   }
3332 
3333   // Try to remove call or emit putchar/puts.
3334   if (FormatStr == "%s" && CI->arg_size() > 1) {
3335     StringRef OperandStr;
3336     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
3337       return nullptr;
3338     // printf("%s", "") --> NOP
3339     if (OperandStr.empty())
3340       return (Value *)CI;
3341     // printf("%s", "a") --> putchar('a')
3342     if (OperandStr.size() == 1) {
3343       // Convert the character to unsigned char before passing it to putchar
3344       // to avoid host-specific sign extension in the IR.  Putchar converts
3345       // it to unsigned char regardless.
3346       Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
3347       return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3348     }
3349     // printf("%s", str"\n") --> puts(str)
3350     if (OperandStr.back() == '\n') {
3351       OperandStr = OperandStr.drop_back();
3352       Value *GV = B.CreateGlobalString(OperandStr, "str",
3353                                        DL.getDefaultGlobalsAddressSpace());
3354       return copyFlags(*CI, emitPutS(GV, B, TLI));
3355     }
3356     return nullptr;
3357   }
3358 
3359   // printf("foo\n") --> puts("foo")
3360   if (FormatStr.back() == '\n' &&
3361       !FormatStr.contains('%')) { // No format characters.
3362     // Create a string literal with no \n on it.  We expect the constant merge
3363     // pass to be run after this pass, to merge duplicate strings.
3364     FormatStr = FormatStr.drop_back();
3365     Value *GV = B.CreateGlobalString(FormatStr, "str",
3366                                      DL.getDefaultGlobalsAddressSpace());
3367     return copyFlags(*CI, emitPutS(GV, B, TLI));
3368   }
3369 
3370   // Optimize specific format strings.
3371   // printf("%c", chr) --> putchar(chr)
3372   if (FormatStr == "%c" && CI->arg_size() > 1 &&
3373       CI->getArgOperand(1)->getType()->isIntegerTy()) {
3374     // Convert the argument to the type expected by putchar, i.e., int, which
3375     // need not be 32 bits wide but which is the same as printf's return type.
3376     Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
3377     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3378   }
3379 
3380   // printf("%s\n", str) --> puts(str)
3381   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
3382       CI->getArgOperand(1)->getType()->isPointerTy())
3383     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
3384   return nullptr;
3385 }
3386 
3387 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
3388 
3389   Module *M = CI->getModule();
3390   Function *Callee = CI->getCalledFunction();
3391   FunctionType *FT = Callee->getFunctionType();
3392   if (Value *V = optimizePrintFString(CI, B)) {
3393     return V;
3394   }
3395 
3396   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3397 
3398   // printf(format, ...) -> iprintf(format, ...) if no floating point
3399   // arguments.
3400   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
3401       !callHasFloatingPointArgument(CI)) {
3402     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
3403                                                   Callee->getAttributes());
3404     CallInst *New = cast<CallInst>(CI->clone());
3405     New->setCalledFunction(IPrintFFn);
3406     B.Insert(New);
3407     return New;
3408   }
3409 
3410   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3411   // arguments.
3412   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
3413       !callHasFP128Argument(CI)) {
3414     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
3415                                             Callee->getAttributes());
3416     CallInst *New = cast<CallInst>(CI->clone());
3417     New->setCalledFunction(SmallPrintFFn);
3418     B.Insert(New);
3419     return New;
3420   }
3421 
3422   return nullptr;
3423 }
3424 
3425 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
3426                                                 IRBuilderBase &B) {
3427   // Check for a fixed format string.
3428   StringRef FormatStr;
3429   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3430     return nullptr;
3431 
3432   // If we just have a format string (nothing else crazy) transform it.
3433   Value *Dest = CI->getArgOperand(0);
3434   if (CI->arg_size() == 2) {
3435     // Make sure there's no % in the constant array.  We could try to handle
3436     // %% -> % in the future if we cared.
3437     if (FormatStr.contains('%'))
3438       return nullptr; // we found a format specifier, bail out.
3439 
3440     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3441     B.CreateMemCpy(
3442         Dest, Align(1), CI->getArgOperand(1), Align(1),
3443         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
3444                          FormatStr.size() + 1)); // Copy the null byte.
3445     return ConstantInt::get(CI->getType(), FormatStr.size());
3446   }
3447 
3448   // The remaining optimizations require the format string to be "%s" or "%c"
3449   // and have an extra operand.
3450   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3451     return nullptr;
3452 
3453   // Decode the second character of the format string.
3454   if (FormatStr[1] == 'c') {
3455     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3456     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3457       return nullptr;
3458     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
3459     Value *Ptr = Dest;
3460     B.CreateStore(V, Ptr);
3461     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3462     B.CreateStore(B.getInt8(0), Ptr);
3463 
3464     return ConstantInt::get(CI->getType(), 1);
3465   }
3466 
3467   if (FormatStr[1] == 's') {
3468     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3469     // strlen(str)+1)
3470     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3471       return nullptr;
3472 
3473     if (CI->use_empty())
3474       // sprintf(dest, "%s", str) -> strcpy(dest, str)
3475       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
3476 
3477     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
3478     if (SrcLen) {
3479       B.CreateMemCpy(
3480           Dest, Align(1), CI->getArgOperand(2), Align(1),
3481           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
3482       // Returns total number of characters written without null-character.
3483       return ConstantInt::get(CI->getType(), SrcLen - 1);
3484     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
3485       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3486       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
3487       return B.CreateIntCast(PtrDiff, CI->getType(), false);
3488     }
3489 
3490     if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3491                                     PGSOQueryType::IRPass))
3492       return nullptr;
3493 
3494     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
3495     if (!Len)
3496       return nullptr;
3497     Value *IncLen =
3498         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3499     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
3500 
3501     // The sprintf result is the unincremented number of bytes in the string.
3502     return B.CreateIntCast(Len, CI->getType(), false);
3503   }
3504   return nullptr;
3505 }
3506 
3507 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3508   Module *M = CI->getModule();
3509   Function *Callee = CI->getCalledFunction();
3510   FunctionType *FT = Callee->getFunctionType();
3511   if (Value *V = optimizeSPrintFString(CI, B)) {
3512     return V;
3513   }
3514 
3515   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
3516 
3517   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3518   // point arguments.
3519   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
3520       !callHasFloatingPointArgument(CI)) {
3521     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
3522                                                    FT, Callee->getAttributes());
3523     CallInst *New = cast<CallInst>(CI->clone());
3524     New->setCalledFunction(SIPrintFFn);
3525     B.Insert(New);
3526     return New;
3527   }
3528 
3529   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3530   // floating point arguments.
3531   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
3532       !callHasFP128Argument(CI)) {
3533     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3534                                              Callee->getAttributes());
3535     CallInst *New = cast<CallInst>(CI->clone());
3536     New->setCalledFunction(SmallSPrintFFn);
3537     B.Insert(New);
3538     return New;
3539   }
3540 
3541   return nullptr;
3542 }
3543 
3544 // Transform an snprintf call CI with the bound N to format the string Str
3545 // either to a call to memcpy, or to single character a store, or to nothing,
3546 // and fold the result to a constant.  A nonnull StrArg refers to the string
3547 // argument being formatted.  Otherwise the call is one with N < 2 and
3548 // the "%c" directive to format a single character.
3549 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3550                                              StringRef Str, uint64_t N,
3551                                              IRBuilderBase &B) {
3552   assert(StrArg || (N < 2 && Str.size() == 1));
3553 
3554   unsigned IntBits = TLI->getIntSize();
3555   uint64_t IntMax = maxIntN(IntBits);
3556   if (Str.size() > IntMax)
3557     // Bail if the string is longer than INT_MAX.  POSIX requires
3558     // implementations to set errno to EOVERFLOW in this case, in
3559     // addition to when N is larger than that (checked by the caller).
3560     return nullptr;
3561 
3562   Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3563   if (N == 0)
3564     return StrLen;
3565 
3566   // Set to the number of bytes to copy fron StrArg which is also
3567   // the offset of the terinating nul.
3568   uint64_t NCopy;
3569   if (N > Str.size())
3570     // Copy the full string, including the terminating nul (which must
3571     // be present regardless of the bound).
3572     NCopy = Str.size() + 1;
3573   else
3574     NCopy = N - 1;
3575 
3576   Value *DstArg = CI->getArgOperand(0);
3577   if (NCopy && StrArg)
3578     // Transform the call to lvm.memcpy(dst, fmt, N).
3579     copyFlags(
3580          *CI,
3581           B.CreateMemCpy(
3582                          DstArg, Align(1), StrArg, Align(1),
3583               ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy)));
3584 
3585   if (N > Str.size())
3586     // Return early when the whole format string, including the final nul,
3587     // has been copied.
3588     return StrLen;
3589 
3590   // Otherwise, when truncating the string append a terminating nul.
3591   Type *Int8Ty = B.getInt8Ty();
3592   Value *NulOff = B.getIntN(IntBits, NCopy);
3593   Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3594   B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3595   return StrLen;
3596 }
3597 
3598 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3599                                                  IRBuilderBase &B) {
3600   // Check for size
3601   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3602   if (!Size)
3603     return nullptr;
3604 
3605   uint64_t N = Size->getZExtValue();
3606   uint64_t IntMax = maxIntN(TLI->getIntSize());
3607   if (N > IntMax)
3608     // Bail if the bound exceeds INT_MAX.  POSIX requires implementations
3609     // to set errno to EOVERFLOW in this case.
3610     return nullptr;
3611 
3612   Value *DstArg = CI->getArgOperand(0);
3613   Value *FmtArg = CI->getArgOperand(2);
3614 
3615   // Check for a fixed format string.
3616   StringRef FormatStr;
3617   if (!getConstantStringInfo(FmtArg, FormatStr))
3618     return nullptr;
3619 
3620   // If we just have a format string (nothing else crazy) transform it.
3621   if (CI->arg_size() == 3) {
3622     if (FormatStr.contains('%'))
3623       // Bail if the format string contains a directive and there are
3624       // no arguments.  We could handle "%%" in the future.
3625       return nullptr;
3626 
3627     return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3628   }
3629 
3630   // The remaining optimizations require the format string to be "%s" or "%c"
3631   // and have an extra operand.
3632   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3633     return nullptr;
3634 
3635   // Decode the second character of the format string.
3636   if (FormatStr[1] == 'c') {
3637     if (N <= 1) {
3638       // Use an arbitary string of length 1 to transform the call into
3639       // either a nul store (N == 1) or a no-op (N == 0) and fold it
3640       // to one.
3641       StringRef CharStr("*");
3642       return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3643     }
3644 
3645     // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3646     if (!CI->getArgOperand(3)->getType()->isIntegerTy())
3647       return nullptr;
3648     Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
3649     Value *Ptr = DstArg;
3650     B.CreateStore(V, Ptr);
3651     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3652     B.CreateStore(B.getInt8(0), Ptr);
3653     return ConstantInt::get(CI->getType(), 1);
3654   }
3655 
3656   if (FormatStr[1] != 's')
3657     return nullptr;
3658 
3659   Value *StrArg = CI->getArgOperand(3);
3660   // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3661   StringRef Str;
3662   if (!getConstantStringInfo(StrArg, Str))
3663     return nullptr;
3664 
3665   return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3666 }
3667 
3668 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3669   if (Value *V = optimizeSnPrintFString(CI, B)) {
3670     return V;
3671   }
3672 
3673   if (isKnownNonZero(CI->getOperand(1), DL))
3674     annotateNonNullNoUndefBasedOnAccess(CI, 0);
3675   return nullptr;
3676 }
3677 
3678 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3679                                                 IRBuilderBase &B) {
3680   optimizeErrorReporting(CI, B, 0);
3681 
3682   // All the optimizations depend on the format string.
3683   StringRef FormatStr;
3684   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3685     return nullptr;
3686 
3687   // Do not do any of the following transformations if the fprintf return
3688   // value is used, in general the fprintf return value is not compatible
3689   // with fwrite(), fputc() or fputs().
3690   if (!CI->use_empty())
3691     return nullptr;
3692 
3693   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3694   if (CI->arg_size() == 2) {
3695     // Could handle %% -> % if we cared.
3696     if (FormatStr.contains('%'))
3697       return nullptr; // We found a format specifier.
3698 
3699     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3700     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3701     return copyFlags(
3702         *CI, emitFWrite(CI->getArgOperand(1),
3703                         ConstantInt::get(SizeTTy, FormatStr.size()),
3704                         CI->getArgOperand(0), B, DL, TLI));
3705   }
3706 
3707   // The remaining optimizations require the format string to be "%s" or "%c"
3708   // and have an extra operand.
3709   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3710     return nullptr;
3711 
3712   // Decode the second character of the format string.
3713   if (FormatStr[1] == 'c') {
3714     // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3715     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3716       return nullptr;
3717     Type *IntTy = B.getIntNTy(TLI->getIntSize());
3718     Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true,
3719                                "chari");
3720     return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI));
3721   }
3722 
3723   if (FormatStr[1] == 's') {
3724     // fprintf(F, "%s", str) --> fputs(str, F)
3725     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3726       return nullptr;
3727     return copyFlags(
3728         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3729   }
3730   return nullptr;
3731 }
3732 
3733 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3734   Module *M = CI->getModule();
3735   Function *Callee = CI->getCalledFunction();
3736   FunctionType *FT = Callee->getFunctionType();
3737   if (Value *V = optimizeFPrintFString(CI, B)) {
3738     return V;
3739   }
3740 
3741   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3742   // floating point arguments.
3743   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3744       !callHasFloatingPointArgument(CI)) {
3745     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3746                                                    FT, Callee->getAttributes());
3747     CallInst *New = cast<CallInst>(CI->clone());
3748     New->setCalledFunction(FIPrintFFn);
3749     B.Insert(New);
3750     return New;
3751   }
3752 
3753   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3754   // 128-bit floating point arguments.
3755   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3756       !callHasFP128Argument(CI)) {
3757     auto SmallFPrintFFn =
3758         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3759                            Callee->getAttributes());
3760     CallInst *New = cast<CallInst>(CI->clone());
3761     New->setCalledFunction(SmallFPrintFFn);
3762     B.Insert(New);
3763     return New;
3764   }
3765 
3766   return nullptr;
3767 }
3768 
3769 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3770   optimizeErrorReporting(CI, B, 3);
3771 
3772   // Get the element size and count.
3773   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3774   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3775   if (SizeC && CountC) {
3776     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3777 
3778     // If this is writing zero records, remove the call (it's a noop).
3779     if (Bytes == 0)
3780       return ConstantInt::get(CI->getType(), 0);
3781 
3782     // If this is writing one byte, turn it into fputc.
3783     // This optimisation is only valid, if the return value is unused.
3784     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3785       Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char");
3786       Type *IntTy = B.getIntNTy(TLI->getIntSize());
3787       Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari");
3788       Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI);
3789       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3790     }
3791   }
3792 
3793   return nullptr;
3794 }
3795 
3796 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3797   optimizeErrorReporting(CI, B, 1);
3798 
3799   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3800   // requires more arguments and thus extra MOVs are required.
3801   if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3802                                   PGSOQueryType::IRPass))
3803     return nullptr;
3804 
3805   // We can't optimize if return value is used.
3806   if (!CI->use_empty())
3807     return nullptr;
3808 
3809   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3810   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3811   if (!Len)
3812     return nullptr;
3813 
3814   // Known to have no uses (see above).
3815   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3816   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3817   return copyFlags(
3818       *CI,
3819       emitFWrite(CI->getArgOperand(0),
3820                  ConstantInt::get(SizeTTy, Len - 1),
3821                  CI->getArgOperand(1), B, DL, TLI));
3822 }
3823 
3824 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3825   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3826   if (!CI->use_empty())
3827     return nullptr;
3828 
3829   // Check for a constant string.
3830   // puts("") -> putchar('\n')
3831   StringRef Str;
3832   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
3833     // putchar takes an argument of the same type as puts returns, i.e.,
3834     // int, which need not be 32 bits wide.
3835     Type *IntTy = CI->getType();
3836     return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
3837   }
3838 
3839   return nullptr;
3840 }
3841 
3842 Value *LibCallSimplifier::optimizeExit(CallInst *CI) {
3843 
3844   // Mark 'exit' as cold if its not exit(0) (success).
3845   const APInt *C;
3846   if (!CI->hasFnAttr(Attribute::Cold) &&
3847       match(CI->getArgOperand(0), m_APInt(C)) && !C->isZero()) {
3848     CI->addFnAttr(Attribute::Cold);
3849   }
3850   return nullptr;
3851 }
3852 
3853 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3854   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3855   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3856                                         CI->getArgOperand(0), Align(1),
3857                                         CI->getArgOperand(2)));
3858 }
3859 
3860 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3861   SmallString<20> FloatFuncName = FuncName;
3862   FloatFuncName += 'f';
3863   return isLibFuncEmittable(M, TLI, FloatFuncName);
3864 }
3865 
3866 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3867                                                       IRBuilderBase &Builder) {
3868   Module *M = CI->getModule();
3869   LibFunc Func;
3870   Function *Callee = CI->getCalledFunction();
3871 
3872   // Check for string/memory library functions.
3873   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3874     // Make sure we never change the calling convention.
3875     assert(
3876         (ignoreCallingConv(Func) ||
3877          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3878         "Optimizing string/memory libcall would change the calling convention");
3879     switch (Func) {
3880     case LibFunc_strcat:
3881       return optimizeStrCat(CI, Builder);
3882     case LibFunc_strncat:
3883       return optimizeStrNCat(CI, Builder);
3884     case LibFunc_strchr:
3885       return optimizeStrChr(CI, Builder);
3886     case LibFunc_strrchr:
3887       return optimizeStrRChr(CI, Builder);
3888     case LibFunc_strcmp:
3889       return optimizeStrCmp(CI, Builder);
3890     case LibFunc_strncmp:
3891       return optimizeStrNCmp(CI, Builder);
3892     case LibFunc_strcpy:
3893       return optimizeStrCpy(CI, Builder);
3894     case LibFunc_stpcpy:
3895       return optimizeStpCpy(CI, Builder);
3896     case LibFunc_strlcpy:
3897       return optimizeStrLCpy(CI, Builder);
3898     case LibFunc_stpncpy:
3899       return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder);
3900     case LibFunc_strncpy:
3901       return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder);
3902     case LibFunc_strlen:
3903       return optimizeStrLen(CI, Builder);
3904     case LibFunc_strnlen:
3905       return optimizeStrNLen(CI, Builder);
3906     case LibFunc_strpbrk:
3907       return optimizeStrPBrk(CI, Builder);
3908     case LibFunc_strndup:
3909       return optimizeStrNDup(CI, Builder);
3910     case LibFunc_strtol:
3911     case LibFunc_strtod:
3912     case LibFunc_strtof:
3913     case LibFunc_strtoul:
3914     case LibFunc_strtoll:
3915     case LibFunc_strtold:
3916     case LibFunc_strtoull:
3917       return optimizeStrTo(CI, Builder);
3918     case LibFunc_strspn:
3919       return optimizeStrSpn(CI, Builder);
3920     case LibFunc_strcspn:
3921       return optimizeStrCSpn(CI, Builder);
3922     case LibFunc_strstr:
3923       return optimizeStrStr(CI, Builder);
3924     case LibFunc_memchr:
3925       return optimizeMemChr(CI, Builder);
3926     case LibFunc_memrchr:
3927       return optimizeMemRChr(CI, Builder);
3928     case LibFunc_bcmp:
3929       return optimizeBCmp(CI, Builder);
3930     case LibFunc_memcmp:
3931       return optimizeMemCmp(CI, Builder);
3932     case LibFunc_memcpy:
3933       return optimizeMemCpy(CI, Builder);
3934     case LibFunc_memccpy:
3935       return optimizeMemCCpy(CI, Builder);
3936     case LibFunc_mempcpy:
3937       return optimizeMemPCpy(CI, Builder);
3938     case LibFunc_memmove:
3939       return optimizeMemMove(CI, Builder);
3940     case LibFunc_memset:
3941       return optimizeMemSet(CI, Builder);
3942     case LibFunc_realloc:
3943       return optimizeRealloc(CI, Builder);
3944     case LibFunc_wcslen:
3945       return optimizeWcslen(CI, Builder);
3946     case LibFunc_bcopy:
3947       return optimizeBCopy(CI, Builder);
3948     case LibFunc_Znwm:
3949     case LibFunc_ZnwmRKSt9nothrow_t:
3950     case LibFunc_ZnwmSt11align_val_t:
3951     case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3952     case LibFunc_Znam:
3953     case LibFunc_ZnamRKSt9nothrow_t:
3954     case LibFunc_ZnamSt11align_val_t:
3955     case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3956     case LibFunc_Znwm12__hot_cold_t:
3957     case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
3958     case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
3959     case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3960     case LibFunc_Znam12__hot_cold_t:
3961     case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
3962     case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
3963     case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3964     case LibFunc_size_returning_new:
3965     case LibFunc_size_returning_new_hot_cold:
3966     case LibFunc_size_returning_new_aligned:
3967     case LibFunc_size_returning_new_aligned_hot_cold:
3968       return optimizeNew(CI, Builder, Func);
3969     default:
3970       break;
3971     }
3972   }
3973   return nullptr;
3974 }
3975 
3976 /// Constant folding nan/nanf/nanl.
3977 static Value *optimizeNaN(CallInst *CI) {
3978   StringRef CharSeq;
3979   if (!getConstantStringInfo(CI->getArgOperand(0), CharSeq))
3980     return nullptr;
3981 
3982   APInt Fill;
3983   // Treat empty strings as if they were zero.
3984   if (CharSeq.empty())
3985     Fill = APInt(32, 0);
3986   else if (CharSeq.getAsInteger(0, Fill))
3987     return nullptr;
3988 
3989   return ConstantFP::getQNaN(CI->getType(), /*Negative=*/false, &Fill);
3990 }
3991 
3992 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3993                                                        LibFunc Func,
3994                                                        IRBuilderBase &Builder) {
3995   const Module *M = CI->getModule();
3996 
3997   // Don't optimize calls that require strict floating point semantics.
3998   if (CI->isStrictFP())
3999     return nullptr;
4000 
4001   if (Value *V = optimizeSymmetric(CI, Func, Builder))
4002     return V;
4003 
4004   switch (Func) {
4005   case LibFunc_sinpif:
4006   case LibFunc_sinpi:
4007     return optimizeSinCosPi(CI, /*IsSin*/true, Builder);
4008   case LibFunc_cospif:
4009   case LibFunc_cospi:
4010     return optimizeSinCosPi(CI, /*IsSin*/false, Builder);
4011   case LibFunc_powf:
4012   case LibFunc_pow:
4013   case LibFunc_powl:
4014     return optimizePow(CI, Builder);
4015   case LibFunc_exp2l:
4016   case LibFunc_exp2:
4017   case LibFunc_exp2f:
4018     return optimizeExp2(CI, Builder);
4019   case LibFunc_fabsf:
4020   case LibFunc_fabs:
4021   case LibFunc_fabsl:
4022     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
4023   case LibFunc_sqrtf:
4024   case LibFunc_sqrt:
4025   case LibFunc_sqrtl:
4026     return optimizeSqrt(CI, Builder);
4027   case LibFunc_fmod:
4028   case LibFunc_fmodf:
4029   case LibFunc_fmodl:
4030     return optimizeFMod(CI, Builder);
4031   case LibFunc_logf:
4032   case LibFunc_log:
4033   case LibFunc_logl:
4034   case LibFunc_log10f:
4035   case LibFunc_log10:
4036   case LibFunc_log10l:
4037   case LibFunc_log1pf:
4038   case LibFunc_log1p:
4039   case LibFunc_log1pl:
4040   case LibFunc_log2f:
4041   case LibFunc_log2:
4042   case LibFunc_log2l:
4043   case LibFunc_logbf:
4044   case LibFunc_logb:
4045   case LibFunc_logbl:
4046     return optimizeLog(CI, Builder);
4047   case LibFunc_tan:
4048   case LibFunc_tanf:
4049   case LibFunc_tanl:
4050   case LibFunc_sinh:
4051   case LibFunc_sinhf:
4052   case LibFunc_sinhl:
4053   case LibFunc_asinh:
4054   case LibFunc_asinhf:
4055   case LibFunc_asinhl:
4056   case LibFunc_cosh:
4057   case LibFunc_coshf:
4058   case LibFunc_coshl:
4059   case LibFunc_atanh:
4060   case LibFunc_atanhf:
4061   case LibFunc_atanhl:
4062     return optimizeTrigInversionPairs(CI, Builder);
4063   case LibFunc_ceil:
4064     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
4065   case LibFunc_floor:
4066     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
4067   case LibFunc_round:
4068     return replaceUnaryCall(CI, Builder, Intrinsic::round);
4069   case LibFunc_roundeven:
4070     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
4071   case LibFunc_nearbyint:
4072     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
4073   case LibFunc_rint:
4074     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
4075   case LibFunc_trunc:
4076     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
4077   case LibFunc_acos:
4078   case LibFunc_acosh:
4079   case LibFunc_asin:
4080   case LibFunc_atan:
4081   case LibFunc_cbrt:
4082   case LibFunc_exp:
4083   case LibFunc_exp10:
4084   case LibFunc_expm1:
4085   case LibFunc_cos:
4086   case LibFunc_sin:
4087   case LibFunc_tanh:
4088     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
4089       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
4090     return nullptr;
4091   case LibFunc_copysign:
4092     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
4093       return optimizeBinaryDoubleFP(CI, Builder, TLI);
4094     return nullptr;
4095   case LibFunc_fdim:
4096   case LibFunc_fdimf:
4097   case LibFunc_fdiml:
4098     return optimizeFdim(CI, Builder);
4099   case LibFunc_fminf:
4100   case LibFunc_fmin:
4101   case LibFunc_fminl:
4102   case LibFunc_fmaxf:
4103   case LibFunc_fmax:
4104   case LibFunc_fmaxl:
4105     return optimizeFMinFMax(CI, Builder);
4106   case LibFunc_cabs:
4107   case LibFunc_cabsf:
4108   case LibFunc_cabsl:
4109     return optimizeCAbs(CI, Builder);
4110   case LibFunc_remquo:
4111   case LibFunc_remquof:
4112   case LibFunc_remquol:
4113     return optimizeRemquo(CI, Builder);
4114   case LibFunc_nan:
4115   case LibFunc_nanf:
4116   case LibFunc_nanl:
4117     return optimizeNaN(CI);
4118   default:
4119     return nullptr;
4120   }
4121 }
4122 
4123 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
4124   Module *M = CI->getModule();
4125   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
4126 
4127   // TODO: Split out the code below that operates on FP calls so that
4128   //       we can all non-FP calls with the StrictFP attribute to be
4129   //       optimized.
4130   if (CI->isNoBuiltin())
4131     return nullptr;
4132 
4133   LibFunc Func;
4134   Function *Callee = CI->getCalledFunction();
4135   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4136 
4137   SmallVector<OperandBundleDef, 2> OpBundles;
4138   CI->getOperandBundlesAsDefs(OpBundles);
4139 
4140   IRBuilderBase::OperandBundlesGuard Guard(Builder);
4141   Builder.setDefaultOperandBundles(OpBundles);
4142 
4143   // Command-line parameter overrides instruction attribute.
4144   // This can't be moved to optimizeFloatingPointLibCall() because it may be
4145   // used by the intrinsic optimizations.
4146   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
4147     UnsafeFPShrink = EnableUnsafeFPShrink;
4148   else if (isa<FPMathOperator>(CI) && CI->isFast())
4149     UnsafeFPShrink = true;
4150 
4151   // First, check for intrinsics.
4152   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
4153     if (!IsCallingConvC)
4154       return nullptr;
4155     // The FP intrinsics have corresponding constrained versions so we don't
4156     // need to check for the StrictFP attribute here.
4157     switch (II->getIntrinsicID()) {
4158     case Intrinsic::pow:
4159       return optimizePow(CI, Builder);
4160     case Intrinsic::exp2:
4161       return optimizeExp2(CI, Builder);
4162     case Intrinsic::log:
4163     case Intrinsic::log2:
4164     case Intrinsic::log10:
4165       return optimizeLog(CI, Builder);
4166     case Intrinsic::sqrt:
4167       return optimizeSqrt(CI, Builder);
4168     case Intrinsic::memset:
4169       return optimizeMemSet(CI, Builder);
4170     case Intrinsic::memcpy:
4171       return optimizeMemCpy(CI, Builder);
4172     case Intrinsic::memmove:
4173       return optimizeMemMove(CI, Builder);
4174     default:
4175       return nullptr;
4176     }
4177   }
4178 
4179   // Also try to simplify calls to fortified library functions.
4180   if (Value *SimplifiedFortifiedCI =
4181           FortifiedSimplifier.optimizeCall(CI, Builder))
4182     return SimplifiedFortifiedCI;
4183 
4184   // Then check for known library functions.
4185   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
4186     // We never change the calling convention.
4187     if (!ignoreCallingConv(Func) && !IsCallingConvC)
4188       return nullptr;
4189     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
4190       return V;
4191     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
4192       return V;
4193     switch (Func) {
4194     case LibFunc_ffs:
4195     case LibFunc_ffsl:
4196     case LibFunc_ffsll:
4197       return optimizeFFS(CI, Builder);
4198     case LibFunc_fls:
4199     case LibFunc_flsl:
4200     case LibFunc_flsll:
4201       return optimizeFls(CI, Builder);
4202     case LibFunc_abs:
4203     case LibFunc_labs:
4204     case LibFunc_llabs:
4205       return optimizeAbs(CI, Builder);
4206     case LibFunc_isdigit:
4207       return optimizeIsDigit(CI, Builder);
4208     case LibFunc_isascii:
4209       return optimizeIsAscii(CI, Builder);
4210     case LibFunc_toascii:
4211       return optimizeToAscii(CI, Builder);
4212     case LibFunc_atoi:
4213     case LibFunc_atol:
4214     case LibFunc_atoll:
4215       return optimizeAtoi(CI, Builder);
4216     case LibFunc_strtol:
4217     case LibFunc_strtoll:
4218       return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
4219     case LibFunc_strtoul:
4220     case LibFunc_strtoull:
4221       return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
4222     case LibFunc_printf:
4223       return optimizePrintF(CI, Builder);
4224     case LibFunc_sprintf:
4225       return optimizeSPrintF(CI, Builder);
4226     case LibFunc_snprintf:
4227       return optimizeSnPrintF(CI, Builder);
4228     case LibFunc_fprintf:
4229       return optimizeFPrintF(CI, Builder);
4230     case LibFunc_fwrite:
4231       return optimizeFWrite(CI, Builder);
4232     case LibFunc_fputs:
4233       return optimizeFPuts(CI, Builder);
4234     case LibFunc_puts:
4235       return optimizePuts(CI, Builder);
4236     case LibFunc_perror:
4237       return optimizeErrorReporting(CI, Builder);
4238     case LibFunc_vfprintf:
4239     case LibFunc_fiprintf:
4240       return optimizeErrorReporting(CI, Builder, 0);
4241     case LibFunc_exit:
4242     case LibFunc_Exit:
4243       return optimizeExit(CI);
4244     default:
4245       return nullptr;
4246     }
4247   }
4248   return nullptr;
4249 }
4250 
4251 LibCallSimplifier::LibCallSimplifier(
4252     const DataLayout &DL, const TargetLibraryInfo *TLI, DominatorTree *DT,
4253     DomConditionCache *DC, AssumptionCache *AC, OptimizationRemarkEmitter &ORE,
4254     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
4255     function_ref<void(Instruction *, Value *)> Replacer,
4256     function_ref<void(Instruction *)> Eraser)
4257     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), DT(DT), DC(DC), AC(AC),
4258       ORE(ORE), BFI(BFI), PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
4259 
4260 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
4261   // Indirect through the replacer used in this instance.
4262   Replacer(I, With);
4263 }
4264 
4265 void LibCallSimplifier::eraseFromParent(Instruction *I) {
4266   Eraser(I);
4267 }
4268 
4269 // TODO:
4270 //   Additional cases that we need to add to this file:
4271 //
4272 // cbrt:
4273 //   * cbrt(expN(X))  -> expN(x/3)
4274 //   * cbrt(sqrt(x))  -> pow(x,1/6)
4275 //   * cbrt(cbrt(x))  -> pow(x,1/9)
4276 //
4277 // exp, expf, expl:
4278 //   * exp(log(x))  -> x
4279 //
4280 // log, logf, logl:
4281 //   * log(exp(x))   -> x
4282 //   * log(exp(y))   -> y*log(e)
4283 //   * log(exp10(y)) -> y*log(10)
4284 //   * log(sqrt(x))  -> 0.5*log(x)
4285 //
4286 // pow, powf, powl:
4287 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
4288 //   * pow(pow(x,y),z)-> pow(x,y*z)
4289 //
4290 // signbit:
4291 //   * signbit(cnst) -> cnst'
4292 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
4293 //
4294 // sqrt, sqrtf, sqrtl:
4295 //   * sqrt(expN(x))  -> expN(x*0.5)
4296 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
4297 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
4298 //
4299 
4300 //===----------------------------------------------------------------------===//
4301 // Fortified Library Call Optimizations
4302 //===----------------------------------------------------------------------===//
4303 
4304 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
4305     CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
4306     std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
4307   // If this function takes a flag argument, the implementation may use it to
4308   // perform extra checks. Don't fold into the non-checking variant.
4309   if (FlagOp) {
4310     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
4311     if (!Flag || !Flag->isZero())
4312       return false;
4313   }
4314 
4315   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
4316     return true;
4317 
4318   if (ConstantInt *ObjSizeCI =
4319           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
4320     if (ObjSizeCI->isMinusOne())
4321       return true;
4322     // If the object size wasn't -1 (unknown), bail out if we were asked to.
4323     if (OnlyLowerUnknownSize)
4324       return false;
4325     if (StrOp) {
4326       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
4327       // If the length is 0 we don't know how long it is and so we can't
4328       // remove the check.
4329       if (Len)
4330         annotateDereferenceableBytes(CI, *StrOp, Len);
4331       else
4332         return false;
4333       return ObjSizeCI->getZExtValue() >= Len;
4334     }
4335 
4336     if (SizeOp) {
4337       if (ConstantInt *SizeCI =
4338               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
4339         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
4340     }
4341   }
4342   return false;
4343 }
4344 
4345 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
4346                                                      IRBuilderBase &B) {
4347   if (isFortifiedCallFoldable(CI, 3, 2)) {
4348     CallInst *NewCI =
4349         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4350                        Align(1), CI->getArgOperand(2));
4351     mergeAttributesAndFlags(NewCI, *CI);
4352     return CI->getArgOperand(0);
4353   }
4354   return nullptr;
4355 }
4356 
4357 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
4358                                                       IRBuilderBase &B) {
4359   if (isFortifiedCallFoldable(CI, 3, 2)) {
4360     CallInst *NewCI =
4361         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4362                         Align(1), CI->getArgOperand(2));
4363     mergeAttributesAndFlags(NewCI, *CI);
4364     return CI->getArgOperand(0);
4365   }
4366   return nullptr;
4367 }
4368 
4369 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
4370                                                      IRBuilderBase &B) {
4371   if (isFortifiedCallFoldable(CI, 3, 2)) {
4372     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
4373     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
4374                                      CI->getArgOperand(2), Align(1));
4375     mergeAttributesAndFlags(NewCI, *CI);
4376     return CI->getArgOperand(0);
4377   }
4378   return nullptr;
4379 }
4380 
4381 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
4382                                                       IRBuilderBase &B) {
4383   const DataLayout &DL = CI->getDataLayout();
4384   if (isFortifiedCallFoldable(CI, 3, 2))
4385     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4386                                   CI->getArgOperand(2), B, DL, TLI)) {
4387       return mergeAttributesAndFlags(cast<CallInst>(Call), *CI);
4388     }
4389   return nullptr;
4390 }
4391 
4392 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
4393                                                       IRBuilderBase &B,
4394                                                       LibFunc Func) {
4395   const DataLayout &DL = CI->getDataLayout();
4396   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
4397         *ObjSize = CI->getArgOperand(2);
4398 
4399   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
4400   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
4401     Value *StrLen = emitStrLen(Src, B, DL, TLI);
4402     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
4403   }
4404 
4405   // If a) we don't have any length information, or b) we know this will
4406   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
4407   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
4408   // TODO: It might be nice to get a maximum length out of the possible
4409   // string lengths for varying.
4410   if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
4411     if (Func == LibFunc_strcpy_chk)
4412       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
4413     else
4414       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
4415   }
4416 
4417   if (OnlyLowerUnknownSize)
4418     return nullptr;
4419 
4420   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
4421   uint64_t Len = GetStringLength(Src);
4422   if (Len)
4423     annotateDereferenceableBytes(CI, 1, Len);
4424   else
4425     return nullptr;
4426 
4427   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
4428   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
4429   Value *LenV = ConstantInt::get(SizeTTy, Len);
4430   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
4431   // If the function was an __stpcpy_chk, and we were able to fold it into
4432   // a __memcpy_chk, we still need to return the correct end pointer.
4433   if (Ret && Func == LibFunc_stpcpy_chk)
4434     return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
4435                                ConstantInt::get(SizeTTy, Len - 1));
4436   return copyFlags(*CI, cast<CallInst>(Ret));
4437 }
4438 
4439 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
4440                                                      IRBuilderBase &B) {
4441   if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
4442     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
4443                                      CI->getDataLayout(), TLI));
4444   return nullptr;
4445 }
4446 
4447 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
4448                                                        IRBuilderBase &B,
4449                                                        LibFunc Func) {
4450   if (isFortifiedCallFoldable(CI, 3, 2)) {
4451     if (Func == LibFunc_strncpy_chk)
4452       return copyFlags(*CI,
4453                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4454                                    CI->getArgOperand(2), B, TLI));
4455     else
4456       return copyFlags(*CI,
4457                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4458                                    CI->getArgOperand(2), B, TLI));
4459   }
4460 
4461   return nullptr;
4462 }
4463 
4464 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
4465                                                       IRBuilderBase &B) {
4466   if (isFortifiedCallFoldable(CI, 4, 3))
4467     return copyFlags(
4468         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4469                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
4470 
4471   return nullptr;
4472 }
4473 
4474 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
4475                                                        IRBuilderBase &B) {
4476   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
4477     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
4478     return copyFlags(*CI,
4479                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4480                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
4481   }
4482 
4483   return nullptr;
4484 }
4485 
4486 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
4487                                                       IRBuilderBase &B) {
4488   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
4489     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
4490     return copyFlags(*CI,
4491                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4492                                  VariadicArgs, B, TLI));
4493   }
4494 
4495   return nullptr;
4496 }
4497 
4498 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
4499                                                      IRBuilderBase &B) {
4500   if (isFortifiedCallFoldable(CI, 2))
4501     return copyFlags(
4502         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
4503 
4504   return nullptr;
4505 }
4506 
4507 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
4508                                                    IRBuilderBase &B) {
4509   if (isFortifiedCallFoldable(CI, 3))
4510     return copyFlags(*CI,
4511                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
4512                                  CI->getArgOperand(2), B, TLI));
4513 
4514   return nullptr;
4515 }
4516 
4517 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
4518                                                       IRBuilderBase &B) {
4519   if (isFortifiedCallFoldable(CI, 3))
4520     return copyFlags(*CI,
4521                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
4522                                  CI->getArgOperand(2), B, TLI));
4523 
4524   return nullptr;
4525 }
4526 
4527 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
4528                                                       IRBuilderBase &B) {
4529   if (isFortifiedCallFoldable(CI, 3))
4530     return copyFlags(*CI,
4531                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4532                                  CI->getArgOperand(2), B, TLI));
4533 
4534   return nullptr;
4535 }
4536 
4537 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
4538                                                         IRBuilderBase &B) {
4539   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
4540     return copyFlags(
4541         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4542                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
4543 
4544   return nullptr;
4545 }
4546 
4547 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
4548                                                        IRBuilderBase &B) {
4549   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
4550     return copyFlags(*CI,
4551                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4552                                   CI->getArgOperand(4), B, TLI));
4553 
4554   return nullptr;
4555 }
4556 
4557 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4558                                                 IRBuilderBase &Builder) {
4559   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4560   // Some clang users checked for _chk libcall availability using:
4561   //   __has_builtin(__builtin___memcpy_chk)
4562   // When compiling with -fno-builtin, this is always true.
4563   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4564   // end up with fortified libcalls, which isn't acceptable in a freestanding
4565   // environment which only provides their non-fortified counterparts.
4566   //
4567   // Until we change clang and/or teach external users to check for availability
4568   // differently, disregard the "nobuiltin" attribute and TLI::has.
4569   //
4570   // PR23093.
4571 
4572   LibFunc Func;
4573   Function *Callee = CI->getCalledFunction();
4574   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4575 
4576   SmallVector<OperandBundleDef, 2> OpBundles;
4577   CI->getOperandBundlesAsDefs(OpBundles);
4578 
4579   IRBuilderBase::OperandBundlesGuard Guard(Builder);
4580   Builder.setDefaultOperandBundles(OpBundles);
4581 
4582   // First, check that this is a known library functions and that the prototype
4583   // is correct.
4584   if (!TLI->getLibFunc(*Callee, Func))
4585     return nullptr;
4586 
4587   // We never change the calling convention.
4588   if (!ignoreCallingConv(Func) && !IsCallingConvC)
4589     return nullptr;
4590 
4591   switch (Func) {
4592   case LibFunc_memcpy_chk:
4593     return optimizeMemCpyChk(CI, Builder);
4594   case LibFunc_mempcpy_chk:
4595     return optimizeMemPCpyChk(CI, Builder);
4596   case LibFunc_memmove_chk:
4597     return optimizeMemMoveChk(CI, Builder);
4598   case LibFunc_memset_chk:
4599     return optimizeMemSetChk(CI, Builder);
4600   case LibFunc_stpcpy_chk:
4601   case LibFunc_strcpy_chk:
4602     return optimizeStrpCpyChk(CI, Builder, Func);
4603   case LibFunc_strlen_chk:
4604     return optimizeStrLenChk(CI, Builder);
4605   case LibFunc_stpncpy_chk:
4606   case LibFunc_strncpy_chk:
4607     return optimizeStrpNCpyChk(CI, Builder, Func);
4608   case LibFunc_memccpy_chk:
4609     return optimizeMemCCpyChk(CI, Builder);
4610   case LibFunc_snprintf_chk:
4611     return optimizeSNPrintfChk(CI, Builder);
4612   case LibFunc_sprintf_chk:
4613     return optimizeSPrintfChk(CI, Builder);
4614   case LibFunc_strcat_chk:
4615     return optimizeStrCatChk(CI, Builder);
4616   case LibFunc_strlcat_chk:
4617     return optimizeStrLCat(CI, Builder);
4618   case LibFunc_strncat_chk:
4619     return optimizeStrNCatChk(CI, Builder);
4620   case LibFunc_strlcpy_chk:
4621     return optimizeStrLCpyChk(CI, Builder);
4622   case LibFunc_vsnprintf_chk:
4623     return optimizeVSNPrintfChk(CI, Builder);
4624   case LibFunc_vsprintf_chk:
4625     return optimizeVSPrintfChk(CI, Builder);
4626   default:
4627     break;
4628   }
4629   return nullptr;
4630 }
4631 
4632 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4633     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4634     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
4635