1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/AttributeMask.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/TargetParser/Triple.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SizeOpts.h" 39 40 #include <cmath> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 static cl::opt<bool> 46 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 47 cl::init(false), 48 cl::desc("Enable unsafe double to float " 49 "shrinking for math lib calls")); 50 51 // Enable conversion of operator new calls with a MemProf hot or cold hint 52 // to an operator new call that takes a hot/cold hint. Off by default since 53 // not all allocators currently support this extension. 54 static cl::opt<bool> 55 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 56 cl::desc("Enable hot/cold operator new library calls")); 57 static cl::opt<bool> OptimizeExistingHotColdNew( 58 "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false), 59 cl::desc( 60 "Enable optimization of existing hot/cold operator new library calls")); 61 62 namespace { 63 64 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 65 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 66 // option with a specific set of values. 67 struct HotColdHintParser : public cl::parser<unsigned> { 68 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 69 70 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 71 if (Arg.getAsInteger(0, Value)) 72 return O.error("'" + Arg + "' value invalid for uint argument!"); 73 74 if (Value > 255) 75 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 76 77 return false; 78 } 79 }; 80 81 } // end anonymous namespace 82 83 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 84 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 85 // hints, so that the compiler hinted allocations are slightly less strong than 86 // manually inserted hints at the two extremes. 87 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 88 "cold-new-hint-value", cl::Hidden, cl::init(1), 89 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 90 static cl::opt<unsigned, false, HotColdHintParser> 91 NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128), 92 cl::desc("Value to pass to hot/cold operator new for " 93 "notcold (warm) allocation")); 94 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 95 "hot-new-hint-value", cl::Hidden, cl::init(254), 96 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 97 98 //===----------------------------------------------------------------------===// 99 // Helper Functions 100 //===----------------------------------------------------------------------===// 101 102 static bool ignoreCallingConv(LibFunc Func) { 103 return Func == LibFunc_abs || Func == LibFunc_labs || 104 Func == LibFunc_llabs || Func == LibFunc_strlen; 105 } 106 107 /// Return true if it is only used in equality comparisons with With. 108 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (IC->isEquality() && IC->getOperand(1) == With) 112 continue; 113 // Unknown instruction. 114 return false; 115 } 116 return true; 117 } 118 119 static bool callHasFloatingPointArgument(const CallInst *CI) { 120 return any_of(CI->operands(), [](const Use &OI) { 121 return OI->getType()->isFloatingPointTy(); 122 }); 123 } 124 125 static bool callHasFP128Argument(const CallInst *CI) { 126 return any_of(CI->operands(), [](const Use &OI) { 127 return OI->getType()->isFP128Ty(); 128 }); 129 } 130 131 // Convert the entire string Str representing an integer in Base, up to 132 // the terminating nul if present, to a constant according to the rules 133 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 134 // return the result, otherwise null. 135 // The function assumes the string is encoded in ASCII and carefully 136 // avoids converting sequences (including "") that the corresponding 137 // library call might fail and set errno for. 138 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 139 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 140 if (Base < 2 || Base > 36) 141 if (Base != 0) 142 // Fail for an invalid base (required by POSIX). 143 return nullptr; 144 145 // Current offset into the original string to reflect in EndPtr. 146 size_t Offset = 0; 147 // Strip leading whitespace. 148 for ( ; Offset != Str.size(); ++Offset) 149 if (!isSpace((unsigned char)Str[Offset])) { 150 Str = Str.substr(Offset); 151 break; 152 } 153 154 if (Str.empty()) 155 // Fail for empty subject sequences (POSIX allows but doesn't require 156 // strtol[l]/strtoul[l] to fail with EINVAL). 157 return nullptr; 158 159 // Strip but remember the sign. 160 bool Negate = Str[0] == '-'; 161 if (Str[0] == '-' || Str[0] == '+') { 162 Str = Str.drop_front(); 163 if (Str.empty()) 164 // Fail for a sign with nothing after it. 165 return nullptr; 166 ++Offset; 167 } 168 169 // Set Max to the absolute value of the minimum (for signed), or 170 // to the maximum (for unsigned) value representable in the type. 171 Type *RetTy = CI->getType(); 172 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 173 uint64_t Max = AsSigned && Negate ? 1 : 0; 174 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 175 176 // Autodetect Base if it's zero and consume the "0x" prefix. 177 if (Str.size() > 1) { 178 if (Str[0] == '0') { 179 if (toUpper((unsigned char)Str[1]) == 'X') { 180 if (Str.size() == 2 || (Base && Base != 16)) 181 // Fail if Base doesn't allow the "0x" prefix or for the prefix 182 // alone that implementations like BSD set errno to EINVAL for. 183 return nullptr; 184 185 Str = Str.drop_front(2); 186 Offset += 2; 187 Base = 16; 188 } 189 else if (Base == 0) 190 Base = 8; 191 } else if (Base == 0) 192 Base = 10; 193 } 194 else if (Base == 0) 195 Base = 10; 196 197 // Convert the rest of the subject sequence, not including the sign, 198 // to its uint64_t representation (this assumes the source character 199 // set is ASCII). 200 uint64_t Result = 0; 201 for (unsigned i = 0; i != Str.size(); ++i) { 202 unsigned char DigVal = Str[i]; 203 if (isDigit(DigVal)) 204 DigVal = DigVal - '0'; 205 else { 206 DigVal = toUpper(DigVal); 207 if (isAlpha(DigVal)) 208 DigVal = DigVal - 'A' + 10; 209 else 210 return nullptr; 211 } 212 213 if (DigVal >= Base) 214 // Fail if the digit is not valid in the Base. 215 return nullptr; 216 217 // Add the digit and fail if the result is not representable in 218 // the (unsigned form of the) destination type. 219 bool VFlow; 220 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 221 if (VFlow || Result > Max) 222 return nullptr; 223 } 224 225 if (EndPtr) { 226 // Store the pointer to the end. 227 Value *Off = B.getInt64(Offset + Str.size()); 228 Value *StrBeg = CI->getArgOperand(0); 229 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 230 B.CreateStore(StrEnd, EndPtr); 231 } 232 233 if (Negate) 234 // Unsigned negation doesn't overflow. 235 Result = -Result; 236 237 return ConstantInt::get(RetTy, Result); 238 } 239 240 static bool isOnlyUsedInComparisonWithZero(Value *V) { 241 for (User *U : V->users()) { 242 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 243 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 244 if (C->isNullValue()) 245 continue; 246 // Unknown instruction. 247 return false; 248 } 249 return true; 250 } 251 252 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 253 const DataLayout &DL) { 254 if (!isOnlyUsedInComparisonWithZero(CI)) 255 return false; 256 257 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 258 return false; 259 260 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 261 return false; 262 263 return true; 264 } 265 266 static void annotateDereferenceableBytes(CallInst *CI, 267 ArrayRef<unsigned> ArgNos, 268 uint64_t DereferenceableBytes) { 269 const Function *F = CI->getCaller(); 270 if (!F) 271 return; 272 for (unsigned ArgNo : ArgNos) { 273 uint64_t DerefBytes = DereferenceableBytes; 274 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 275 if (!llvm::NullPointerIsDefined(F, AS) || 276 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 277 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 278 DereferenceableBytes); 279 280 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 281 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 282 if (!llvm::NullPointerIsDefined(F, AS) || 283 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 284 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 285 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 286 CI->getContext(), DerefBytes)); 287 } 288 } 289 } 290 291 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 292 ArrayRef<unsigned> ArgNos) { 293 Function *F = CI->getCaller(); 294 if (!F) 295 return; 296 297 for (unsigned ArgNo : ArgNos) { 298 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 299 CI->addParamAttr(ArgNo, Attribute::NoUndef); 300 301 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 302 unsigned AS = 303 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 304 if (llvm::NullPointerIsDefined(F, AS)) 305 continue; 306 CI->addParamAttr(ArgNo, Attribute::NonNull); 307 } 308 309 annotateDereferenceableBytes(CI, ArgNo, 1); 310 } 311 } 312 313 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 314 Value *Size, const DataLayout &DL) { 315 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 316 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 317 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 318 } else if (isKnownNonZero(Size, DL)) { 319 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 320 const APInt *X, *Y; 321 uint64_t DerefMin = 1; 322 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 323 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 324 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 325 } 326 } 327 } 328 329 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 330 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 331 // in this function when New is created to replace Old. Callers should take 332 // care to check Old.isMustTailCall() if they aren't replacing Old directly 333 // with New. 334 static Value *copyFlags(const CallInst &Old, Value *New) { 335 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 336 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 337 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 338 NewCI->setTailCallKind(Old.getTailCallKind()); 339 return New; 340 } 341 342 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 343 NewCI->setAttributes(AttributeList::get( 344 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 345 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible( 346 NewCI->getType(), NewCI->getRetAttributes())); 347 for (unsigned I = 0; I < NewCI->arg_size(); ++I) 348 NewCI->removeParamAttrs( 349 I, AttributeFuncs::typeIncompatible(NewCI->getArgOperand(I)->getType(), 350 NewCI->getParamAttributes(I))); 351 352 return copyFlags(Old, NewCI); 353 } 354 355 // Helper to avoid truncating the length if size_t is 32-bits. 356 static StringRef substr(StringRef Str, uint64_t Len) { 357 return Len >= Str.size() ? Str : Str.substr(0, Len); 358 } 359 360 //===----------------------------------------------------------------------===// 361 // String and Memory Library Call Optimizations 362 //===----------------------------------------------------------------------===// 363 364 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 365 // Extract some information from the instruction 366 Value *Dst = CI->getArgOperand(0); 367 Value *Src = CI->getArgOperand(1); 368 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 369 370 // See if we can get the length of the input string. 371 uint64_t Len = GetStringLength(Src); 372 if (Len) 373 annotateDereferenceableBytes(CI, 1, Len); 374 else 375 return nullptr; 376 --Len; // Unbias length. 377 378 // Handle the simple, do-nothing case: strcat(x, "") -> x 379 if (Len == 0) 380 return Dst; 381 382 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 383 } 384 385 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 386 IRBuilderBase &B) { 387 // We need to find the end of the destination string. That's where the 388 // memory is to be moved to. We just generate a call to strlen. 389 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 390 if (!DstLen) 391 return nullptr; 392 393 // Now that we have the destination's length, we must index into the 394 // destination's pointer to get the actual memcpy destination (end of 395 // the string .. we're concatenating). 396 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 397 398 // We have enough information to now generate the memcpy call to do the 399 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 400 B.CreateMemCpy(CpyDst, Align(1), Src, Align(1), 401 TLI->getAsSizeT(Len + 1, *B.GetInsertBlock()->getModule())); 402 return Dst; 403 } 404 405 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 406 // Extract some information from the instruction. 407 Value *Dst = CI->getArgOperand(0); 408 Value *Src = CI->getArgOperand(1); 409 Value *Size = CI->getArgOperand(2); 410 uint64_t Len; 411 annotateNonNullNoUndefBasedOnAccess(CI, 0); 412 if (isKnownNonZero(Size, DL)) 413 annotateNonNullNoUndefBasedOnAccess(CI, 1); 414 415 // We don't do anything if length is not constant. 416 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 417 if (LengthArg) { 418 Len = LengthArg->getZExtValue(); 419 // strncat(x, c, 0) -> x 420 if (!Len) 421 return Dst; 422 } else { 423 return nullptr; 424 } 425 426 // See if we can get the length of the input string. 427 uint64_t SrcLen = GetStringLength(Src); 428 if (SrcLen) { 429 annotateDereferenceableBytes(CI, 1, SrcLen); 430 --SrcLen; // Unbias length. 431 } else { 432 return nullptr; 433 } 434 435 // strncat(x, "", c) -> x 436 if (SrcLen == 0) 437 return Dst; 438 439 // We don't optimize this case. 440 if (Len < SrcLen) 441 return nullptr; 442 443 // strncat(x, s, c) -> strcat(x, s) 444 // s is constant so the strcat can be optimized further. 445 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 446 } 447 448 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 449 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 450 // is that either S is dereferenceable or the value of N is nonzero. 451 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 452 IRBuilderBase &B, const DataLayout &DL) 453 { 454 Value *Src = CI->getArgOperand(0); 455 Value *CharVal = CI->getArgOperand(1); 456 457 // Fold memchr(A, C, N) == A to N && *A == C. 458 Type *CharTy = B.getInt8Ty(); 459 Value *Char0 = B.CreateLoad(CharTy, Src); 460 CharVal = B.CreateTrunc(CharVal, CharTy); 461 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 462 463 if (NBytes) { 464 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 465 Value *And = B.CreateICmpNE(NBytes, Zero); 466 Cmp = B.CreateLogicalAnd(And, Cmp); 467 } 468 469 Value *NullPtr = Constant::getNullValue(CI->getType()); 470 return B.CreateSelect(Cmp, Src, NullPtr); 471 } 472 473 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 474 Value *SrcStr = CI->getArgOperand(0); 475 Value *CharVal = CI->getArgOperand(1); 476 annotateNonNullNoUndefBasedOnAccess(CI, 0); 477 478 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 479 return memChrToCharCompare(CI, nullptr, B, DL); 480 481 // If the second operand is non-constant, see if we can compute the length 482 // of the input string and turn this into memchr. 483 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 484 if (!CharC) { 485 uint64_t Len = GetStringLength(SrcStr); 486 if (Len) 487 annotateDereferenceableBytes(CI, 0, Len); 488 else 489 return nullptr; 490 491 Function *Callee = CI->getCalledFunction(); 492 FunctionType *FT = Callee->getFunctionType(); 493 unsigned IntBits = TLI->getIntSize(); 494 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 495 return nullptr; 496 497 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 498 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 499 return copyFlags(*CI, 500 emitMemChr(SrcStr, CharVal, // include nul. 501 ConstantInt::get(SizeTTy, Len), B, 502 DL, TLI)); 503 } 504 505 if (CharC->isZero()) { 506 Value *NullPtr = Constant::getNullValue(CI->getType()); 507 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 508 // Pre-empt the transformation to strlen below and fold 509 // strchr(A, '\0') == null to false. 510 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 511 } 512 513 // Otherwise, the character is a constant, see if the first argument is 514 // a string literal. If so, we can constant fold. 515 StringRef Str; 516 if (!getConstantStringInfo(SrcStr, Str)) { 517 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 518 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 519 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 520 return nullptr; 521 } 522 523 // Compute the offset, make sure to handle the case when we're searching for 524 // zero (a weird way to spell strlen). 525 size_t I = (0xFF & CharC->getSExtValue()) == 0 526 ? Str.size() 527 : Str.find(CharC->getSExtValue()); 528 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 529 return Constant::getNullValue(CI->getType()); 530 531 // strchr(s+n,c) -> gep(s+n+i,c) 532 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 533 } 534 535 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 536 Value *SrcStr = CI->getArgOperand(0); 537 Value *CharVal = CI->getArgOperand(1); 538 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 539 annotateNonNullNoUndefBasedOnAccess(CI, 0); 540 541 StringRef Str; 542 if (!getConstantStringInfo(SrcStr, Str)) { 543 // strrchr(s, 0) -> strchr(s, 0) 544 if (CharC && CharC->isZero()) 545 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 546 return nullptr; 547 } 548 549 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 550 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 551 552 // Try to expand strrchr to the memrchr nonstandard extension if it's 553 // available, or simply fail otherwise. 554 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 555 Value *Size = ConstantInt::get(SizeTTy, NBytes); 556 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 557 } 558 559 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 560 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 561 if (Str1P == Str2P) // strcmp(x,x) -> 0 562 return ConstantInt::get(CI->getType(), 0); 563 564 StringRef Str1, Str2; 565 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 566 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 567 568 // strcmp(x, y) -> cnst (if both x and y are constant strings) 569 if (HasStr1 && HasStr2) 570 return ConstantInt::get(CI->getType(), 571 std::clamp(Str1.compare(Str2), -1, 1)); 572 573 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 574 return B.CreateNeg(B.CreateZExt( 575 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 576 577 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 578 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 579 CI->getType()); 580 581 // strcmp(P, "x") -> memcmp(P, "x", 2) 582 uint64_t Len1 = GetStringLength(Str1P); 583 if (Len1) 584 annotateDereferenceableBytes(CI, 0, Len1); 585 uint64_t Len2 = GetStringLength(Str2P); 586 if (Len2) 587 annotateDereferenceableBytes(CI, 1, Len2); 588 589 if (Len1 && Len2) { 590 return copyFlags( 591 *CI, emitMemCmp(Str1P, Str2P, 592 TLI->getAsSizeT(std::min(Len1, Len2), *CI->getModule()), 593 B, DL, TLI)); 594 } 595 596 // strcmp to memcmp 597 if (!HasStr1 && HasStr2) { 598 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 599 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 600 TLI->getAsSizeT(Len2, *CI->getModule()), 601 B, DL, TLI)); 602 } else if (HasStr1 && !HasStr2) { 603 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 604 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 605 TLI->getAsSizeT(Len1, *CI->getModule()), 606 B, DL, TLI)); 607 } 608 609 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 610 return nullptr; 611 } 612 613 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 614 // arrays LHS and RHS and nonconstant Size. 615 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 616 Value *Size, bool StrNCmp, 617 IRBuilderBase &B, const DataLayout &DL); 618 619 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 620 Value *Str1P = CI->getArgOperand(0); 621 Value *Str2P = CI->getArgOperand(1); 622 Value *Size = CI->getArgOperand(2); 623 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 624 return ConstantInt::get(CI->getType(), 0); 625 626 if (isKnownNonZero(Size, DL)) 627 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 628 // Get the length argument if it is constant. 629 uint64_t Length; 630 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 631 Length = LengthArg->getZExtValue(); 632 else 633 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 634 635 if (Length == 0) // strncmp(x,y,0) -> 0 636 return ConstantInt::get(CI->getType(), 0); 637 638 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 639 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 640 641 StringRef Str1, Str2; 642 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 643 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 644 645 // strncmp(x, y) -> cnst (if both x and y are constant strings) 646 if (HasStr1 && HasStr2) { 647 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 648 StringRef SubStr1 = substr(Str1, Length); 649 StringRef SubStr2 = substr(Str2, Length); 650 return ConstantInt::get(CI->getType(), 651 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 652 } 653 654 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 655 return B.CreateNeg(B.CreateZExt( 656 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 657 658 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 659 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 660 CI->getType()); 661 662 uint64_t Len1 = GetStringLength(Str1P); 663 if (Len1) 664 annotateDereferenceableBytes(CI, 0, Len1); 665 uint64_t Len2 = GetStringLength(Str2P); 666 if (Len2) 667 annotateDereferenceableBytes(CI, 1, Len2); 668 669 // strncmp to memcmp 670 if (!HasStr1 && HasStr2) { 671 Len2 = std::min(Len2, Length); 672 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 673 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 674 TLI->getAsSizeT(Len2, *CI->getModule()), 675 B, DL, TLI)); 676 } else if (HasStr1 && !HasStr2) { 677 Len1 = std::min(Len1, Length); 678 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 679 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 680 TLI->getAsSizeT(Len1, *CI->getModule()), 681 B, DL, TLI)); 682 } 683 684 return nullptr; 685 } 686 687 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 688 Value *Src = CI->getArgOperand(0); 689 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 690 uint64_t SrcLen = GetStringLength(Src); 691 if (SrcLen && Size) { 692 annotateDereferenceableBytes(CI, 0, SrcLen); 693 if (SrcLen <= Size->getZExtValue() + 1) 694 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 695 } 696 697 return nullptr; 698 } 699 700 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 701 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 702 if (Dst == Src) // strcpy(x,x) -> x 703 return Src; 704 705 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 706 // See if we can get the length of the input string. 707 uint64_t Len = GetStringLength(Src); 708 if (Len) 709 annotateDereferenceableBytes(CI, 1, Len); 710 else 711 return nullptr; 712 713 // We have enough information to now generate the memcpy call to do the 714 // copy for us. Make a memcpy to copy the nul byte with align = 1. 715 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 716 TLI->getAsSizeT(Len, *CI->getModule())); 717 mergeAttributesAndFlags(NewCI, *CI); 718 return Dst; 719 } 720 721 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 722 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 723 724 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 725 if (CI->use_empty()) 726 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 727 728 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 729 Value *StrLen = emitStrLen(Src, B, DL, TLI); 730 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 731 } 732 733 // See if we can get the length of the input string. 734 uint64_t Len = GetStringLength(Src); 735 if (Len) 736 annotateDereferenceableBytes(CI, 1, Len); 737 else 738 return nullptr; 739 740 Value *LenV = TLI->getAsSizeT(Len, *CI->getModule()); 741 Value *DstEnd = B.CreateInBoundsGEP( 742 B.getInt8Ty(), Dst, TLI->getAsSizeT(Len - 1, *CI->getModule())); 743 744 // We have enough information to now generate the memcpy call to do the 745 // copy for us. Make a memcpy to copy the nul byte with align = 1. 746 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 747 mergeAttributesAndFlags(NewCI, *CI); 748 return DstEnd; 749 } 750 751 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 752 753 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 754 Value *Size = CI->getArgOperand(2); 755 if (isKnownNonZero(Size, DL)) 756 // Like snprintf, the function stores into the destination only when 757 // the size argument is nonzero. 758 annotateNonNullNoUndefBasedOnAccess(CI, 0); 759 // The function reads the source argument regardless of Size (it returns 760 // its length). 761 annotateNonNullNoUndefBasedOnAccess(CI, 1); 762 763 uint64_t NBytes; 764 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 765 NBytes = SizeC->getZExtValue(); 766 else 767 return nullptr; 768 769 Value *Dst = CI->getArgOperand(0); 770 Value *Src = CI->getArgOperand(1); 771 if (NBytes <= 1) { 772 if (NBytes == 1) 773 // For a call to strlcpy(D, S, 1) first store a nul in *D. 774 B.CreateStore(B.getInt8(0), Dst); 775 776 // Transform strlcpy(D, S, 0) to a call to strlen(S). 777 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 778 } 779 780 // Try to determine the length of the source, substituting its size 781 // when it's not nul-terminated (as it's required to be) to avoid 782 // reading past its end. 783 StringRef Str; 784 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 785 return nullptr; 786 787 uint64_t SrcLen = Str.find('\0'); 788 // Set if the terminating nul should be copied by the call to memcpy 789 // below. 790 bool NulTerm = SrcLen < NBytes; 791 792 if (NulTerm) 793 // Overwrite NBytes with the number of bytes to copy, including 794 // the terminating nul. 795 NBytes = SrcLen + 1; 796 else { 797 // Set the length of the source for the function to return to its 798 // size, and cap NBytes at the same. 799 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 800 NBytes = std::min(NBytes - 1, SrcLen); 801 } 802 803 if (SrcLen == 0) { 804 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 805 B.CreateStore(B.getInt8(0), Dst); 806 return ConstantInt::get(CI->getType(), 0); 807 } 808 809 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 810 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 811 // D[N' - 1] if necessary. 812 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 813 TLI->getAsSizeT(NBytes, *CI->getModule())); 814 mergeAttributesAndFlags(NewCI, *CI); 815 816 if (!NulTerm) { 817 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 818 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 819 B.CreateStore(B.getInt8(0), EndPtr); 820 } 821 822 // Like snprintf, strlcpy returns the number of nonzero bytes that would 823 // have been copied if the bound had been sufficiently big (which in this 824 // case is strlen(Src)). 825 return ConstantInt::get(CI->getType(), SrcLen); 826 } 827 828 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 829 // otherwise. 830 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 831 IRBuilderBase &B) { 832 Value *Dst = CI->getArgOperand(0); 833 Value *Src = CI->getArgOperand(1); 834 Value *Size = CI->getArgOperand(2); 835 836 if (isKnownNonZero(Size, DL)) { 837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 838 // only when N is nonzero. 839 annotateNonNullNoUndefBasedOnAccess(CI, 0); 840 annotateNonNullNoUndefBasedOnAccess(CI, 1); 841 } 842 843 // If the "bound" argument is known set N to it. Otherwise set it to 844 // UINT64_MAX and handle it later. 845 uint64_t N = UINT64_MAX; 846 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 847 N = SizeC->getZExtValue(); 848 849 if (N == 0) 850 // Fold st{p,r}ncpy(D, S, 0) to D. 851 return Dst; 852 853 if (N == 1) { 854 Type *CharTy = B.getInt8Ty(); 855 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 856 B.CreateStore(CharVal, Dst); 857 if (!RetEnd) 858 // Transform strncpy(D, S, 1) to return (*D = *S), D. 859 return Dst; 860 861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 862 Value *ZeroChar = ConstantInt::get(CharTy, 0); 863 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 864 865 Value *Off1 = B.getInt32(1); 866 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 867 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 868 } 869 870 // If the length of the input string is known set SrcLen to it. 871 uint64_t SrcLen = GetStringLength(Src); 872 if (SrcLen) 873 annotateDereferenceableBytes(CI, 1, SrcLen); 874 else 875 return nullptr; 876 877 --SrcLen; // Unbias length. 878 879 if (SrcLen == 0) { 880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 881 Align MemSetAlign = 882 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 883 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 884 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 885 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 886 CI->getContext(), 0, ArgAttrs)); 887 copyFlags(*CI, NewCI); 888 return Dst; 889 } 890 891 if (N > SrcLen + 1) { 892 if (N > 128) 893 // Bail if N is large or unknown. 894 return nullptr; 895 896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 897 StringRef Str; 898 if (!getConstantStringInfo(Src, Str)) 899 return nullptr; 900 std::string SrcStr = Str.str(); 901 // Create a bigger, nul-padded array with the same length, SrcLen, 902 // as the original string. 903 SrcStr.resize(N, '\0'); 904 Src = B.CreateGlobalString(SrcStr, "str", /*AddressSpace=*/0, 905 /*M=*/nullptr, /*AddNull=*/false); 906 } 907 908 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 909 // S and N are constant. 910 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 911 TLI->getAsSizeT(N, *CI->getModule())); 912 mergeAttributesAndFlags(NewCI, *CI); 913 if (!RetEnd) 914 return Dst; 915 916 // stpncpy(D, S, N) returns the address of the first null in D if it writes 917 // one, otherwise D + N. 918 Value *Off = B.getInt64(std::min(SrcLen, N)); 919 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 920 } 921 922 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 923 unsigned CharSize, 924 Value *Bound) { 925 Value *Src = CI->getArgOperand(0); 926 Type *CharTy = B.getIntNTy(CharSize); 927 928 if (isOnlyUsedInZeroEqualityComparison(CI) && 929 (!Bound || isKnownNonZero(Bound, DL))) { 930 // Fold strlen: 931 // strlen(x) != 0 --> *x != 0 932 // strlen(x) == 0 --> *x == 0 933 // and likewise strnlen with constant N > 0: 934 // strnlen(x, N) != 0 --> *x != 0 935 // strnlen(x, N) == 0 --> *x == 0 936 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 937 CI->getType()); 938 } 939 940 if (Bound) { 941 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 942 if (BoundCst->isZero()) 943 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 944 return ConstantInt::get(CI->getType(), 0); 945 946 if (BoundCst->isOne()) { 947 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 948 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 949 Value *ZeroChar = ConstantInt::get(CharTy, 0); 950 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 951 return B.CreateZExt(Cmp, CI->getType()); 952 } 953 } 954 } 955 956 if (uint64_t Len = GetStringLength(Src, CharSize)) { 957 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 958 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 959 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 960 if (Bound) 961 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 962 return LenC; 963 } 964 965 if (Bound) 966 // Punt for strnlen for now. 967 return nullptr; 968 969 // If s is a constant pointer pointing to a string literal, we can fold 970 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 971 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 972 // We only try to simplify strlen when the pointer s points to an array 973 // of CharSize elements. Otherwise, we would need to scale the offset x before 974 // doing the subtraction. This will make the optimization more complex, and 975 // it's not very useful because calling strlen for a pointer of other types is 976 // very uncommon. 977 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 978 // TODO: Handle subobjects. 979 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 980 return nullptr; 981 982 ConstantDataArraySlice Slice; 983 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 984 uint64_t NullTermIdx; 985 if (Slice.Array == nullptr) { 986 NullTermIdx = 0; 987 } else { 988 NullTermIdx = ~((uint64_t)0); 989 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 990 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 991 NullTermIdx = I; 992 break; 993 } 994 } 995 // If the string does not have '\0', leave it to strlen to compute 996 // its length. 997 if (NullTermIdx == ~((uint64_t)0)) 998 return nullptr; 999 } 1000 1001 Value *Offset = GEP->getOperand(2); 1002 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 1003 uint64_t ArrSize = 1004 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 1005 1006 // If Offset is not provably in the range [0, NullTermIdx], we can still 1007 // optimize if we can prove that the program has undefined behavior when 1008 // Offset is outside that range. That is the case when GEP->getOperand(0) 1009 // is a pointer to an object whose memory extent is NullTermIdx+1. 1010 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 1011 (isa<GlobalVariable>(GEP->getOperand(0)) && 1012 NullTermIdx == ArrSize - 1)) { 1013 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1014 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1015 Offset); 1016 } 1017 } 1018 } 1019 1020 // strlen(x?"foo":"bars") --> x ? 3 : 4 1021 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1022 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1023 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1024 if (LenTrue && LenFalse) { 1025 ORE.emit([&]() { 1026 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1027 << "folded strlen(select) to select of constants"; 1028 }); 1029 return B.CreateSelect(SI->getCondition(), 1030 ConstantInt::get(CI->getType(), LenTrue - 1), 1031 ConstantInt::get(CI->getType(), LenFalse - 1)); 1032 } 1033 } 1034 1035 return nullptr; 1036 } 1037 1038 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1039 if (Value *V = optimizeStringLength(CI, B, 8)) 1040 return V; 1041 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1042 return nullptr; 1043 } 1044 1045 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1046 Value *Bound = CI->getArgOperand(1); 1047 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1048 return V; 1049 1050 if (isKnownNonZero(Bound, DL)) 1051 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1052 return nullptr; 1053 } 1054 1055 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1056 Module &M = *CI->getModule(); 1057 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1058 // We cannot perform this optimization without wchar_size metadata. 1059 if (WCharSize == 0) 1060 return nullptr; 1061 1062 return optimizeStringLength(CI, B, WCharSize); 1063 } 1064 1065 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1066 StringRef S1, S2; 1067 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1068 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1069 1070 // strpbrk(s, "") -> nullptr 1071 // strpbrk("", s) -> nullptr 1072 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1073 return Constant::getNullValue(CI->getType()); 1074 1075 // Constant folding. 1076 if (HasS1 && HasS2) { 1077 size_t I = S1.find_first_of(S2); 1078 if (I == StringRef::npos) // No match. 1079 return Constant::getNullValue(CI->getType()); 1080 1081 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1082 B.getInt64(I), "strpbrk"); 1083 } 1084 1085 // strpbrk(s, "a") -> strchr(s, 'a') 1086 if (HasS2 && S2.size() == 1) 1087 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1088 1089 return nullptr; 1090 } 1091 1092 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1093 Value *EndPtr = CI->getArgOperand(1); 1094 if (isa<ConstantPointerNull>(EndPtr)) { 1095 // With a null EndPtr, this function won't capture the main argument. 1096 // It would be readonly too, except that it still may write to errno. 1097 CI->addParamAttr(0, Attribute::getWithCaptureInfo(CI->getContext(), 1098 CaptureInfo::none())); 1099 } 1100 1101 return nullptr; 1102 } 1103 1104 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1105 StringRef S1, S2; 1106 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1107 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1108 1109 // strspn(s, "") -> 0 1110 // strspn("", s) -> 0 1111 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1112 return Constant::getNullValue(CI->getType()); 1113 1114 // Constant folding. 1115 if (HasS1 && HasS2) { 1116 size_t Pos = S1.find_first_not_of(S2); 1117 if (Pos == StringRef::npos) 1118 Pos = S1.size(); 1119 return ConstantInt::get(CI->getType(), Pos); 1120 } 1121 1122 return nullptr; 1123 } 1124 1125 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1126 StringRef S1, S2; 1127 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1128 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1129 1130 // strcspn("", s) -> 0 1131 if (HasS1 && S1.empty()) 1132 return Constant::getNullValue(CI->getType()); 1133 1134 // Constant folding. 1135 if (HasS1 && HasS2) { 1136 size_t Pos = S1.find_first_of(S2); 1137 if (Pos == StringRef::npos) 1138 Pos = S1.size(); 1139 return ConstantInt::get(CI->getType(), Pos); 1140 } 1141 1142 // strcspn(s, "") -> strlen(s) 1143 if (HasS2 && S2.empty()) 1144 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1145 1146 return nullptr; 1147 } 1148 1149 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1150 // fold strstr(x, x) -> x. 1151 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1152 return CI->getArgOperand(0); 1153 1154 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1155 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1156 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1157 if (!StrLen) 1158 return nullptr; 1159 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1160 StrLen, B, DL, TLI); 1161 if (!StrNCmp) 1162 return nullptr; 1163 for (User *U : llvm::make_early_inc_range(CI->users())) { 1164 ICmpInst *Old = cast<ICmpInst>(U); 1165 Value *Cmp = 1166 B.CreateICmp(Old->getPredicate(), StrNCmp, 1167 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1168 replaceAllUsesWith(Old, Cmp); 1169 } 1170 return CI; 1171 } 1172 1173 // See if either input string is a constant string. 1174 StringRef SearchStr, ToFindStr; 1175 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1176 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1177 1178 // fold strstr(x, "") -> x. 1179 if (HasStr2 && ToFindStr.empty()) 1180 return CI->getArgOperand(0); 1181 1182 // If both strings are known, constant fold it. 1183 if (HasStr1 && HasStr2) { 1184 size_t Offset = SearchStr.find(ToFindStr); 1185 1186 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1187 return Constant::getNullValue(CI->getType()); 1188 1189 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1190 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0), 1191 Offset, "strstr"); 1192 } 1193 1194 // fold strstr(x, "y") -> strchr(x, 'y'). 1195 if (HasStr2 && ToFindStr.size() == 1) { 1196 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1197 } 1198 1199 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1200 return nullptr; 1201 } 1202 1203 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1204 Value *SrcStr = CI->getArgOperand(0); 1205 Value *Size = CI->getArgOperand(2); 1206 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1207 Value *CharVal = CI->getArgOperand(1); 1208 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1209 Value *NullPtr = Constant::getNullValue(CI->getType()); 1210 1211 if (LenC) { 1212 if (LenC->isZero()) 1213 // Fold memrchr(x, y, 0) --> null. 1214 return NullPtr; 1215 1216 if (LenC->isOne()) { 1217 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1218 // constant or otherwise. 1219 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1220 // Slice off the character's high end bits. 1221 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1222 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1223 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1224 } 1225 } 1226 1227 StringRef Str; 1228 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1229 return nullptr; 1230 1231 if (Str.size() == 0) 1232 // If the array is empty fold memrchr(A, C, N) to null for any value 1233 // of C and N on the basis that the only valid value of N is zero 1234 // (otherwise the call is undefined). 1235 return NullPtr; 1236 1237 uint64_t EndOff = UINT64_MAX; 1238 if (LenC) { 1239 EndOff = LenC->getZExtValue(); 1240 if (Str.size() < EndOff) 1241 // Punt out-of-bounds accesses to sanitizers and/or libc. 1242 return nullptr; 1243 } 1244 1245 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1246 // Fold memrchr(S, C, N) for a constant C. 1247 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1248 if (Pos == StringRef::npos) 1249 // When the character is not in the source array fold the result 1250 // to null regardless of Size. 1251 return NullPtr; 1252 1253 if (LenC) 1254 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1255 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1256 1257 if (Str.find(Str[Pos]) == Pos) { 1258 // When there is just a single occurrence of C in S, i.e., the one 1259 // in Str[Pos], fold 1260 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1261 // for nonconstant N. 1262 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1263 "memrchr.cmp"); 1264 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1265 B.getInt64(Pos), "memrchr.ptr_plus"); 1266 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1267 } 1268 } 1269 1270 // Truncate the string to search at most EndOff characters. 1271 Str = Str.substr(0, EndOff); 1272 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1273 return nullptr; 1274 1275 // If the source array consists of all equal characters, then for any 1276 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1277 // N != 0 && *S == C ? S + N - 1 : null 1278 Type *SizeTy = Size->getType(); 1279 Type *Int8Ty = B.getInt8Ty(); 1280 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1281 // Slice off the sought character's high end bits. 1282 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1283 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1284 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1285 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1286 Value *SrcPlus = 1287 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1288 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1289 } 1290 1291 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1292 Value *SrcStr = CI->getArgOperand(0); 1293 Value *Size = CI->getArgOperand(2); 1294 1295 if (isKnownNonZero(Size, DL)) { 1296 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1297 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1298 return memChrToCharCompare(CI, Size, B, DL); 1299 } 1300 1301 Value *CharVal = CI->getArgOperand(1); 1302 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1303 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1304 Value *NullPtr = Constant::getNullValue(CI->getType()); 1305 1306 // memchr(x, y, 0) -> null 1307 if (LenC) { 1308 if (LenC->isZero()) 1309 return NullPtr; 1310 1311 if (LenC->isOne()) { 1312 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1313 // constant or otherwise. 1314 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1315 // Slice off the character's high end bits. 1316 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1317 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1318 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1319 } 1320 } 1321 1322 StringRef Str; 1323 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1324 return nullptr; 1325 1326 if (CharC) { 1327 size_t Pos = Str.find(CharC->getZExtValue()); 1328 if (Pos == StringRef::npos) 1329 // When the character is not in the source array fold the result 1330 // to null regardless of Size. 1331 return NullPtr; 1332 1333 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1334 // When the constant Size is less than or equal to the character 1335 // position also fold the result to null. 1336 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1337 "memchr.cmp"); 1338 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1339 "memchr.ptr"); 1340 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1341 } 1342 1343 if (Str.size() == 0) 1344 // If the array is empty fold memchr(A, C, N) to null for any value 1345 // of C and N on the basis that the only valid value of N is zero 1346 // (otherwise the call is undefined). 1347 return NullPtr; 1348 1349 if (LenC) 1350 Str = substr(Str, LenC->getZExtValue()); 1351 1352 size_t Pos = Str.find_first_not_of(Str[0]); 1353 if (Pos == StringRef::npos 1354 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1355 // If the source array consists of at most two consecutive sequences 1356 // of the same characters, then for any C and N (whether in bounds or 1357 // not), fold memchr(S, C, N) to 1358 // N != 0 && *S == C ? S : null 1359 // or for the two sequences to: 1360 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1361 // ^Sel2 ^Sel1 are denoted above. 1362 // The latter makes it also possible to fold strchr() calls with strings 1363 // of the same characters. 1364 Type *SizeTy = Size->getType(); 1365 Type *Int8Ty = B.getInt8Ty(); 1366 1367 // Slice off the sought character's high end bits. 1368 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1369 1370 Value *Sel1 = NullPtr; 1371 if (Pos != StringRef::npos) { 1372 // Handle two consecutive sequences of the same characters. 1373 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1374 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1375 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1376 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1377 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1378 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1379 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1380 } 1381 1382 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1383 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1384 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1385 Value *And = B.CreateAnd(NNeZ, CEqS0); 1386 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1387 } 1388 1389 if (!LenC) { 1390 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1391 // S is dereferenceable so it's safe to load from it and fold 1392 // memchr(S, C, N) == S to N && *S == C for any C and N. 1393 // TODO: This is safe even for nonconstant S. 1394 return memChrToCharCompare(CI, Size, B, DL); 1395 1396 // From now on we need a constant length and constant array. 1397 return nullptr; 1398 } 1399 1400 bool OptForSize = llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1401 PGSOQueryType::IRPass); 1402 1403 // If the char is variable but the input str and length are not we can turn 1404 // this memchr call into a simple bit field test. Of course this only works 1405 // when the return value is only checked against null. 1406 // 1407 // It would be really nice to reuse switch lowering here but we can't change 1408 // the CFG at this point. 1409 // 1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1411 // != 0 1412 // after bounds check. 1413 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1414 return nullptr; 1415 1416 unsigned char Max = 1417 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1418 reinterpret_cast<const unsigned char *>(Str.end())); 1419 1420 // Make sure the bit field we're about to create fits in a register on the 1421 // target. 1422 // FIXME: On a 64 bit architecture this prevents us from using the 1423 // interesting range of alpha ascii chars. We could do better by emitting 1424 // two bitfields or shifting the range by 64 if no lower chars are used. 1425 if (!DL.fitsInLegalInteger(Max + 1)) { 1426 // Build chain of ORs 1427 // Transform: 1428 // memchr("abcd", C, 4) != nullptr 1429 // to: 1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1431 std::string SortedStr = Str.str(); 1432 llvm::sort(SortedStr); 1433 // Compute the number of of non-contiguous ranges. 1434 unsigned NonContRanges = 1; 1435 for (size_t i = 1; i < SortedStr.size(); ++i) { 1436 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1437 NonContRanges++; 1438 } 1439 } 1440 1441 // Restrict this optimization to profitable cases with one or two range 1442 // checks. 1443 if (NonContRanges > 2) 1444 return nullptr; 1445 1446 // Slice off the character's high end bits. 1447 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1448 1449 SmallVector<Value *> CharCompares; 1450 for (unsigned char C : SortedStr) 1451 CharCompares.push_back(B.CreateICmpEQ(CharVal, B.getInt8(C))); 1452 1453 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1454 } 1455 1456 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1457 // creating unnecessary illegal types. 1458 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1459 1460 // Now build the bit field. 1461 APInt Bitfield(Width, 0); 1462 for (char C : Str) 1463 Bitfield.setBit((unsigned char)C); 1464 Value *BitfieldC = B.getInt(Bitfield); 1465 1466 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1467 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1468 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1469 1470 // First check that the bit field access is within bounds. 1471 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1472 "memchr.bounds"); 1473 1474 // Create code that checks if the given bit is set in the field. 1475 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1476 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1477 1478 // Finally merge both checks and cast to pointer type. The inttoptr 1479 // implicitly zexts the i1 to intptr type. 1480 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1481 CI->getType()); 1482 } 1483 1484 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1485 // arrays LHS and RHS and nonconstant Size. 1486 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1487 Value *Size, bool StrNCmp, 1488 IRBuilderBase &B, const DataLayout &DL) { 1489 if (LHS == RHS) // memcmp(s,s,x) -> 0 1490 return Constant::getNullValue(CI->getType()); 1491 1492 StringRef LStr, RStr; 1493 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1494 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1495 return nullptr; 1496 1497 // If the contents of both constant arrays are known, fold a call to 1498 // memcmp(A, B, N) to 1499 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1500 // where Pos is the first mismatch between A and B, determined below. 1501 1502 uint64_t Pos = 0; 1503 Value *Zero = ConstantInt::get(CI->getType(), 0); 1504 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1505 if (Pos == MinSize || 1506 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1507 // One array is a leading part of the other of equal or greater 1508 // size, or for strncmp, the arrays are equal strings. 1509 // Fold the result to zero. Size is assumed to be in bounds, since 1510 // otherwise the call would be undefined. 1511 return Zero; 1512 } 1513 1514 if (LStr[Pos] != RStr[Pos]) 1515 break; 1516 } 1517 1518 // Normalize the result. 1519 typedef unsigned char UChar; 1520 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1521 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1522 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1523 Value *Res = ConstantInt::get(CI->getType(), IRes); 1524 return B.CreateSelect(Cmp, Zero, Res); 1525 } 1526 1527 // Optimize a memcmp call CI with constant size Len. 1528 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1529 uint64_t Len, IRBuilderBase &B, 1530 const DataLayout &DL) { 1531 if (Len == 0) // memcmp(s1,s2,0) -> 0 1532 return Constant::getNullValue(CI->getType()); 1533 1534 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1535 if (Len == 1) { 1536 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"), 1537 CI->getType(), "lhsv"); 1538 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"), 1539 CI->getType(), "rhsv"); 1540 return B.CreateSub(LHSV, RHSV, "chardiff"); 1541 } 1542 1543 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1544 // TODO: The case where both inputs are constants does not need to be limited 1545 // to legal integers or equality comparison. See block below this. 1546 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1547 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1548 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1549 1550 // First, see if we can fold either argument to a constant. 1551 Value *LHSV = nullptr; 1552 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1553 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1554 1555 Value *RHSV = nullptr; 1556 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1557 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1558 1559 // Don't generate unaligned loads. If either source is constant data, 1560 // alignment doesn't matter for that source because there is no load. 1561 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1562 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1563 if (!LHSV) 1564 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1565 if (!RHSV) 1566 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1567 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1568 } 1569 } 1570 1571 return nullptr; 1572 } 1573 1574 // Most simplifications for memcmp also apply to bcmp. 1575 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1576 IRBuilderBase &B) { 1577 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1578 Value *Size = CI->getArgOperand(2); 1579 1580 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1581 1582 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1583 return Res; 1584 1585 // Handle constant Size. 1586 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1587 if (!LenC) 1588 return nullptr; 1589 1590 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1591 } 1592 1593 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1594 Module *M = CI->getModule(); 1595 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1596 return V; 1597 1598 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1599 // bcmp can be more efficient than memcmp because it only has to know that 1600 // there is a difference, not how different one is to the other. 1601 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1602 isOnlyUsedInZeroEqualityComparison(CI)) { 1603 Value *LHS = CI->getArgOperand(0); 1604 Value *RHS = CI->getArgOperand(1); 1605 Value *Size = CI->getArgOperand(2); 1606 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1607 } 1608 1609 return nullptr; 1610 } 1611 1612 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1613 return optimizeMemCmpBCmpCommon(CI, B); 1614 } 1615 1616 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1617 Value *Size = CI->getArgOperand(2); 1618 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1619 if (isa<IntrinsicInst>(CI)) 1620 return nullptr; 1621 1622 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1623 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1624 CI->getArgOperand(1), Align(1), Size); 1625 mergeAttributesAndFlags(NewCI, *CI); 1626 return CI->getArgOperand(0); 1627 } 1628 1629 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1630 Value *Dst = CI->getArgOperand(0); 1631 Value *Src = CI->getArgOperand(1); 1632 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1633 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1634 StringRef SrcStr; 1635 if (CI->use_empty() && Dst == Src) 1636 return Dst; 1637 // memccpy(d, s, c, 0) -> nullptr 1638 if (N) { 1639 if (N->isNullValue()) 1640 return Constant::getNullValue(CI->getType()); 1641 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1642 // TODO: Handle zeroinitializer. 1643 !StopChar) 1644 return nullptr; 1645 } else { 1646 return nullptr; 1647 } 1648 1649 // Wrap arg 'c' of type int to char 1650 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1651 if (Pos == StringRef::npos) { 1652 if (N->getZExtValue() <= SrcStr.size()) { 1653 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1654 CI->getArgOperand(3))); 1655 return Constant::getNullValue(CI->getType()); 1656 } 1657 return nullptr; 1658 } 1659 1660 Value *NewN = 1661 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1662 // memccpy -> llvm.memcpy 1663 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1664 return Pos + 1 <= N->getZExtValue() 1665 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1666 : Constant::getNullValue(CI->getType()); 1667 } 1668 1669 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1670 Value *Dst = CI->getArgOperand(0); 1671 Value *N = CI->getArgOperand(2); 1672 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1673 CallInst *NewCI = 1674 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1675 // Propagate attributes, but memcpy has no return value, so make sure that 1676 // any return attributes are compliant. 1677 // TODO: Attach return value attributes to the 1st operand to preserve them? 1678 mergeAttributesAndFlags(NewCI, *CI); 1679 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1680 } 1681 1682 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1683 Value *Size = CI->getArgOperand(2); 1684 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1685 if (isa<IntrinsicInst>(CI)) 1686 return nullptr; 1687 1688 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1689 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1690 CI->getArgOperand(1), Align(1), Size); 1691 mergeAttributesAndFlags(NewCI, *CI); 1692 return CI->getArgOperand(0); 1693 } 1694 1695 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1696 Value *Size = CI->getArgOperand(2); 1697 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1698 if (isa<IntrinsicInst>(CI)) 1699 return nullptr; 1700 1701 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1702 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1703 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1704 mergeAttributesAndFlags(NewCI, *CI); 1705 return CI->getArgOperand(0); 1706 } 1707 1708 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1709 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1710 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1711 1712 return nullptr; 1713 } 1714 1715 // When enabled, replace operator new() calls marked with a hot or cold memprof 1716 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1717 // Currently this is supported by the open source version of tcmalloc, see: 1718 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1719 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1720 LibFunc &Func) { 1721 if (!OptimizeHotColdNew) 1722 return nullptr; 1723 1724 uint8_t HotCold; 1725 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1726 HotCold = ColdNewHintValue; 1727 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == 1728 "notcold") 1729 HotCold = NotColdNewHintValue; 1730 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1731 HotCold = HotNewHintValue; 1732 else 1733 return nullptr; 1734 1735 // For calls that already pass a hot/cold hint, only update the hint if 1736 // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint 1737 // if cold or hot, and leave as-is for default handling if "notcold" aka warm. 1738 // Note that in cases where we decide it is "notcold", it might be slightly 1739 // better to replace the hinted call with a non hinted call, to avoid the 1740 // extra parameter and the if condition check of the hint value in the 1741 // allocator. This can be considered in the future. 1742 switch (Func) { 1743 case LibFunc_Znwm12__hot_cold_t: 1744 if (OptimizeExistingHotColdNew) 1745 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1746 LibFunc_Znwm12__hot_cold_t, HotCold); 1747 break; 1748 case LibFunc_Znwm: 1749 if (HotCold != NotColdNewHintValue) 1750 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1751 LibFunc_Znwm12__hot_cold_t, HotCold); 1752 break; 1753 case LibFunc_Znam12__hot_cold_t: 1754 if (OptimizeExistingHotColdNew) 1755 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1756 LibFunc_Znam12__hot_cold_t, HotCold); 1757 break; 1758 case LibFunc_Znam: 1759 if (HotCold != NotColdNewHintValue) 1760 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1761 LibFunc_Znam12__hot_cold_t, HotCold); 1762 break; 1763 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 1764 if (OptimizeExistingHotColdNew) 1765 return emitHotColdNewNoThrow( 1766 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1767 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1768 break; 1769 case LibFunc_ZnwmRKSt9nothrow_t: 1770 if (HotCold != NotColdNewHintValue) 1771 return emitHotColdNewNoThrow( 1772 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1773 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1774 break; 1775 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 1776 if (OptimizeExistingHotColdNew) 1777 return emitHotColdNewNoThrow( 1778 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1779 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1780 break; 1781 case LibFunc_ZnamRKSt9nothrow_t: 1782 if (HotCold != NotColdNewHintValue) 1783 return emitHotColdNewNoThrow( 1784 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1785 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1786 break; 1787 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 1788 if (OptimizeExistingHotColdNew) 1789 return emitHotColdNewAligned( 1790 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1791 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1792 break; 1793 case LibFunc_ZnwmSt11align_val_t: 1794 if (HotCold != NotColdNewHintValue) 1795 return emitHotColdNewAligned( 1796 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1797 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1798 break; 1799 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 1800 if (OptimizeExistingHotColdNew) 1801 return emitHotColdNewAligned( 1802 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1803 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1804 break; 1805 case LibFunc_ZnamSt11align_val_t: 1806 if (HotCold != NotColdNewHintValue) 1807 return emitHotColdNewAligned( 1808 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1809 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1810 break; 1811 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1812 if (OptimizeExistingHotColdNew) 1813 return emitHotColdNewAlignedNoThrow( 1814 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1815 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1816 HotCold); 1817 break; 1818 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1819 if (HotCold != NotColdNewHintValue) 1820 return emitHotColdNewAlignedNoThrow( 1821 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1822 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1823 HotCold); 1824 break; 1825 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1826 if (OptimizeExistingHotColdNew) 1827 return emitHotColdNewAlignedNoThrow( 1828 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1829 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1830 HotCold); 1831 break; 1832 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1833 if (HotCold != NotColdNewHintValue) 1834 return emitHotColdNewAlignedNoThrow( 1835 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1836 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1837 HotCold); 1838 break; 1839 case LibFunc_size_returning_new: 1840 if (HotCold != NotColdNewHintValue) 1841 return emitHotColdSizeReturningNew(CI->getArgOperand(0), B, TLI, 1842 LibFunc_size_returning_new_hot_cold, 1843 HotCold); 1844 break; 1845 case LibFunc_size_returning_new_hot_cold: 1846 if (OptimizeExistingHotColdNew) 1847 return emitHotColdSizeReturningNew(CI->getArgOperand(0), B, TLI, 1848 LibFunc_size_returning_new_hot_cold, 1849 HotCold); 1850 break; 1851 case LibFunc_size_returning_new_aligned: 1852 if (HotCold != NotColdNewHintValue) 1853 return emitHotColdSizeReturningNewAligned( 1854 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1855 LibFunc_size_returning_new_aligned_hot_cold, HotCold); 1856 break; 1857 case LibFunc_size_returning_new_aligned_hot_cold: 1858 if (OptimizeExistingHotColdNew) 1859 return emitHotColdSizeReturningNewAligned( 1860 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1861 LibFunc_size_returning_new_aligned_hot_cold, HotCold); 1862 break; 1863 default: 1864 return nullptr; 1865 } 1866 return nullptr; 1867 } 1868 1869 //===----------------------------------------------------------------------===// 1870 // Math Library Optimizations 1871 //===----------------------------------------------------------------------===// 1872 1873 // Replace a libcall \p CI with a call to intrinsic \p IID 1874 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1875 Intrinsic::ID IID) { 1876 CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI); 1877 NewCall->takeName(CI); 1878 return copyFlags(*CI, NewCall); 1879 } 1880 1881 /// Return a variant of Val with float type. 1882 /// Currently this works in two cases: If Val is an FPExtension of a float 1883 /// value to something bigger, simply return the operand. 1884 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1885 /// loss of precision do so. 1886 static Value *valueHasFloatPrecision(Value *Val) { 1887 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1888 Value *Op = Cast->getOperand(0); 1889 if (Op->getType()->isFloatTy()) 1890 return Op; 1891 } 1892 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1893 APFloat F = Const->getValueAPF(); 1894 bool losesInfo; 1895 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1896 &losesInfo); 1897 if (!losesInfo) 1898 return ConstantFP::get(Const->getContext(), F); 1899 } 1900 return nullptr; 1901 } 1902 1903 /// Shrink double -> float functions. 1904 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1905 bool isBinary, const TargetLibraryInfo *TLI, 1906 bool isPrecise = false) { 1907 Function *CalleeFn = CI->getCalledFunction(); 1908 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1909 return nullptr; 1910 1911 // If not all the uses of the function are converted to float, then bail out. 1912 // This matters if the precision of the result is more important than the 1913 // precision of the arguments. 1914 if (isPrecise) 1915 for (User *U : CI->users()) { 1916 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1917 if (!Cast || !Cast->getType()->isFloatTy()) 1918 return nullptr; 1919 } 1920 1921 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1922 Value *V[2]; 1923 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1924 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1925 if (!V[0] || (isBinary && !V[1])) 1926 return nullptr; 1927 1928 // If call isn't an intrinsic, check that it isn't within a function with the 1929 // same name as the float version of this call, otherwise the result is an 1930 // infinite loop. For example, from MinGW-w64: 1931 // 1932 // float expf(float val) { return (float) exp((double) val); } 1933 StringRef CalleeName = CalleeFn->getName(); 1934 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1935 if (!IsIntrinsic) { 1936 StringRef CallerName = CI->getFunction()->getName(); 1937 if (!CallerName.empty() && CallerName.back() == 'f' && 1938 CallerName.size() == (CalleeName.size() + 1) && 1939 CallerName.starts_with(CalleeName)) 1940 return nullptr; 1941 } 1942 1943 // Propagate the math semantics from the current function to the new function. 1944 IRBuilderBase::FastMathFlagGuard Guard(B); 1945 B.setFastMathFlags(CI->getFastMathFlags()); 1946 1947 // g((double) float) -> (double) gf(float) 1948 Value *R; 1949 if (IsIntrinsic) { 1950 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1951 R = isBinary ? B.CreateIntrinsic(IID, B.getFloatTy(), V) 1952 : B.CreateIntrinsic(IID, B.getFloatTy(), V[0]); 1953 } else { 1954 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1955 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1956 CalleeAttrs) 1957 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1958 } 1959 return B.CreateFPExt(R, B.getDoubleTy()); 1960 } 1961 1962 /// Shrink double -> float for unary functions. 1963 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1964 const TargetLibraryInfo *TLI, 1965 bool isPrecise = false) { 1966 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1967 } 1968 1969 /// Shrink double -> float for binary functions. 1970 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1971 const TargetLibraryInfo *TLI, 1972 bool isPrecise = false) { 1973 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1974 } 1975 1976 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1977 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1978 Value *Real, *Imag; 1979 1980 if (CI->arg_size() == 1) { 1981 1982 if (!CI->isFast()) 1983 return nullptr; 1984 1985 Value *Op = CI->getArgOperand(0); 1986 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1987 1988 Real = B.CreateExtractValue(Op, 0, "real"); 1989 Imag = B.CreateExtractValue(Op, 1, "imag"); 1990 1991 } else { 1992 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1993 1994 Real = CI->getArgOperand(0); 1995 Imag = CI->getArgOperand(1); 1996 1997 // if real or imaginary part is zero, simplify to abs(cimag(z)) 1998 // or abs(creal(z)) 1999 Value *AbsOp = nullptr; 2000 if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) { 2001 if (ConstReal->isZero()) 2002 AbsOp = Imag; 2003 2004 } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) { 2005 if (ConstImag->isZero()) 2006 AbsOp = Real; 2007 } 2008 2009 if (AbsOp) 2010 return copyFlags( 2011 *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, CI, "cabs")); 2012 2013 if (!CI->isFast()) 2014 return nullptr; 2015 } 2016 2017 // Propagate fast-math flags from the existing call to new instructions. 2018 Value *RealReal = B.CreateFMulFMF(Real, Real, CI); 2019 Value *ImagImag = B.CreateFMulFMF(Imag, Imag, CI); 2020 return copyFlags( 2021 *CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt, 2022 B.CreateFAddFMF(RealReal, ImagImag, CI), CI, 2023 "cabs")); 2024 } 2025 2026 // Return a properly extended integer (DstWidth bits wide) if the operation is 2027 // an itofp. 2028 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 2029 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 2030 Value *Op = cast<Instruction>(I2F)->getOperand(0); 2031 // Make sure that the exponent fits inside an "int" of size DstWidth, 2032 // thus avoiding any range issues that FP has not. 2033 unsigned BitWidth = Op->getType()->getScalarSizeInBits(); 2034 if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) { 2035 Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth); 2036 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy) 2037 : B.CreateZExt(Op, IntTy); 2038 } 2039 } 2040 2041 return nullptr; 2042 } 2043 2044 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 2045 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 2046 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 2047 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 2048 Module *M = Pow->getModule(); 2049 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2050 Type *Ty = Pow->getType(); 2051 bool Ignored; 2052 2053 // Evaluate special cases related to a nested function as the base. 2054 2055 // pow(exp(x), y) -> exp(x * y) 2056 // pow(exp2(x), y) -> exp2(x * y) 2057 // If exp{,2}() is used only once, it is better to fold two transcendental 2058 // math functions into one. If used again, exp{,2}() would still have to be 2059 // called with the original argument, then keep both original transcendental 2060 // functions. However, this transformation is only safe with fully relaxed 2061 // math semantics, since, besides rounding differences, it changes overflow 2062 // and underflow behavior quite dramatically. For example: 2063 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 2064 // Whereas: 2065 // exp(1000 * 0.001) = exp(1) 2066 // TODO: Loosen the requirement for fully relaxed math semantics. 2067 // TODO: Handle exp10() when more targets have it available. 2068 CallInst *BaseFn = dyn_cast<CallInst>(Base); 2069 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 2070 LibFunc LibFn; 2071 2072 Function *CalleeFn = BaseFn->getCalledFunction(); 2073 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 2074 isLibFuncEmittable(M, TLI, LibFn)) { 2075 StringRef ExpName; 2076 Intrinsic::ID ID; 2077 Value *ExpFn; 2078 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 2079 2080 switch (LibFn) { 2081 default: 2082 return nullptr; 2083 case LibFunc_expf: 2084 case LibFunc_exp: 2085 case LibFunc_expl: 2086 ExpName = TLI->getName(LibFunc_exp); 2087 ID = Intrinsic::exp; 2088 LibFnFloat = LibFunc_expf; 2089 LibFnDouble = LibFunc_exp; 2090 LibFnLongDouble = LibFunc_expl; 2091 break; 2092 case LibFunc_exp2f: 2093 case LibFunc_exp2: 2094 case LibFunc_exp2l: 2095 ExpName = TLI->getName(LibFunc_exp2); 2096 ID = Intrinsic::exp2; 2097 LibFnFloat = LibFunc_exp2f; 2098 LibFnDouble = LibFunc_exp2; 2099 LibFnLongDouble = LibFunc_exp2l; 2100 break; 2101 } 2102 2103 // Create new exp{,2}() with the product as its argument. 2104 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2105 ExpFn = BaseFn->doesNotAccessMemory() 2106 ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName) 2107 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2108 LibFnLongDouble, B, 2109 BaseFn->getAttributes()); 2110 2111 // Since the new exp{,2}() is different from the original one, dead code 2112 // elimination cannot be trusted to remove it, since it may have side 2113 // effects (e.g., errno). When the only consumer for the original 2114 // exp{,2}() is pow(), then it has to be explicitly erased. 2115 substituteInParent(BaseFn, ExpFn); 2116 return ExpFn; 2117 } 2118 } 2119 2120 // Evaluate special cases related to a constant base. 2121 2122 const APFloat *BaseF; 2123 if (!match(Base, m_APFloat(BaseF))) 2124 return nullptr; 2125 2126 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2127 2128 const bool UseIntrinsic = Pow->doesNotAccessMemory(); 2129 2130 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2131 if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) && 2132 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2133 (UseIntrinsic || 2134 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2135 2136 // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can 2137 // just directly use the original integer type. 2138 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) { 2139 Constant *One = ConstantFP::get(Ty, 1.0); 2140 2141 if (UseIntrinsic) { 2142 return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp, 2143 {Ty, ExpoI->getType()}, 2144 {One, ExpoI}, Pow, "exp2")); 2145 } 2146 2147 return copyFlags(*Pow, emitBinaryFloatFnCall( 2148 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2149 LibFunc_ldexpl, B, NoAttrs)); 2150 } 2151 } 2152 2153 // pow(2.0 ** n, x) -> exp2(n * x) 2154 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2155 APFloat BaseR = APFloat(1.0); 2156 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2157 BaseR = BaseR / *BaseF; 2158 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2159 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2160 APSInt NI(64, false); 2161 if ((IsInteger || IsReciprocal) && 2162 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2163 APFloat::opOK && 2164 NI > 1 && NI.isPowerOf2()) { 2165 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2166 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2167 if (Pow->doesNotAccessMemory()) 2168 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2169 nullptr, "exp2")); 2170 else 2171 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2172 LibFunc_exp2f, 2173 LibFunc_exp2l, B, NoAttrs)); 2174 } 2175 } 2176 2177 // pow(10.0, x) -> exp10(x) 2178 if (BaseF->isExactlyValue(10.0) && 2179 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) { 2180 2181 if (Pow->doesNotAccessMemory()) { 2182 CallInst *NewExp10 = 2183 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10"); 2184 return copyFlags(*Pow, NewExp10); 2185 } 2186 2187 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2188 LibFunc_exp10f, LibFunc_exp10l, 2189 B, NoAttrs)); 2190 } 2191 2192 // pow(x, y) -> exp2(log2(x) * y) 2193 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2194 !BaseF->isNegative()) { 2195 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2196 // Luckily optimizePow has already handled the x == 1 case. 2197 assert(!match(Base, m_FPOne()) && 2198 "pow(1.0, y) should have been simplified earlier!"); 2199 2200 Value *Log = nullptr; 2201 if (Ty->isFloatTy()) 2202 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2203 else if (Ty->isDoubleTy()) 2204 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2205 2206 if (Log) { 2207 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2208 if (Pow->doesNotAccessMemory()) 2209 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2210 nullptr, "exp2")); 2211 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2212 LibFunc_exp2l)) 2213 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2214 LibFunc_exp2f, 2215 LibFunc_exp2l, B, NoAttrs)); 2216 } 2217 } 2218 2219 return nullptr; 2220 } 2221 2222 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2223 Module *M, IRBuilderBase &B, 2224 const TargetLibraryInfo *TLI) { 2225 // If errno is never set, then use the intrinsic for sqrt(). 2226 if (NoErrno) 2227 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt"); 2228 2229 // Otherwise, use the libcall for sqrt(). 2230 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2231 LibFunc_sqrtl)) 2232 // TODO: We also should check that the target can in fact lower the sqrt() 2233 // libcall. We currently have no way to ask this question, so we ask if 2234 // the target has a sqrt() libcall, which is not exactly the same. 2235 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2236 LibFunc_sqrtl, B, Attrs); 2237 2238 return nullptr; 2239 } 2240 2241 /// Use square root in place of pow(x, +/-0.5). 2242 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2243 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2244 Module *Mod = Pow->getModule(); 2245 Type *Ty = Pow->getType(); 2246 2247 const APFloat *ExpoF; 2248 if (!match(Expo, m_APFloat(ExpoF)) || 2249 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2250 return nullptr; 2251 2252 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2253 // so that requires fast-math-flags (afn or reassoc). 2254 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2255 return nullptr; 2256 2257 // If we have a pow() library call (accesses memory) and we can't guarantee 2258 // that the base is not an infinity, give up: 2259 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2260 // errno), but sqrt(-Inf) is required by various standards to set errno. 2261 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2262 !isKnownNeverInfinity( 2263 Base, 0, SimplifyQuery(DL, TLI, DT, AC, Pow, true, true, DC))) 2264 return nullptr; 2265 2266 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2267 TLI); 2268 if (!Sqrt) 2269 return nullptr; 2270 2271 // Handle signed zero base by expanding to fabs(sqrt(x)). 2272 if (!Pow->hasNoSignedZeros()) 2273 Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs"); 2274 2275 Sqrt = copyFlags(*Pow, Sqrt); 2276 2277 // Handle non finite base by expanding to 2278 // (x == -infinity ? +infinity : sqrt(x)). 2279 if (!Pow->hasNoInfs()) { 2280 Value *PosInf = ConstantFP::getInfinity(Ty), 2281 *NegInf = ConstantFP::getInfinity(Ty, true); 2282 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2283 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2284 } 2285 2286 // If the exponent is negative, then get the reciprocal. 2287 if (ExpoF->isNegative()) 2288 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2289 2290 return Sqrt; 2291 } 2292 2293 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2294 IRBuilderBase &B) { 2295 Value *Args[] = {Base, Expo}; 2296 Type *Types[] = {Base->getType(), Expo->getType()}; 2297 return B.CreateIntrinsic(Intrinsic::powi, Types, Args); 2298 } 2299 2300 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2301 Value *Base = Pow->getArgOperand(0); 2302 Value *Expo = Pow->getArgOperand(1); 2303 Function *Callee = Pow->getCalledFunction(); 2304 StringRef Name = Callee->getName(); 2305 Type *Ty = Pow->getType(); 2306 Module *M = Pow->getModule(); 2307 bool AllowApprox = Pow->hasApproxFunc(); 2308 bool Ignored; 2309 2310 // Propagate the math semantics from the call to any created instructions. 2311 IRBuilderBase::FastMathFlagGuard Guard(B); 2312 B.setFastMathFlags(Pow->getFastMathFlags()); 2313 // Evaluate special cases related to the base. 2314 2315 // pow(1.0, x) -> 1.0 2316 if (match(Base, m_FPOne())) 2317 return Base; 2318 2319 if (Value *Exp = replacePowWithExp(Pow, B)) 2320 return Exp; 2321 2322 // Evaluate special cases related to the exponent. 2323 2324 // pow(x, -1.0) -> 1.0 / x 2325 if (match(Expo, m_SpecificFP(-1.0))) 2326 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2327 2328 // pow(x, +/-0.0) -> 1.0 2329 if (match(Expo, m_AnyZeroFP())) 2330 return ConstantFP::get(Ty, 1.0); 2331 2332 // pow(x, 1.0) -> x 2333 if (match(Expo, m_FPOne())) 2334 return Base; 2335 2336 // pow(x, 2.0) -> x * x 2337 if (match(Expo, m_SpecificFP(2.0))) 2338 return B.CreateFMul(Base, Base, "square"); 2339 2340 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2341 return Sqrt; 2342 2343 // If we can approximate pow: 2344 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2345 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2346 const APFloat *ExpoF; 2347 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2348 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2349 APFloat ExpoA(abs(*ExpoF)); 2350 APFloat ExpoI(*ExpoF); 2351 Value *Sqrt = nullptr; 2352 if (!ExpoA.isInteger()) { 2353 APFloat Expo2 = ExpoA; 2354 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2355 // is no floating point exception and the result is an integer, then 2356 // ExpoA == integer + 0.5 2357 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2358 return nullptr; 2359 2360 if (!Expo2.isInteger()) 2361 return nullptr; 2362 2363 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2364 APFloat::opInexact) 2365 return nullptr; 2366 if (!ExpoI.isInteger()) 2367 return nullptr; 2368 ExpoF = &ExpoI; 2369 2370 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2371 B, TLI); 2372 if (!Sqrt) 2373 return nullptr; 2374 } 2375 2376 // 0.5 fraction is now optionally handled. 2377 // Do pow -> powi for remaining integer exponent 2378 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2379 if (ExpoF->isInteger() && 2380 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2381 APFloat::opOK) { 2382 Value *PowI = copyFlags( 2383 *Pow, 2384 createPowWithIntegerExponent( 2385 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2386 M, B)); 2387 2388 if (PowI && Sqrt) 2389 return B.CreateFMul(PowI, Sqrt); 2390 2391 return PowI; 2392 } 2393 } 2394 2395 // powf(x, itofp(y)) -> powi(x, y) 2396 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2397 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2398 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2399 } 2400 2401 // Shrink pow() to powf() if the arguments are single precision, 2402 // unless the result is expected to be double precision. 2403 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2404 hasFloatVersion(M, Name)) { 2405 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2406 return Shrunk; 2407 } 2408 2409 return nullptr; 2410 } 2411 2412 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2413 Module *M = CI->getModule(); 2414 Function *Callee = CI->getCalledFunction(); 2415 StringRef Name = Callee->getName(); 2416 Value *Ret = nullptr; 2417 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2418 hasFloatVersion(M, Name)) 2419 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2420 2421 // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we 2422 // have the libcall, emit the libcall. 2423 // 2424 // TODO: In principle we should be able to just always use the intrinsic for 2425 // any doesNotAccessMemory callsite. 2426 2427 const bool UseIntrinsic = Callee->isIntrinsic(); 2428 // Bail out for vectors because the code below only expects scalars. 2429 Type *Ty = CI->getType(); 2430 if (!UseIntrinsic && Ty->isVectorTy()) 2431 return Ret; 2432 2433 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2434 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2435 Value *Op = CI->getArgOperand(0); 2436 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2437 (UseIntrinsic || 2438 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2439 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2440 Constant *One = ConstantFP::get(Ty, 1.0); 2441 2442 if (UseIntrinsic) { 2443 return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp, 2444 {Ty, Exp->getType()}, 2445 {One, Exp}, CI)); 2446 } 2447 2448 IRBuilderBase::FastMathFlagGuard Guard(B); 2449 B.setFastMathFlags(CI->getFastMathFlags()); 2450 return copyFlags(*CI, emitBinaryFloatFnCall( 2451 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2452 LibFunc_ldexpl, B, AttributeList())); 2453 } 2454 } 2455 2456 return Ret; 2457 } 2458 2459 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2460 Module *M = CI->getModule(); 2461 2462 // If we can shrink the call to a float function rather than a double 2463 // function, do that first. 2464 Function *Callee = CI->getCalledFunction(); 2465 StringRef Name = Callee->getName(); 2466 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2467 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2468 return Ret; 2469 2470 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2471 // the intrinsics for improved optimization (for example, vectorization). 2472 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2473 // From the C standard draft WG14/N1256: 2474 // "Ideally, fmax would be sensitive to the sign of zero, for example 2475 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2476 // might be impractical." 2477 FastMathFlags FMF = CI->getFastMathFlags(); 2478 FMF.setNoSignedZeros(); 2479 2480 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum 2481 : Intrinsic::maxnum; 2482 return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0), 2483 CI->getArgOperand(1), FMF)); 2484 } 2485 2486 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2487 Function *LogFn = Log->getCalledFunction(); 2488 StringRef LogNm = LogFn->getName(); 2489 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2490 Module *Mod = Log->getModule(); 2491 Type *Ty = Log->getType(); 2492 2493 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2494 if (Value *Ret = optimizeUnaryDoubleFP(Log, B, TLI, true)) 2495 return Ret; 2496 2497 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2498 2499 // This is only applicable to log(), log2(), log10(). 2500 if (TLI->getLibFunc(LogNm, LogLb)) { 2501 switch (LogLb) { 2502 case LibFunc_logf: 2503 LogID = Intrinsic::log; 2504 ExpLb = LibFunc_expf; 2505 Exp2Lb = LibFunc_exp2f; 2506 Exp10Lb = LibFunc_exp10f; 2507 PowLb = LibFunc_powf; 2508 break; 2509 case LibFunc_log: 2510 LogID = Intrinsic::log; 2511 ExpLb = LibFunc_exp; 2512 Exp2Lb = LibFunc_exp2; 2513 Exp10Lb = LibFunc_exp10; 2514 PowLb = LibFunc_pow; 2515 break; 2516 case LibFunc_logl: 2517 LogID = Intrinsic::log; 2518 ExpLb = LibFunc_expl; 2519 Exp2Lb = LibFunc_exp2l; 2520 Exp10Lb = LibFunc_exp10l; 2521 PowLb = LibFunc_powl; 2522 break; 2523 case LibFunc_log2f: 2524 LogID = Intrinsic::log2; 2525 ExpLb = LibFunc_expf; 2526 Exp2Lb = LibFunc_exp2f; 2527 Exp10Lb = LibFunc_exp10f; 2528 PowLb = LibFunc_powf; 2529 break; 2530 case LibFunc_log2: 2531 LogID = Intrinsic::log2; 2532 ExpLb = LibFunc_exp; 2533 Exp2Lb = LibFunc_exp2; 2534 Exp10Lb = LibFunc_exp10; 2535 PowLb = LibFunc_pow; 2536 break; 2537 case LibFunc_log2l: 2538 LogID = Intrinsic::log2; 2539 ExpLb = LibFunc_expl; 2540 Exp2Lb = LibFunc_exp2l; 2541 Exp10Lb = LibFunc_exp10l; 2542 PowLb = LibFunc_powl; 2543 break; 2544 case LibFunc_log10f: 2545 LogID = Intrinsic::log10; 2546 ExpLb = LibFunc_expf; 2547 Exp2Lb = LibFunc_exp2f; 2548 Exp10Lb = LibFunc_exp10f; 2549 PowLb = LibFunc_powf; 2550 break; 2551 case LibFunc_log10: 2552 LogID = Intrinsic::log10; 2553 ExpLb = LibFunc_exp; 2554 Exp2Lb = LibFunc_exp2; 2555 Exp10Lb = LibFunc_exp10; 2556 PowLb = LibFunc_pow; 2557 break; 2558 case LibFunc_log10l: 2559 LogID = Intrinsic::log10; 2560 ExpLb = LibFunc_expl; 2561 Exp2Lb = LibFunc_exp2l; 2562 Exp10Lb = LibFunc_exp10l; 2563 PowLb = LibFunc_powl; 2564 break; 2565 default: 2566 return nullptr; 2567 } 2568 2569 // Convert libcall to intrinsic if the value is known > 0. 2570 bool IsKnownNoErrno = Log->hasNoNaNs() && Log->hasNoInfs(); 2571 if (!IsKnownNoErrno) { 2572 SimplifyQuery SQ(DL, TLI, DT, AC, Log, true, true, DC); 2573 KnownFPClass Known = computeKnownFPClass( 2574 Log->getOperand(0), 2575 KnownFPClass::OrderedLessThanZeroMask | fcSubnormal, 2576 /*Depth=*/0, SQ); 2577 Function *F = Log->getParent()->getParent(); 2578 IsKnownNoErrno = Known.cannotBeOrderedLessThanZero() && 2579 Known.isKnownNeverLogicalZero(*F, Ty); 2580 } 2581 if (IsKnownNoErrno) { 2582 auto *NewLog = B.CreateUnaryIntrinsic(LogID, Log->getArgOperand(0), Log); 2583 NewLog->copyMetadata(*Log); 2584 return copyFlags(*Log, NewLog); 2585 } 2586 } else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2587 LogID == Intrinsic::log10) { 2588 if (Ty->getScalarType()->isFloatTy()) { 2589 ExpLb = LibFunc_expf; 2590 Exp2Lb = LibFunc_exp2f; 2591 Exp10Lb = LibFunc_exp10f; 2592 PowLb = LibFunc_powf; 2593 } else if (Ty->getScalarType()->isDoubleTy()) { 2594 ExpLb = LibFunc_exp; 2595 Exp2Lb = LibFunc_exp2; 2596 Exp10Lb = LibFunc_exp10; 2597 PowLb = LibFunc_pow; 2598 } else 2599 return nullptr; 2600 } else 2601 return nullptr; 2602 2603 // The earlier call must also be 'fast' in order to do these transforms. 2604 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2605 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2606 return nullptr; 2607 2608 IRBuilderBase::FastMathFlagGuard Guard(B); 2609 B.setFastMathFlags(FastMathFlags::getFast()); 2610 2611 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2612 LibFunc ArgLb = NotLibFunc; 2613 TLI->getLibFunc(*Arg, ArgLb); 2614 2615 // log(pow(x,y)) -> y*log(x) 2616 AttributeList NoAttrs; 2617 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) { 2618 Value *LogX = 2619 Log->doesNotAccessMemory() 2620 ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log") 2621 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2622 Value *Y = Arg->getArgOperand(1); 2623 // Cast exponent to FP if integer. 2624 if (ArgID == Intrinsic::powi) 2625 Y = B.CreateSIToFP(Y, Ty, "cast"); 2626 Value *MulY = B.CreateFMul(Y, LogX, "mul"); 2627 // Since pow() may have side effects, e.g. errno, 2628 // dead code elimination may not be trusted to remove it. 2629 substituteInParent(Arg, MulY); 2630 return MulY; 2631 } 2632 2633 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2634 // TODO: There is no exp10() intrinsic yet. 2635 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2636 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2637 Constant *Eul; 2638 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2639 // FIXME: Add more precise value of e for long double. 2640 Eul = ConstantFP::get(Log->getType(), numbers::e); 2641 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2642 Eul = ConstantFP::get(Log->getType(), 2.0); 2643 else 2644 Eul = ConstantFP::get(Log->getType(), 10.0); 2645 Value *LogE = Log->doesNotAccessMemory() 2646 ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log") 2647 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2648 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2649 // Since exp() may have side effects, e.g. errno, 2650 // dead code elimination may not be trusted to remove it. 2651 substituteInParent(Arg, MulY); 2652 return MulY; 2653 } 2654 2655 return nullptr; 2656 } 2657 2658 // sqrt(exp(X)) -> exp(X * 0.5) 2659 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) { 2660 if (!CI->hasAllowReassoc()) 2661 return nullptr; 2662 2663 Function *SqrtFn = CI->getCalledFunction(); 2664 CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0)); 2665 if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse()) 2666 return nullptr; 2667 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2668 LibFunc ArgLb = NotLibFunc; 2669 TLI->getLibFunc(*Arg, ArgLb); 2670 2671 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb; 2672 2673 if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb)) 2674 switch (SqrtLb) { 2675 case LibFunc_sqrtf: 2676 ExpLb = LibFunc_expf; 2677 Exp2Lb = LibFunc_exp2f; 2678 Exp10Lb = LibFunc_exp10f; 2679 break; 2680 case LibFunc_sqrt: 2681 ExpLb = LibFunc_exp; 2682 Exp2Lb = LibFunc_exp2; 2683 Exp10Lb = LibFunc_exp10; 2684 break; 2685 case LibFunc_sqrtl: 2686 ExpLb = LibFunc_expl; 2687 Exp2Lb = LibFunc_exp2l; 2688 Exp10Lb = LibFunc_exp10l; 2689 break; 2690 default: 2691 return nullptr; 2692 } 2693 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) { 2694 if (CI->getType()->getScalarType()->isFloatTy()) { 2695 ExpLb = LibFunc_expf; 2696 Exp2Lb = LibFunc_exp2f; 2697 Exp10Lb = LibFunc_exp10f; 2698 } else if (CI->getType()->getScalarType()->isDoubleTy()) { 2699 ExpLb = LibFunc_exp; 2700 Exp2Lb = LibFunc_exp2; 2701 Exp10Lb = LibFunc_exp10; 2702 } else 2703 return nullptr; 2704 } else 2705 return nullptr; 2706 2707 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb && 2708 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2) 2709 return nullptr; 2710 2711 IRBuilderBase::InsertPointGuard Guard(B); 2712 B.SetInsertPoint(Arg); 2713 auto *ExpOperand = Arg->getOperand(0); 2714 auto *FMul = 2715 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5), 2716 CI, "merged.sqrt"); 2717 2718 Arg->setOperand(0, FMul); 2719 return Arg; 2720 } 2721 2722 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2723 Module *M = CI->getModule(); 2724 Function *Callee = CI->getCalledFunction(); 2725 Value *Ret = nullptr; 2726 // TODO: Once we have a way (other than checking for the existince of the 2727 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2728 // condition below. 2729 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2730 (Callee->getName() == "sqrt" || 2731 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2732 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2733 2734 if (Value *Opt = mergeSqrtToExp(CI, B)) 2735 return Opt; 2736 2737 if (!CI->isFast()) 2738 return Ret; 2739 2740 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2741 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2742 return Ret; 2743 2744 // We're looking for a repeated factor in a multiplication tree, 2745 // so we can do this fold: sqrt(x * x) -> fabs(x); 2746 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2747 Value *Op0 = I->getOperand(0); 2748 Value *Op1 = I->getOperand(1); 2749 Value *RepeatOp = nullptr; 2750 Value *OtherOp = nullptr; 2751 if (Op0 == Op1) { 2752 // Simple match: the operands of the multiply are identical. 2753 RepeatOp = Op0; 2754 } else { 2755 // Look for a more complicated pattern: one of the operands is itself 2756 // a multiply, so search for a common factor in that multiply. 2757 // Note: We don't bother looking any deeper than this first level or for 2758 // variations of this pattern because instcombine's visitFMUL and/or the 2759 // reassociation pass should give us this form. 2760 Value *MulOp; 2761 if (match(Op0, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) && 2762 cast<Instruction>(Op0)->isFast()) { 2763 // Pattern: sqrt((x * x) * z) 2764 RepeatOp = MulOp; 2765 OtherOp = Op1; 2766 } else if (match(Op1, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) && 2767 cast<Instruction>(Op1)->isFast()) { 2768 // Pattern: sqrt(z * (x * x)) 2769 RepeatOp = MulOp; 2770 OtherOp = Op0; 2771 } 2772 } 2773 if (!RepeatOp) 2774 return Ret; 2775 2776 // Fast math flags for any created instructions should match the sqrt 2777 // and multiply. 2778 2779 // If we found a repeated factor, hoist it out of the square root and 2780 // replace it with the fabs of that factor. 2781 Value *FabsCall = 2782 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, I, "fabs"); 2783 if (OtherOp) { 2784 // If we found a non-repeated factor, we still need to get its square 2785 // root. We then multiply that by the value that was simplified out 2786 // of the square root calculation. 2787 Value *SqrtCall = 2788 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, I, "sqrt"); 2789 return copyFlags(*CI, B.CreateFMulFMF(FabsCall, SqrtCall, I)); 2790 } 2791 return copyFlags(*CI, FabsCall); 2792 } 2793 2794 Value *LibCallSimplifier::optimizeFMod(CallInst *CI, IRBuilderBase &B) { 2795 2796 // fmod(x,y) can set errno if y == 0 or x == +/-inf, and returns Nan in those 2797 // case. If we know those do not happen, then we can convert the fmod into 2798 // frem. 2799 bool IsNoNan = CI->hasNoNaNs(); 2800 if (!IsNoNan) { 2801 SimplifyQuery SQ(DL, TLI, DT, AC, CI, true, true, DC); 2802 KnownFPClass Known0 = computeKnownFPClass(CI->getOperand(0), fcInf, 2803 /*Depth=*/0, SQ); 2804 if (Known0.isKnownNeverInfinity()) { 2805 KnownFPClass Known1 = 2806 computeKnownFPClass(CI->getOperand(1), fcZero | fcSubnormal, 2807 /*Depth=*/0, SQ); 2808 Function *F = CI->getParent()->getParent(); 2809 IsNoNan = Known1.isKnownNeverLogicalZero(*F, CI->getType()); 2810 } 2811 } 2812 2813 if (IsNoNan) { 2814 Value *FRem = B.CreateFRemFMF(CI->getOperand(0), CI->getOperand(1), CI); 2815 if (auto *FRemI = dyn_cast<Instruction>(FRem)) 2816 FRemI->setHasNoNaNs(true); 2817 return FRem; 2818 } 2819 return nullptr; 2820 } 2821 2822 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI, 2823 IRBuilderBase &B) { 2824 Module *M = CI->getModule(); 2825 Function *Callee = CI->getCalledFunction(); 2826 Value *Ret = nullptr; 2827 StringRef Name = Callee->getName(); 2828 if (UnsafeFPShrink && 2829 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" || 2830 Name == "asinh") && 2831 hasFloatVersion(M, Name)) 2832 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2833 2834 Value *Op1 = CI->getArgOperand(0); 2835 auto *OpC = dyn_cast<CallInst>(Op1); 2836 if (!OpC) 2837 return Ret; 2838 2839 // Both calls must be 'fast' in order to remove them. 2840 if (!CI->isFast() || !OpC->isFast()) 2841 return Ret; 2842 2843 // tan(atan(x)) -> x 2844 // atanh(tanh(x)) -> x 2845 // sinh(asinh(x)) -> x 2846 // asinh(sinh(x)) -> x 2847 // cosh(acosh(x)) -> x 2848 LibFunc Func; 2849 Function *F = OpC->getCalledFunction(); 2850 if (F && TLI->getLibFunc(F->getName(), Func) && 2851 isLibFuncEmittable(M, TLI, Func)) { 2852 LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName()) 2853 .Case("tan", LibFunc_atan) 2854 .Case("atanh", LibFunc_tanh) 2855 .Case("sinh", LibFunc_asinh) 2856 .Case("cosh", LibFunc_acosh) 2857 .Case("tanf", LibFunc_atanf) 2858 .Case("atanhf", LibFunc_tanhf) 2859 .Case("sinhf", LibFunc_asinhf) 2860 .Case("coshf", LibFunc_acoshf) 2861 .Case("tanl", LibFunc_atanl) 2862 .Case("atanhl", LibFunc_tanhl) 2863 .Case("sinhl", LibFunc_asinhl) 2864 .Case("coshl", LibFunc_acoshl) 2865 .Case("asinh", LibFunc_sinh) 2866 .Case("asinhf", LibFunc_sinhf) 2867 .Case("asinhl", LibFunc_sinhl) 2868 .Default(NumLibFuncs); // Used as error value 2869 if (Func == inverseFunc) 2870 Ret = OpC->getArgOperand(0); 2871 } 2872 return Ret; 2873 } 2874 2875 static bool isTrigLibCall(CallInst *CI) { 2876 // We can only hope to do anything useful if we can ignore things like errno 2877 // and floating-point exceptions. 2878 // We already checked the prototype. 2879 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2880 } 2881 2882 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2883 bool UseFloat, Value *&Sin, Value *&Cos, 2884 Value *&SinCos, const TargetLibraryInfo *TLI) { 2885 Module *M = OrigCallee->getParent(); 2886 Type *ArgTy = Arg->getType(); 2887 Type *ResTy; 2888 StringRef Name; 2889 2890 Triple T(OrigCallee->getParent()->getTargetTriple()); 2891 if (UseFloat) { 2892 Name = "__sincospif_stret"; 2893 2894 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2895 // x86_64 can't use {float, float} since that would be returned in both 2896 // xmm0 and xmm1, which isn't what a real struct would do. 2897 ResTy = T.getArch() == Triple::x86_64 2898 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2899 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2900 } else { 2901 Name = "__sincospi_stret"; 2902 ResTy = StructType::get(ArgTy, ArgTy); 2903 } 2904 2905 if (!isLibFuncEmittable(M, TLI, Name)) 2906 return false; 2907 LibFunc TheLibFunc; 2908 TLI->getLibFunc(Name, TheLibFunc); 2909 FunctionCallee Callee = getOrInsertLibFunc( 2910 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2911 2912 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2913 // If the argument is an instruction, it must dominate all uses so put our 2914 // sincos call there. 2915 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2916 } else { 2917 // Otherwise (e.g. for a constant) the beginning of the function is as 2918 // good a place as any. 2919 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2920 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2921 } 2922 2923 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2924 2925 if (SinCos->getType()->isStructTy()) { 2926 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2927 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2928 } else { 2929 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2930 "sinpi"); 2931 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2932 "cospi"); 2933 } 2934 2935 return true; 2936 } 2937 2938 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven, 2939 IRBuilderBase &B) { 2940 Value *X; 2941 Value *Src = CI->getArgOperand(0); 2942 2943 if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) { 2944 auto *Call = B.CreateCall(CI->getCalledFunction(), {X}); 2945 Call->copyFastMathFlags(CI); 2946 auto *CallInst = copyFlags(*CI, Call); 2947 if (IsEven) { 2948 // Even function: f(-x) = f(x) 2949 return CallInst; 2950 } 2951 // Odd function: f(-x) = -f(x) 2952 return B.CreateFNegFMF(CallInst, CI); 2953 } 2954 2955 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x) 2956 if (IsEven && (match(Src, m_FAbs(m_Value(X))) || 2957 match(Src, m_CopySign(m_Value(X), m_Value())))) { 2958 auto *Call = B.CreateCall(CI->getCalledFunction(), {X}); 2959 Call->copyFastMathFlags(CI); 2960 return copyFlags(*CI, Call); 2961 } 2962 2963 return nullptr; 2964 } 2965 2966 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func, 2967 IRBuilderBase &B) { 2968 switch (Func) { 2969 case LibFunc_cos: 2970 case LibFunc_cosf: 2971 case LibFunc_cosl: 2972 return optimizeSymmetricCall(CI, /*IsEven*/ true, B); 2973 2974 case LibFunc_sin: 2975 case LibFunc_sinf: 2976 case LibFunc_sinl: 2977 2978 case LibFunc_tan: 2979 case LibFunc_tanf: 2980 case LibFunc_tanl: 2981 2982 case LibFunc_erf: 2983 case LibFunc_erff: 2984 case LibFunc_erfl: 2985 return optimizeSymmetricCall(CI, /*IsEven*/ false, B); 2986 2987 default: 2988 return nullptr; 2989 } 2990 } 2991 2992 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 2993 // Make sure the prototype is as expected, otherwise the rest of the 2994 // function is probably invalid and likely to abort. 2995 if (!isTrigLibCall(CI)) 2996 return nullptr; 2997 2998 Value *Arg = CI->getArgOperand(0); 2999 SmallVector<CallInst *, 1> SinCalls; 3000 SmallVector<CallInst *, 1> CosCalls; 3001 SmallVector<CallInst *, 1> SinCosCalls; 3002 3003 bool IsFloat = Arg->getType()->isFloatTy(); 3004 3005 // Look for all compatible sinpi, cospi and sincospi calls with the same 3006 // argument. If there are enough (in some sense) we can make the 3007 // substitution. 3008 Function *F = CI->getFunction(); 3009 for (User *U : Arg->users()) 3010 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 3011 3012 // It's only worthwhile if both sinpi and cospi are actually used. 3013 if (SinCalls.empty() || CosCalls.empty()) 3014 return nullptr; 3015 3016 Value *Sin, *Cos, *SinCos; 3017 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 3018 SinCos, TLI)) 3019 return nullptr; 3020 3021 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 3022 Value *Res) { 3023 for (CallInst *C : Calls) 3024 replaceAllUsesWith(C, Res); 3025 }; 3026 3027 replaceTrigInsts(SinCalls, Sin); 3028 replaceTrigInsts(CosCalls, Cos); 3029 replaceTrigInsts(SinCosCalls, SinCos); 3030 3031 return IsSin ? Sin : Cos; 3032 } 3033 3034 void LibCallSimplifier::classifyArgUse( 3035 Value *Val, Function *F, bool IsFloat, 3036 SmallVectorImpl<CallInst *> &SinCalls, 3037 SmallVectorImpl<CallInst *> &CosCalls, 3038 SmallVectorImpl<CallInst *> &SinCosCalls) { 3039 auto *CI = dyn_cast<CallInst>(Val); 3040 if (!CI || CI->use_empty()) 3041 return; 3042 3043 // Don't consider calls in other functions. 3044 if (CI->getFunction() != F) 3045 return; 3046 3047 Module *M = CI->getModule(); 3048 Function *Callee = CI->getCalledFunction(); 3049 LibFunc Func; 3050 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 3051 !isLibFuncEmittable(M, TLI, Func) || 3052 !isTrigLibCall(CI)) 3053 return; 3054 3055 if (IsFloat) { 3056 if (Func == LibFunc_sinpif) 3057 SinCalls.push_back(CI); 3058 else if (Func == LibFunc_cospif) 3059 CosCalls.push_back(CI); 3060 else if (Func == LibFunc_sincospif_stret) 3061 SinCosCalls.push_back(CI); 3062 } else { 3063 if (Func == LibFunc_sinpi) 3064 SinCalls.push_back(CI); 3065 else if (Func == LibFunc_cospi) 3066 CosCalls.push_back(CI); 3067 else if (Func == LibFunc_sincospi_stret) 3068 SinCosCalls.push_back(CI); 3069 } 3070 } 3071 3072 /// Constant folds remquo 3073 Value *LibCallSimplifier::optimizeRemquo(CallInst *CI, IRBuilderBase &B) { 3074 const APFloat *X, *Y; 3075 if (!match(CI->getArgOperand(0), m_APFloat(X)) || 3076 !match(CI->getArgOperand(1), m_APFloat(Y))) 3077 return nullptr; 3078 3079 APFloat::opStatus Status; 3080 APFloat Quot = *X; 3081 Status = Quot.divide(*Y, APFloat::rmNearestTiesToEven); 3082 if (Status != APFloat::opOK && Status != APFloat::opInexact) 3083 return nullptr; 3084 APFloat Rem = *X; 3085 if (Rem.remainder(*Y) != APFloat::opOK) 3086 return nullptr; 3087 3088 // TODO: We can only keep at least the three of the last bits of x/y 3089 unsigned IntBW = TLI->getIntSize(); 3090 APSInt QuotInt(IntBW, /*isUnsigned=*/false); 3091 bool IsExact; 3092 Status = 3093 Quot.convertToInteger(QuotInt, APFloat::rmNearestTiesToEven, &IsExact); 3094 if (Status != APFloat::opOK && Status != APFloat::opInexact) 3095 return nullptr; 3096 3097 B.CreateAlignedStore( 3098 ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()), 3099 CI->getArgOperand(2), CI->getParamAlign(2)); 3100 return ConstantFP::get(CI->getType(), Rem); 3101 } 3102 3103 /// Constant folds fdim 3104 Value *LibCallSimplifier::optimizeFdim(CallInst *CI, IRBuilderBase &B) { 3105 // Cannot perform the fold unless the call has attribute memory(none) 3106 if (!CI->doesNotAccessMemory()) 3107 return nullptr; 3108 3109 // TODO : Handle undef values 3110 // Propagate poison if any 3111 if (isa<PoisonValue>(CI->getArgOperand(0))) 3112 return CI->getArgOperand(0); 3113 if (isa<PoisonValue>(CI->getArgOperand(1))) 3114 return CI->getArgOperand(1); 3115 3116 const APFloat *X, *Y; 3117 // Check if both values are constants 3118 if (!match(CI->getArgOperand(0), m_APFloat(X)) || 3119 !match(CI->getArgOperand(1), m_APFloat(Y))) 3120 return nullptr; 3121 3122 APFloat Difference = *X; 3123 Difference.subtract(*Y, RoundingMode::NearestTiesToEven); 3124 3125 APFloat MaxVal = 3126 maximum(Difference, APFloat::getZero(CI->getType()->getFltSemantics())); 3127 return ConstantFP::get(CI->getType(), MaxVal); 3128 } 3129 3130 //===----------------------------------------------------------------------===// 3131 // Integer Library Call Optimizations 3132 //===----------------------------------------------------------------------===// 3133 3134 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 3135 // All variants of ffs return int which need not be 32 bits wide. 3136 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 3137 Type *RetType = CI->getType(); 3138 Value *Op = CI->getArgOperand(0); 3139 Type *ArgType = Op->getType(); 3140 Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()}, 3141 nullptr, "cttz"); 3142 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 3143 V = B.CreateIntCast(V, RetType, false); 3144 3145 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 3146 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 3147 } 3148 3149 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 3150 // All variants of fls return int which need not be 32 bits wide. 3151 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 3152 Value *Op = CI->getArgOperand(0); 3153 Type *ArgType = Op->getType(); 3154 Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()}, 3155 nullptr, "ctlz"); 3156 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 3157 V); 3158 return B.CreateIntCast(V, CI->getType(), false); 3159 } 3160 3161 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 3162 // abs(x) -> x <s 0 ? -x : x 3163 // The negation has 'nsw' because abs of INT_MIN is undefined. 3164 Value *X = CI->getArgOperand(0); 3165 Value *IsNeg = B.CreateIsNeg(X); 3166 Value *NegX = B.CreateNSWNeg(X, "neg"); 3167 return B.CreateSelect(IsNeg, NegX, X); 3168 } 3169 3170 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 3171 // isdigit(c) -> (c-'0') <u 10 3172 Value *Op = CI->getArgOperand(0); 3173 Type *ArgType = Op->getType(); 3174 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 3175 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 3176 return B.CreateZExt(Op, CI->getType()); 3177 } 3178 3179 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 3180 // isascii(c) -> c <u 128 3181 Value *Op = CI->getArgOperand(0); 3182 Type *ArgType = Op->getType(); 3183 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 3184 return B.CreateZExt(Op, CI->getType()); 3185 } 3186 3187 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 3188 // toascii(c) -> c & 0x7f 3189 return B.CreateAnd(CI->getArgOperand(0), 3190 ConstantInt::get(CI->getType(), 0x7F)); 3191 } 3192 3193 // Fold calls to atoi, atol, and atoll. 3194 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 3195 StringRef Str; 3196 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3197 return nullptr; 3198 3199 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 3200 } 3201 3202 // Fold calls to strtol, strtoll, strtoul, and strtoull. 3203 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 3204 bool AsSigned) { 3205 Value *EndPtr = CI->getArgOperand(1); 3206 if (isa<ConstantPointerNull>(EndPtr)) { 3207 // With a null EndPtr, this function won't capture the main argument. 3208 // It would be readonly too, except that it still may write to errno. 3209 CI->addParamAttr(0, Attribute::getWithCaptureInfo(CI->getContext(), 3210 CaptureInfo::none())); 3211 EndPtr = nullptr; 3212 } else if (!isKnownNonZero(EndPtr, DL)) 3213 return nullptr; 3214 3215 StringRef Str; 3216 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3217 return nullptr; 3218 3219 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 3220 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 3221 } 3222 3223 return nullptr; 3224 } 3225 3226 //===----------------------------------------------------------------------===// 3227 // Formatting and IO Library Call Optimizations 3228 //===----------------------------------------------------------------------===// 3229 3230 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 3231 3232 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 3233 int StreamArg) { 3234 Function *Callee = CI->getCalledFunction(); 3235 // Error reporting calls should be cold, mark them as such. 3236 // This applies even to non-builtin calls: it is only a hint and applies to 3237 // functions that the frontend might not understand as builtins. 3238 3239 // This heuristic was suggested in: 3240 // Improving Static Branch Prediction in a Compiler 3241 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 3242 // Proceedings of PACT'98, Oct. 1998, IEEE 3243 if (!CI->hasFnAttr(Attribute::Cold) && 3244 isReportingError(Callee, CI, StreamArg)) { 3245 CI->addFnAttr(Attribute::Cold); 3246 } 3247 3248 return nullptr; 3249 } 3250 3251 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 3252 if (!Callee || !Callee->isDeclaration()) 3253 return false; 3254 3255 if (StreamArg < 0) 3256 return true; 3257 3258 // These functions might be considered cold, but only if their stream 3259 // argument is stderr. 3260 3261 if (StreamArg >= (int)CI->arg_size()) 3262 return false; 3263 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 3264 if (!LI) 3265 return false; 3266 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 3267 if (!GV || !GV->isDeclaration()) 3268 return false; 3269 return GV->getName() == "stderr"; 3270 } 3271 3272 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 3273 // Check for a fixed format string. 3274 StringRef FormatStr; 3275 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 3276 return nullptr; 3277 3278 // Empty format string -> noop. 3279 if (FormatStr.empty()) // Tolerate printf's declared void. 3280 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 3281 3282 // Do not do any of the following transformations if the printf return value 3283 // is used, in general the printf return value is not compatible with either 3284 // putchar() or puts(). 3285 if (!CI->use_empty()) 3286 return nullptr; 3287 3288 Type *IntTy = CI->getType(); 3289 // printf("x") -> putchar('x'), even for "%" and "%%". 3290 if (FormatStr.size() == 1 || FormatStr == "%%") { 3291 // Convert the character to unsigned char before passing it to putchar 3292 // to avoid host-specific sign extension in the IR. Putchar converts 3293 // it to unsigned char regardless. 3294 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 3295 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3296 } 3297 3298 // Try to remove call or emit putchar/puts. 3299 if (FormatStr == "%s" && CI->arg_size() > 1) { 3300 StringRef OperandStr; 3301 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 3302 return nullptr; 3303 // printf("%s", "") --> NOP 3304 if (OperandStr.empty()) 3305 return (Value *)CI; 3306 // printf("%s", "a") --> putchar('a') 3307 if (OperandStr.size() == 1) { 3308 // Convert the character to unsigned char before passing it to putchar 3309 // to avoid host-specific sign extension in the IR. Putchar converts 3310 // it to unsigned char regardless. 3311 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 3312 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3313 } 3314 // printf("%s", str"\n") --> puts(str) 3315 if (OperandStr.back() == '\n') { 3316 OperandStr = OperandStr.drop_back(); 3317 Value *GV = B.CreateGlobalString(OperandStr, "str"); 3318 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3319 } 3320 return nullptr; 3321 } 3322 3323 // printf("foo\n") --> puts("foo") 3324 if (FormatStr.back() == '\n' && 3325 !FormatStr.contains('%')) { // No format characters. 3326 // Create a string literal with no \n on it. We expect the constant merge 3327 // pass to be run after this pass, to merge duplicate strings. 3328 FormatStr = FormatStr.drop_back(); 3329 Value *GV = B.CreateGlobalString(FormatStr, "str"); 3330 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3331 } 3332 3333 // Optimize specific format strings. 3334 // printf("%c", chr) --> putchar(chr) 3335 if (FormatStr == "%c" && CI->arg_size() > 1 && 3336 CI->getArgOperand(1)->getType()->isIntegerTy()) { 3337 // Convert the argument to the type expected by putchar, i.e., int, which 3338 // need not be 32 bits wide but which is the same as printf's return type. 3339 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 3340 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3341 } 3342 3343 // printf("%s\n", str) --> puts(str) 3344 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 3345 CI->getArgOperand(1)->getType()->isPointerTy()) 3346 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 3347 return nullptr; 3348 } 3349 3350 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 3351 3352 Module *M = CI->getModule(); 3353 Function *Callee = CI->getCalledFunction(); 3354 FunctionType *FT = Callee->getFunctionType(); 3355 if (Value *V = optimizePrintFString(CI, B)) { 3356 return V; 3357 } 3358 3359 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3360 3361 // printf(format, ...) -> iprintf(format, ...) if no floating point 3362 // arguments. 3363 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3364 !callHasFloatingPointArgument(CI)) { 3365 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3366 Callee->getAttributes()); 3367 CallInst *New = cast<CallInst>(CI->clone()); 3368 New->setCalledFunction(IPrintFFn); 3369 B.Insert(New); 3370 return New; 3371 } 3372 3373 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3374 // arguments. 3375 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3376 !callHasFP128Argument(CI)) { 3377 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3378 Callee->getAttributes()); 3379 CallInst *New = cast<CallInst>(CI->clone()); 3380 New->setCalledFunction(SmallPrintFFn); 3381 B.Insert(New); 3382 return New; 3383 } 3384 3385 return nullptr; 3386 } 3387 3388 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3389 IRBuilderBase &B) { 3390 // Check for a fixed format string. 3391 StringRef FormatStr; 3392 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3393 return nullptr; 3394 3395 // If we just have a format string (nothing else crazy) transform it. 3396 Value *Dest = CI->getArgOperand(0); 3397 if (CI->arg_size() == 2) { 3398 // Make sure there's no % in the constant array. We could try to handle 3399 // %% -> % in the future if we cared. 3400 if (FormatStr.contains('%')) 3401 return nullptr; // we found a format specifier, bail out. 3402 3403 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3404 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(1), Align(1), 3405 // Copy the null byte. 3406 TLI->getAsSizeT(FormatStr.size() + 1, *CI->getModule())); 3407 return ConstantInt::get(CI->getType(), FormatStr.size()); 3408 } 3409 3410 // The remaining optimizations require the format string to be "%s" or "%c" 3411 // and have an extra operand. 3412 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3413 return nullptr; 3414 3415 // Decode the second character of the format string. 3416 if (FormatStr[1] == 'c') { 3417 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3418 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3419 return nullptr; 3420 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3421 Value *Ptr = Dest; 3422 B.CreateStore(V, Ptr); 3423 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3424 B.CreateStore(B.getInt8(0), Ptr); 3425 3426 return ConstantInt::get(CI->getType(), 1); 3427 } 3428 3429 if (FormatStr[1] == 's') { 3430 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3431 // strlen(str)+1) 3432 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3433 return nullptr; 3434 3435 if (CI->use_empty()) 3436 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3437 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3438 3439 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3440 if (SrcLen) { 3441 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), 3442 TLI->getAsSizeT(SrcLen, *CI->getModule())); 3443 // Returns total number of characters written without null-character. 3444 return ConstantInt::get(CI->getType(), SrcLen - 1); 3445 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3446 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3447 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3448 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3449 } 3450 3451 if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3452 PGSOQueryType::IRPass)) 3453 return nullptr; 3454 3455 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3456 if (!Len) 3457 return nullptr; 3458 Value *IncLen = 3459 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3460 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3461 3462 // The sprintf result is the unincremented number of bytes in the string. 3463 return B.CreateIntCast(Len, CI->getType(), false); 3464 } 3465 return nullptr; 3466 } 3467 3468 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3469 Module *M = CI->getModule(); 3470 Function *Callee = CI->getCalledFunction(); 3471 FunctionType *FT = Callee->getFunctionType(); 3472 if (Value *V = optimizeSPrintFString(CI, B)) { 3473 return V; 3474 } 3475 3476 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3477 3478 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3479 // point arguments. 3480 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3481 !callHasFloatingPointArgument(CI)) { 3482 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3483 FT, Callee->getAttributes()); 3484 CallInst *New = cast<CallInst>(CI->clone()); 3485 New->setCalledFunction(SIPrintFFn); 3486 B.Insert(New); 3487 return New; 3488 } 3489 3490 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3491 // floating point arguments. 3492 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3493 !callHasFP128Argument(CI)) { 3494 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3495 Callee->getAttributes()); 3496 CallInst *New = cast<CallInst>(CI->clone()); 3497 New->setCalledFunction(SmallSPrintFFn); 3498 B.Insert(New); 3499 return New; 3500 } 3501 3502 return nullptr; 3503 } 3504 3505 // Transform an snprintf call CI with the bound N to format the string Str 3506 // either to a call to memcpy, or to single character a store, or to nothing, 3507 // and fold the result to a constant. A nonnull StrArg refers to the string 3508 // argument being formatted. Otherwise the call is one with N < 2 and 3509 // the "%c" directive to format a single character. 3510 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3511 StringRef Str, uint64_t N, 3512 IRBuilderBase &B) { 3513 assert(StrArg || (N < 2 && Str.size() == 1)); 3514 3515 unsigned IntBits = TLI->getIntSize(); 3516 uint64_t IntMax = maxIntN(IntBits); 3517 if (Str.size() > IntMax) 3518 // Bail if the string is longer than INT_MAX. POSIX requires 3519 // implementations to set errno to EOVERFLOW in this case, in 3520 // addition to when N is larger than that (checked by the caller). 3521 return nullptr; 3522 3523 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3524 if (N == 0) 3525 return StrLen; 3526 3527 // Set to the number of bytes to copy fron StrArg which is also 3528 // the offset of the terinating nul. 3529 uint64_t NCopy; 3530 if (N > Str.size()) 3531 // Copy the full string, including the terminating nul (which must 3532 // be present regardless of the bound). 3533 NCopy = Str.size() + 1; 3534 else 3535 NCopy = N - 1; 3536 3537 Value *DstArg = CI->getArgOperand(0); 3538 if (NCopy && StrArg) 3539 // Transform the call to lvm.memcpy(dst, fmt, N). 3540 copyFlags(*CI, B.CreateMemCpy(DstArg, Align(1), StrArg, Align(1), 3541 TLI->getAsSizeT(NCopy, *CI->getModule()))); 3542 3543 if (N > Str.size()) 3544 // Return early when the whole format string, including the final nul, 3545 // has been copied. 3546 return StrLen; 3547 3548 // Otherwise, when truncating the string append a terminating nul. 3549 Type *Int8Ty = B.getInt8Ty(); 3550 Value *NulOff = B.getIntN(IntBits, NCopy); 3551 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3552 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3553 return StrLen; 3554 } 3555 3556 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3557 IRBuilderBase &B) { 3558 // Check for size 3559 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3560 if (!Size) 3561 return nullptr; 3562 3563 uint64_t N = Size->getZExtValue(); 3564 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3565 if (N > IntMax) 3566 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3567 // to set errno to EOVERFLOW in this case. 3568 return nullptr; 3569 3570 Value *DstArg = CI->getArgOperand(0); 3571 Value *FmtArg = CI->getArgOperand(2); 3572 3573 // Check for a fixed format string. 3574 StringRef FormatStr; 3575 if (!getConstantStringInfo(FmtArg, FormatStr)) 3576 return nullptr; 3577 3578 // If we just have a format string (nothing else crazy) transform it. 3579 if (CI->arg_size() == 3) { 3580 if (FormatStr.contains('%')) 3581 // Bail if the format string contains a directive and there are 3582 // no arguments. We could handle "%%" in the future. 3583 return nullptr; 3584 3585 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3586 } 3587 3588 // The remaining optimizations require the format string to be "%s" or "%c" 3589 // and have an extra operand. 3590 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3591 return nullptr; 3592 3593 // Decode the second character of the format string. 3594 if (FormatStr[1] == 'c') { 3595 if (N <= 1) { 3596 // Use an arbitary string of length 1 to transform the call into 3597 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3598 // to one. 3599 StringRef CharStr("*"); 3600 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3601 } 3602 3603 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3604 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3605 return nullptr; 3606 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3607 Value *Ptr = DstArg; 3608 B.CreateStore(V, Ptr); 3609 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3610 B.CreateStore(B.getInt8(0), Ptr); 3611 return ConstantInt::get(CI->getType(), 1); 3612 } 3613 3614 if (FormatStr[1] != 's') 3615 return nullptr; 3616 3617 Value *StrArg = CI->getArgOperand(3); 3618 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3619 StringRef Str; 3620 if (!getConstantStringInfo(StrArg, Str)) 3621 return nullptr; 3622 3623 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3624 } 3625 3626 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3627 if (Value *V = optimizeSnPrintFString(CI, B)) { 3628 return V; 3629 } 3630 3631 if (isKnownNonZero(CI->getOperand(1), DL)) 3632 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3633 return nullptr; 3634 } 3635 3636 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3637 IRBuilderBase &B) { 3638 optimizeErrorReporting(CI, B, 0); 3639 3640 // All the optimizations depend on the format string. 3641 StringRef FormatStr; 3642 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3643 return nullptr; 3644 3645 // Do not do any of the following transformations if the fprintf return 3646 // value is used, in general the fprintf return value is not compatible 3647 // with fwrite(), fputc() or fputs(). 3648 if (!CI->use_empty()) 3649 return nullptr; 3650 3651 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3652 if (CI->arg_size() == 2) { 3653 // Could handle %% -> % if we cared. 3654 if (FormatStr.contains('%')) 3655 return nullptr; // We found a format specifier. 3656 3657 return copyFlags( 3658 *CI, emitFWrite(CI->getArgOperand(1), 3659 TLI->getAsSizeT(FormatStr.size(), *CI->getModule()), 3660 CI->getArgOperand(0), B, DL, TLI)); 3661 } 3662 3663 // The remaining optimizations require the format string to be "%s" or "%c" 3664 // and have an extra operand. 3665 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3666 return nullptr; 3667 3668 // Decode the second character of the format string. 3669 if (FormatStr[1] == 'c') { 3670 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3671 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3672 return nullptr; 3673 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3674 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3675 "chari"); 3676 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3677 } 3678 3679 if (FormatStr[1] == 's') { 3680 // fprintf(F, "%s", str) --> fputs(str, F) 3681 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3682 return nullptr; 3683 return copyFlags( 3684 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3685 } 3686 return nullptr; 3687 } 3688 3689 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3690 Module *M = CI->getModule(); 3691 Function *Callee = CI->getCalledFunction(); 3692 FunctionType *FT = Callee->getFunctionType(); 3693 if (Value *V = optimizeFPrintFString(CI, B)) { 3694 return V; 3695 } 3696 3697 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3698 // floating point arguments. 3699 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3700 !callHasFloatingPointArgument(CI)) { 3701 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3702 FT, Callee->getAttributes()); 3703 CallInst *New = cast<CallInst>(CI->clone()); 3704 New->setCalledFunction(FIPrintFFn); 3705 B.Insert(New); 3706 return New; 3707 } 3708 3709 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3710 // 128-bit floating point arguments. 3711 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3712 !callHasFP128Argument(CI)) { 3713 auto SmallFPrintFFn = 3714 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3715 Callee->getAttributes()); 3716 CallInst *New = cast<CallInst>(CI->clone()); 3717 New->setCalledFunction(SmallFPrintFFn); 3718 B.Insert(New); 3719 return New; 3720 } 3721 3722 return nullptr; 3723 } 3724 3725 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3726 optimizeErrorReporting(CI, B, 3); 3727 3728 // Get the element size and count. 3729 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3730 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3731 if (SizeC && CountC) { 3732 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3733 3734 // If this is writing zero records, remove the call (it's a noop). 3735 if (Bytes == 0) 3736 return ConstantInt::get(CI->getType(), 0); 3737 3738 // If this is writing one byte, turn it into fputc. 3739 // This optimisation is only valid, if the return value is unused. 3740 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3741 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char"); 3742 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3743 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3744 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3745 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3746 } 3747 } 3748 3749 return nullptr; 3750 } 3751 3752 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3753 optimizeErrorReporting(CI, B, 1); 3754 3755 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3756 // requires more arguments and thus extra MOVs are required. 3757 if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3758 PGSOQueryType::IRPass)) 3759 return nullptr; 3760 3761 // We can't optimize if return value is used. 3762 if (!CI->use_empty()) 3763 return nullptr; 3764 3765 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3766 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3767 if (!Len) 3768 return nullptr; 3769 3770 // Known to have no uses (see above). 3771 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3772 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3773 return copyFlags( 3774 *CI, 3775 emitFWrite(CI->getArgOperand(0), 3776 ConstantInt::get(SizeTTy, Len - 1), 3777 CI->getArgOperand(1), B, DL, TLI)); 3778 } 3779 3780 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3781 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3782 if (!CI->use_empty()) 3783 return nullptr; 3784 3785 // Check for a constant string. 3786 // puts("") -> putchar('\n') 3787 StringRef Str; 3788 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3789 // putchar takes an argument of the same type as puts returns, i.e., 3790 // int, which need not be 32 bits wide. 3791 Type *IntTy = CI->getType(); 3792 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3793 } 3794 3795 return nullptr; 3796 } 3797 3798 Value *LibCallSimplifier::optimizeExit(CallInst *CI) { 3799 3800 // Mark 'exit' as cold if its not exit(0) (success). 3801 const APInt *C; 3802 if (!CI->hasFnAttr(Attribute::Cold) && 3803 match(CI->getArgOperand(0), m_APInt(C)) && !C->isZero()) { 3804 CI->addFnAttr(Attribute::Cold); 3805 } 3806 return nullptr; 3807 } 3808 3809 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3810 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3811 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3812 CI->getArgOperand(0), Align(1), 3813 CI->getArgOperand(2))); 3814 } 3815 3816 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3817 SmallString<20> FloatFuncName = FuncName; 3818 FloatFuncName += 'f'; 3819 return isLibFuncEmittable(M, TLI, FloatFuncName); 3820 } 3821 3822 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3823 IRBuilderBase &Builder) { 3824 Module *M = CI->getModule(); 3825 LibFunc Func; 3826 Function *Callee = CI->getCalledFunction(); 3827 3828 // Check for string/memory library functions. 3829 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3830 // Make sure we never change the calling convention. 3831 assert( 3832 (ignoreCallingConv(Func) || 3833 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3834 "Optimizing string/memory libcall would change the calling convention"); 3835 switch (Func) { 3836 case LibFunc_strcat: 3837 return optimizeStrCat(CI, Builder); 3838 case LibFunc_strncat: 3839 return optimizeStrNCat(CI, Builder); 3840 case LibFunc_strchr: 3841 return optimizeStrChr(CI, Builder); 3842 case LibFunc_strrchr: 3843 return optimizeStrRChr(CI, Builder); 3844 case LibFunc_strcmp: 3845 return optimizeStrCmp(CI, Builder); 3846 case LibFunc_strncmp: 3847 return optimizeStrNCmp(CI, Builder); 3848 case LibFunc_strcpy: 3849 return optimizeStrCpy(CI, Builder); 3850 case LibFunc_stpcpy: 3851 return optimizeStpCpy(CI, Builder); 3852 case LibFunc_strlcpy: 3853 return optimizeStrLCpy(CI, Builder); 3854 case LibFunc_stpncpy: 3855 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3856 case LibFunc_strncpy: 3857 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3858 case LibFunc_strlen: 3859 return optimizeStrLen(CI, Builder); 3860 case LibFunc_strnlen: 3861 return optimizeStrNLen(CI, Builder); 3862 case LibFunc_strpbrk: 3863 return optimizeStrPBrk(CI, Builder); 3864 case LibFunc_strndup: 3865 return optimizeStrNDup(CI, Builder); 3866 case LibFunc_strtol: 3867 case LibFunc_strtod: 3868 case LibFunc_strtof: 3869 case LibFunc_strtoul: 3870 case LibFunc_strtoll: 3871 case LibFunc_strtold: 3872 case LibFunc_strtoull: 3873 return optimizeStrTo(CI, Builder); 3874 case LibFunc_strspn: 3875 return optimizeStrSpn(CI, Builder); 3876 case LibFunc_strcspn: 3877 return optimizeStrCSpn(CI, Builder); 3878 case LibFunc_strstr: 3879 return optimizeStrStr(CI, Builder); 3880 case LibFunc_memchr: 3881 return optimizeMemChr(CI, Builder); 3882 case LibFunc_memrchr: 3883 return optimizeMemRChr(CI, Builder); 3884 case LibFunc_bcmp: 3885 return optimizeBCmp(CI, Builder); 3886 case LibFunc_memcmp: 3887 return optimizeMemCmp(CI, Builder); 3888 case LibFunc_memcpy: 3889 return optimizeMemCpy(CI, Builder); 3890 case LibFunc_memccpy: 3891 return optimizeMemCCpy(CI, Builder); 3892 case LibFunc_mempcpy: 3893 return optimizeMemPCpy(CI, Builder); 3894 case LibFunc_memmove: 3895 return optimizeMemMove(CI, Builder); 3896 case LibFunc_memset: 3897 return optimizeMemSet(CI, Builder); 3898 case LibFunc_realloc: 3899 return optimizeRealloc(CI, Builder); 3900 case LibFunc_wcslen: 3901 return optimizeWcslen(CI, Builder); 3902 case LibFunc_bcopy: 3903 return optimizeBCopy(CI, Builder); 3904 case LibFunc_Znwm: 3905 case LibFunc_ZnwmRKSt9nothrow_t: 3906 case LibFunc_ZnwmSt11align_val_t: 3907 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3908 case LibFunc_Znam: 3909 case LibFunc_ZnamRKSt9nothrow_t: 3910 case LibFunc_ZnamSt11align_val_t: 3911 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3912 case LibFunc_Znwm12__hot_cold_t: 3913 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 3914 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 3915 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3916 case LibFunc_Znam12__hot_cold_t: 3917 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 3918 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 3919 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3920 case LibFunc_size_returning_new: 3921 case LibFunc_size_returning_new_hot_cold: 3922 case LibFunc_size_returning_new_aligned: 3923 case LibFunc_size_returning_new_aligned_hot_cold: 3924 return optimizeNew(CI, Builder, Func); 3925 default: 3926 break; 3927 } 3928 } 3929 return nullptr; 3930 } 3931 3932 /// Constant folding nan/nanf/nanl. 3933 static Value *optimizeNaN(CallInst *CI) { 3934 StringRef CharSeq; 3935 if (!getConstantStringInfo(CI->getArgOperand(0), CharSeq)) 3936 return nullptr; 3937 3938 APInt Fill; 3939 // Treat empty strings as if they were zero. 3940 if (CharSeq.empty()) 3941 Fill = APInt(32, 0); 3942 else if (CharSeq.getAsInteger(0, Fill)) 3943 return nullptr; 3944 3945 return ConstantFP::getQNaN(CI->getType(), /*Negative=*/false, &Fill); 3946 } 3947 3948 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3949 LibFunc Func, 3950 IRBuilderBase &Builder) { 3951 const Module *M = CI->getModule(); 3952 3953 // Don't optimize calls that require strict floating point semantics. 3954 if (CI->isStrictFP()) 3955 return nullptr; 3956 3957 if (Value *V = optimizeSymmetric(CI, Func, Builder)) 3958 return V; 3959 3960 switch (Func) { 3961 case LibFunc_sinpif: 3962 case LibFunc_sinpi: 3963 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3964 case LibFunc_cospif: 3965 case LibFunc_cospi: 3966 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3967 case LibFunc_powf: 3968 case LibFunc_pow: 3969 case LibFunc_powl: 3970 return optimizePow(CI, Builder); 3971 case LibFunc_exp2l: 3972 case LibFunc_exp2: 3973 case LibFunc_exp2f: 3974 return optimizeExp2(CI, Builder); 3975 case LibFunc_fabsf: 3976 case LibFunc_fabs: 3977 case LibFunc_fabsl: 3978 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3979 case LibFunc_sqrtf: 3980 case LibFunc_sqrt: 3981 case LibFunc_sqrtl: 3982 return optimizeSqrt(CI, Builder); 3983 case LibFunc_fmod: 3984 case LibFunc_fmodf: 3985 case LibFunc_fmodl: 3986 return optimizeFMod(CI, Builder); 3987 case LibFunc_logf: 3988 case LibFunc_log: 3989 case LibFunc_logl: 3990 case LibFunc_log10f: 3991 case LibFunc_log10: 3992 case LibFunc_log10l: 3993 case LibFunc_log1pf: 3994 case LibFunc_log1p: 3995 case LibFunc_log1pl: 3996 case LibFunc_log2f: 3997 case LibFunc_log2: 3998 case LibFunc_log2l: 3999 case LibFunc_logbf: 4000 case LibFunc_logb: 4001 case LibFunc_logbl: 4002 return optimizeLog(CI, Builder); 4003 case LibFunc_tan: 4004 case LibFunc_tanf: 4005 case LibFunc_tanl: 4006 case LibFunc_sinh: 4007 case LibFunc_sinhf: 4008 case LibFunc_sinhl: 4009 case LibFunc_asinh: 4010 case LibFunc_asinhf: 4011 case LibFunc_asinhl: 4012 case LibFunc_cosh: 4013 case LibFunc_coshf: 4014 case LibFunc_coshl: 4015 case LibFunc_atanh: 4016 case LibFunc_atanhf: 4017 case LibFunc_atanhl: 4018 return optimizeTrigInversionPairs(CI, Builder); 4019 case LibFunc_ceil: 4020 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 4021 case LibFunc_floor: 4022 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 4023 case LibFunc_round: 4024 return replaceUnaryCall(CI, Builder, Intrinsic::round); 4025 case LibFunc_roundeven: 4026 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 4027 case LibFunc_nearbyint: 4028 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 4029 case LibFunc_rint: 4030 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 4031 case LibFunc_trunc: 4032 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 4033 case LibFunc_acos: 4034 case LibFunc_acosh: 4035 case LibFunc_asin: 4036 case LibFunc_atan: 4037 case LibFunc_cbrt: 4038 case LibFunc_exp: 4039 case LibFunc_exp10: 4040 case LibFunc_expm1: 4041 case LibFunc_cos: 4042 case LibFunc_sin: 4043 case LibFunc_tanh: 4044 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 4045 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 4046 return nullptr; 4047 case LibFunc_copysign: 4048 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 4049 return optimizeBinaryDoubleFP(CI, Builder, TLI); 4050 return nullptr; 4051 case LibFunc_fdim: 4052 case LibFunc_fdimf: 4053 case LibFunc_fdiml: 4054 return optimizeFdim(CI, Builder); 4055 case LibFunc_fminf: 4056 case LibFunc_fmin: 4057 case LibFunc_fminl: 4058 case LibFunc_fmaxf: 4059 case LibFunc_fmax: 4060 case LibFunc_fmaxl: 4061 return optimizeFMinFMax(CI, Builder); 4062 case LibFunc_cabs: 4063 case LibFunc_cabsf: 4064 case LibFunc_cabsl: 4065 return optimizeCAbs(CI, Builder); 4066 case LibFunc_remquo: 4067 case LibFunc_remquof: 4068 case LibFunc_remquol: 4069 return optimizeRemquo(CI, Builder); 4070 case LibFunc_nan: 4071 case LibFunc_nanf: 4072 case LibFunc_nanl: 4073 return optimizeNaN(CI); 4074 default: 4075 return nullptr; 4076 } 4077 } 4078 4079 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 4080 Module *M = CI->getModule(); 4081 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 4082 4083 // TODO: Split out the code below that operates on FP calls so that 4084 // we can all non-FP calls with the StrictFP attribute to be 4085 // optimized. 4086 if (CI->isNoBuiltin()) 4087 return nullptr; 4088 4089 LibFunc Func; 4090 Function *Callee = CI->getCalledFunction(); 4091 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4092 4093 SmallVector<OperandBundleDef, 2> OpBundles; 4094 CI->getOperandBundlesAsDefs(OpBundles); 4095 4096 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4097 Builder.setDefaultOperandBundles(OpBundles); 4098 4099 // Command-line parameter overrides instruction attribute. 4100 // This can't be moved to optimizeFloatingPointLibCall() because it may be 4101 // used by the intrinsic optimizations. 4102 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 4103 UnsafeFPShrink = EnableUnsafeFPShrink; 4104 else if (isa<FPMathOperator>(CI) && CI->isFast()) 4105 UnsafeFPShrink = true; 4106 4107 // First, check for intrinsics. 4108 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 4109 if (!IsCallingConvC) 4110 return nullptr; 4111 // The FP intrinsics have corresponding constrained versions so we don't 4112 // need to check for the StrictFP attribute here. 4113 switch (II->getIntrinsicID()) { 4114 case Intrinsic::pow: 4115 return optimizePow(CI, Builder); 4116 case Intrinsic::exp2: 4117 return optimizeExp2(CI, Builder); 4118 case Intrinsic::log: 4119 case Intrinsic::log2: 4120 case Intrinsic::log10: 4121 return optimizeLog(CI, Builder); 4122 case Intrinsic::sqrt: 4123 return optimizeSqrt(CI, Builder); 4124 case Intrinsic::memset: 4125 return optimizeMemSet(CI, Builder); 4126 case Intrinsic::memcpy: 4127 return optimizeMemCpy(CI, Builder); 4128 case Intrinsic::memmove: 4129 return optimizeMemMove(CI, Builder); 4130 default: 4131 return nullptr; 4132 } 4133 } 4134 4135 // Also try to simplify calls to fortified library functions. 4136 if (Value *SimplifiedFortifiedCI = 4137 FortifiedSimplifier.optimizeCall(CI, Builder)) 4138 return SimplifiedFortifiedCI; 4139 4140 // Then check for known library functions. 4141 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 4142 // We never change the calling convention. 4143 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4144 return nullptr; 4145 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 4146 return V; 4147 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 4148 return V; 4149 switch (Func) { 4150 case LibFunc_ffs: 4151 case LibFunc_ffsl: 4152 case LibFunc_ffsll: 4153 return optimizeFFS(CI, Builder); 4154 case LibFunc_fls: 4155 case LibFunc_flsl: 4156 case LibFunc_flsll: 4157 return optimizeFls(CI, Builder); 4158 case LibFunc_abs: 4159 case LibFunc_labs: 4160 case LibFunc_llabs: 4161 return optimizeAbs(CI, Builder); 4162 case LibFunc_isdigit: 4163 return optimizeIsDigit(CI, Builder); 4164 case LibFunc_isascii: 4165 return optimizeIsAscii(CI, Builder); 4166 case LibFunc_toascii: 4167 return optimizeToAscii(CI, Builder); 4168 case LibFunc_atoi: 4169 case LibFunc_atol: 4170 case LibFunc_atoll: 4171 return optimizeAtoi(CI, Builder); 4172 case LibFunc_strtol: 4173 case LibFunc_strtoll: 4174 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 4175 case LibFunc_strtoul: 4176 case LibFunc_strtoull: 4177 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 4178 case LibFunc_printf: 4179 return optimizePrintF(CI, Builder); 4180 case LibFunc_sprintf: 4181 return optimizeSPrintF(CI, Builder); 4182 case LibFunc_snprintf: 4183 return optimizeSnPrintF(CI, Builder); 4184 case LibFunc_fprintf: 4185 return optimizeFPrintF(CI, Builder); 4186 case LibFunc_fwrite: 4187 return optimizeFWrite(CI, Builder); 4188 case LibFunc_fputs: 4189 return optimizeFPuts(CI, Builder); 4190 case LibFunc_puts: 4191 return optimizePuts(CI, Builder); 4192 case LibFunc_perror: 4193 return optimizeErrorReporting(CI, Builder); 4194 case LibFunc_vfprintf: 4195 case LibFunc_fiprintf: 4196 return optimizeErrorReporting(CI, Builder, 0); 4197 case LibFunc_exit: 4198 case LibFunc_Exit: 4199 return optimizeExit(CI); 4200 default: 4201 return nullptr; 4202 } 4203 } 4204 return nullptr; 4205 } 4206 4207 LibCallSimplifier::LibCallSimplifier( 4208 const DataLayout &DL, const TargetLibraryInfo *TLI, DominatorTree *DT, 4209 DomConditionCache *DC, AssumptionCache *AC, OptimizationRemarkEmitter &ORE, 4210 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 4211 function_ref<void(Instruction *, Value *)> Replacer, 4212 function_ref<void(Instruction *)> Eraser) 4213 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), DT(DT), DC(DC), AC(AC), 4214 ORE(ORE), BFI(BFI), PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 4215 4216 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 4217 // Indirect through the replacer used in this instance. 4218 Replacer(I, With); 4219 } 4220 4221 void LibCallSimplifier::eraseFromParent(Instruction *I) { 4222 Eraser(I); 4223 } 4224 4225 // TODO: 4226 // Additional cases that we need to add to this file: 4227 // 4228 // cbrt: 4229 // * cbrt(expN(X)) -> expN(x/3) 4230 // * cbrt(sqrt(x)) -> pow(x,1/6) 4231 // * cbrt(cbrt(x)) -> pow(x,1/9) 4232 // 4233 // exp, expf, expl: 4234 // * exp(log(x)) -> x 4235 // 4236 // log, logf, logl: 4237 // * log(exp(x)) -> x 4238 // * log(exp(y)) -> y*log(e) 4239 // * log(exp10(y)) -> y*log(10) 4240 // * log(sqrt(x)) -> 0.5*log(x) 4241 // 4242 // pow, powf, powl: 4243 // * pow(sqrt(x),y) -> pow(x,y*0.5) 4244 // * pow(pow(x,y),z)-> pow(x,y*z) 4245 // 4246 // signbit: 4247 // * signbit(cnst) -> cnst' 4248 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 4249 // 4250 // sqrt, sqrtf, sqrtl: 4251 // * sqrt(expN(x)) -> expN(x*0.5) 4252 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 4253 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 4254 // 4255 4256 //===----------------------------------------------------------------------===// 4257 // Fortified Library Call Optimizations 4258 //===----------------------------------------------------------------------===// 4259 4260 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 4261 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 4262 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 4263 // If this function takes a flag argument, the implementation may use it to 4264 // perform extra checks. Don't fold into the non-checking variant. 4265 if (FlagOp) { 4266 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 4267 if (!Flag || !Flag->isZero()) 4268 return false; 4269 } 4270 4271 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 4272 return true; 4273 4274 if (ConstantInt *ObjSizeCI = 4275 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 4276 if (ObjSizeCI->isMinusOne()) 4277 return true; 4278 // If the object size wasn't -1 (unknown), bail out if we were asked to. 4279 if (OnlyLowerUnknownSize) 4280 return false; 4281 if (StrOp) { 4282 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 4283 // If the length is 0 we don't know how long it is and so we can't 4284 // remove the check. 4285 if (Len) 4286 annotateDereferenceableBytes(CI, *StrOp, Len); 4287 else 4288 return false; 4289 return ObjSizeCI->getZExtValue() >= Len; 4290 } 4291 4292 if (SizeOp) { 4293 if (ConstantInt *SizeCI = 4294 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 4295 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 4296 } 4297 } 4298 return false; 4299 } 4300 4301 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 4302 IRBuilderBase &B) { 4303 if (isFortifiedCallFoldable(CI, 3, 2)) { 4304 CallInst *NewCI = 4305 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4306 Align(1), CI->getArgOperand(2)); 4307 mergeAttributesAndFlags(NewCI, *CI); 4308 return CI->getArgOperand(0); 4309 } 4310 return nullptr; 4311 } 4312 4313 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 4314 IRBuilderBase &B) { 4315 if (isFortifiedCallFoldable(CI, 3, 2)) { 4316 CallInst *NewCI = 4317 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4318 Align(1), CI->getArgOperand(2)); 4319 mergeAttributesAndFlags(NewCI, *CI); 4320 return CI->getArgOperand(0); 4321 } 4322 return nullptr; 4323 } 4324 4325 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 4326 IRBuilderBase &B) { 4327 if (isFortifiedCallFoldable(CI, 3, 2)) { 4328 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 4329 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 4330 CI->getArgOperand(2), Align(1)); 4331 mergeAttributesAndFlags(NewCI, *CI); 4332 return CI->getArgOperand(0); 4333 } 4334 return nullptr; 4335 } 4336 4337 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 4338 IRBuilderBase &B) { 4339 const DataLayout &DL = CI->getDataLayout(); 4340 if (isFortifiedCallFoldable(CI, 3, 2)) 4341 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4342 CI->getArgOperand(2), B, DL, TLI)) { 4343 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 4344 } 4345 return nullptr; 4346 } 4347 4348 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 4349 IRBuilderBase &B, 4350 LibFunc Func) { 4351 const DataLayout &DL = CI->getDataLayout(); 4352 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 4353 *ObjSize = CI->getArgOperand(2); 4354 4355 // __stpcpy_chk(x,x,...) -> x+strlen(x) 4356 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 4357 Value *StrLen = emitStrLen(Src, B, DL, TLI); 4358 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 4359 } 4360 4361 // If a) we don't have any length information, or b) we know this will 4362 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 4363 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 4364 // TODO: It might be nice to get a maximum length out of the possible 4365 // string lengths for varying. 4366 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 4367 if (Func == LibFunc_strcpy_chk) 4368 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 4369 else 4370 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 4371 } 4372 4373 if (OnlyLowerUnknownSize) 4374 return nullptr; 4375 4376 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 4377 uint64_t Len = GetStringLength(Src); 4378 if (Len) 4379 annotateDereferenceableBytes(CI, 1, Len); 4380 else 4381 return nullptr; 4382 4383 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 4384 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 4385 Value *LenV = ConstantInt::get(SizeTTy, Len); 4386 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 4387 // If the function was an __stpcpy_chk, and we were able to fold it into 4388 // a __memcpy_chk, we still need to return the correct end pointer. 4389 if (Ret && Func == LibFunc_stpcpy_chk) 4390 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 4391 ConstantInt::get(SizeTTy, Len - 1)); 4392 return copyFlags(*CI, cast<CallInst>(Ret)); 4393 } 4394 4395 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 4396 IRBuilderBase &B) { 4397 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4398 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4399 CI->getDataLayout(), TLI)); 4400 return nullptr; 4401 } 4402 4403 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4404 IRBuilderBase &B, 4405 LibFunc Func) { 4406 if (isFortifiedCallFoldable(CI, 3, 2)) { 4407 if (Func == LibFunc_strncpy_chk) 4408 return copyFlags(*CI, 4409 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4410 CI->getArgOperand(2), B, TLI)); 4411 else 4412 return copyFlags(*CI, 4413 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4414 CI->getArgOperand(2), B, TLI)); 4415 } 4416 4417 return nullptr; 4418 } 4419 4420 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4421 IRBuilderBase &B) { 4422 if (isFortifiedCallFoldable(CI, 4, 3)) 4423 return copyFlags( 4424 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4425 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4426 4427 return nullptr; 4428 } 4429 4430 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4431 IRBuilderBase &B) { 4432 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4433 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4434 return copyFlags(*CI, 4435 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4436 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4437 } 4438 4439 return nullptr; 4440 } 4441 4442 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4443 IRBuilderBase &B) { 4444 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4445 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4446 return copyFlags(*CI, 4447 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4448 VariadicArgs, B, TLI)); 4449 } 4450 4451 return nullptr; 4452 } 4453 4454 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4455 IRBuilderBase &B) { 4456 if (isFortifiedCallFoldable(CI, 2)) 4457 return copyFlags( 4458 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4459 4460 return nullptr; 4461 } 4462 4463 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4464 IRBuilderBase &B) { 4465 if (isFortifiedCallFoldable(CI, 3)) 4466 return copyFlags(*CI, 4467 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4468 CI->getArgOperand(2), B, TLI)); 4469 4470 return nullptr; 4471 } 4472 4473 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4474 IRBuilderBase &B) { 4475 if (isFortifiedCallFoldable(CI, 3)) 4476 return copyFlags(*CI, 4477 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4478 CI->getArgOperand(2), B, TLI)); 4479 4480 return nullptr; 4481 } 4482 4483 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4484 IRBuilderBase &B) { 4485 if (isFortifiedCallFoldable(CI, 3)) 4486 return copyFlags(*CI, 4487 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4488 CI->getArgOperand(2), B, TLI)); 4489 4490 return nullptr; 4491 } 4492 4493 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4494 IRBuilderBase &B) { 4495 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4496 return copyFlags( 4497 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4498 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4499 4500 return nullptr; 4501 } 4502 4503 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4504 IRBuilderBase &B) { 4505 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4506 return copyFlags(*CI, 4507 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4508 CI->getArgOperand(4), B, TLI)); 4509 4510 return nullptr; 4511 } 4512 4513 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4514 IRBuilderBase &Builder) { 4515 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4516 // Some clang users checked for _chk libcall availability using: 4517 // __has_builtin(__builtin___memcpy_chk) 4518 // When compiling with -fno-builtin, this is always true. 4519 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4520 // end up with fortified libcalls, which isn't acceptable in a freestanding 4521 // environment which only provides their non-fortified counterparts. 4522 // 4523 // Until we change clang and/or teach external users to check for availability 4524 // differently, disregard the "nobuiltin" attribute and TLI::has. 4525 // 4526 // PR23093. 4527 4528 LibFunc Func; 4529 Function *Callee = CI->getCalledFunction(); 4530 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4531 4532 SmallVector<OperandBundleDef, 2> OpBundles; 4533 CI->getOperandBundlesAsDefs(OpBundles); 4534 4535 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4536 Builder.setDefaultOperandBundles(OpBundles); 4537 4538 // First, check that this is a known library functions and that the prototype 4539 // is correct. 4540 if (!TLI->getLibFunc(*Callee, Func)) 4541 return nullptr; 4542 4543 // We never change the calling convention. 4544 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4545 return nullptr; 4546 4547 switch (Func) { 4548 case LibFunc_memcpy_chk: 4549 return optimizeMemCpyChk(CI, Builder); 4550 case LibFunc_mempcpy_chk: 4551 return optimizeMemPCpyChk(CI, Builder); 4552 case LibFunc_memmove_chk: 4553 return optimizeMemMoveChk(CI, Builder); 4554 case LibFunc_memset_chk: 4555 return optimizeMemSetChk(CI, Builder); 4556 case LibFunc_stpcpy_chk: 4557 case LibFunc_strcpy_chk: 4558 return optimizeStrpCpyChk(CI, Builder, Func); 4559 case LibFunc_strlen_chk: 4560 return optimizeStrLenChk(CI, Builder); 4561 case LibFunc_stpncpy_chk: 4562 case LibFunc_strncpy_chk: 4563 return optimizeStrpNCpyChk(CI, Builder, Func); 4564 case LibFunc_memccpy_chk: 4565 return optimizeMemCCpyChk(CI, Builder); 4566 case LibFunc_snprintf_chk: 4567 return optimizeSNPrintfChk(CI, Builder); 4568 case LibFunc_sprintf_chk: 4569 return optimizeSPrintfChk(CI, Builder); 4570 case LibFunc_strcat_chk: 4571 return optimizeStrCatChk(CI, Builder); 4572 case LibFunc_strlcat_chk: 4573 return optimizeStrLCat(CI, Builder); 4574 case LibFunc_strncat_chk: 4575 return optimizeStrNCatChk(CI, Builder); 4576 case LibFunc_strlcpy_chk: 4577 return optimizeStrLCpyChk(CI, Builder); 4578 case LibFunc_vsnprintf_chk: 4579 return optimizeVSNPrintfChk(CI, Builder); 4580 case LibFunc_vsprintf_chk: 4581 return optimizeVSPrintfChk(CI, Builder); 4582 default: 4583 break; 4584 } 4585 return nullptr; 4586 } 4587 4588 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4589 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4590 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4591